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Abstract

Existing methods for pixel-wise labelling tasks generally

disregard the underlying structure of labellings, often lead-

ing to predictions that are visually implausible. While in-

corporating structure into the model should improve pre-

diction quality, doing so is challenging – manually speci-

fying the form of structural constraints may be impractical

and inference often becomes intractable even if structural

constraints are given. We sidestep this problem by reducing

structured prediction to a sequence of unconstrained pre-

diction problems and demonstrate that this approach is ca-

pable of automatically discovering priors on shape, conti-

guity of region predictions and smoothness of region con-

tours from data without any a priori specification. On the

instance segmentation task, this method outperforms the

state-of-the-art, achieving a mean APr of 63.6% at 50%
overlap and 43.3% at 70% overlap.

1. Introduction

In computer vision, the objective of many tasks is to pre-

dict a pixel-wise labelling of the input image. While the

intrinsic structure of images constrains the space of sensi-

ble labellings, existing approaches typically eschew lever-

aging such cues and instead predict the label for each pixel

independently. Consequently, the resulting predictions may

not be visually plausible. To mitigate this, a common strat-

egy is to perform post-processing on the predictions us-

ing superpixel projections [16] or conditional random fields

(CRFs) [19], which ensures the final predictions are consis-

tent with local appearance cues like colour and texture but

fails to account for global object-level cues like shape.

Despite its obvious shortcomings, this strategy enjoys

popularity, partly because incorporating global cues re-

quires introducing higher-order potentials in the graphical

model and often makes inference intractable. Because in-

ference in general graphical models is NP-hard, extensive

work on structured prediction has focused on devising effi-

cient inference algorithms in special cases where the higher-

order potentials take on a particular form. Unfortunately,

Figure 1: A challenging image in which object instances are

segmented incorrectly. While pixels belonging to the cate-

gory are identified correctly, they are not correctly separated

into instances.

this restricts the expressive power of the model. As a re-

sult, care must be taken to formulate the cues of interest as

higher-order potentials of the desired form, which may not

be possible. Moreover, low-energy configurations of the po-

tentials often need to be specified manually a priori, which

may not be practical when the cues of interest are complex

and abstract concepts like shape.

In this paper, we devise a method that learns implicit

shape priors and use them to improve the quality of the pre-

dicted pixel-wise labelling. Instead of attempting to capture

shape using explicit constraints, we would like to model

shape implicitly and allow the concept of shape to emerge

from data automatically. To this end, we draw inspiration

from iterative approaches like auto-context [32], inference

machines [26] and iterative error feedback (IEF) [6]. Rather

than learning a model to predict the target in one step, we

decompose the prediction process into multiple steps and

allow the model to make mistakes in intermediate steps as

long as it is able to correct them in subsequent steps. By
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learning to correct previous mistakes, the model must learn

the underlying structure in the output implicitly in order to

use it to make corrections.

To evaluate if the method is successful in learning shape

constraints, a perfect testbed is the task of instance segmen-

tation, the goal of which is to identify the pixels that be-

long to each individual object instance in an image. Be-

cause the unit of interest is an object instance rather than an

entire object category, methods that leverage only local cues

have difficulty in identifying the instance a pixel belongs to

in scenes with multiple object instances of the same cate-

gory that are adjacent to one another, as illustrated in Fig-

ure 1. We demonstrate that the proposed method is able

to successfully learn a category-specific shape prior and

correctly suppresses pixels belonging to other instances.

It is also able to automatically discover a prior favouring

contiguity of region predictions and smoothness of region

contours despite these being not explicitly specified in the

model. Quantitatively, it outperforms the state-of-the-art

and achieves a mean APr of 63.6% at 50% overlap and

43.3% at 70% overlap.

2. Related Work

Yang et al. [33] first described the task of segmenting

out individual instances of a category. The metrics we use

in this paper were detailed by Tighe et al. [30], who pro-

posed non-parametric transfer of instance masks from the

training set to detected objects, and by Hariharan et al. [14]

who used convolutional neural nets (CNNs) [20] to clas-

sify region proposals. We use the terminology and metrics

proposed by the latter in this paper. Dai et al. [8] used ideas

from [17] to speed up the CNN-based proposal classifica-

tion significantly.

A simple way of tackling this task is to run an object

detector and segment out each detected instance. The no-

tion of segmenting out detected objects has a long history

in computer vision. Usually this idea has been used to aid

semantic segmentation, or the task of labeling pixels in an

image with category labels. Borenstein and Ullman [3] first

suggested using category-specific information to improve

the accuracy of segmentation. Yang et al. [33] start from

object detections from the deformable parts model [10] and

paste figure-ground masks for each detected object. Sim-

ilarly, Brox et al. [5] and Arbeláez et al. [1] paste figure-

ground masks for poselet detections [4]. Recent advances in

computer vision have all but replaced early detectors such

as DPM and poselets with ones based on CNNs [20, 12, 11]

and produced dramatic improvements in performance in the

process. In the CNN era, Hariharan et al. [16] used features

from CNNs to segment out R-CNN detections [12].

When producing figure-ground masks for detections,

most of these approaches predict every pixel independently.

However, this disregards the fact that pixels in the image

are hardly independent of each other, and a figure-ground

labeling has to satisfy certain constraints. Some of these

constraints can be simply encoded as local smoothness:

nearby pixels of similar color should be labeled similarly.

This can be achieved simply by aligning the predicted seg-

mentation to image contours [5] or projecting to superpix-

els [16]. More sophisticated approaches model the problem

using CRFs with unary and pairwise potentials [27, 24, 19].

Later work considers extending these models by incorpo-

rating higher-order potentials of specific forms for which

inference is tractable [18, 21]. A related line of work ex-

plores learning a generative model of masks [9] using a

deep Boltzmann machine [28]. Zheng et al. [35] show that

inference in CRFs can be viewed as recurrent neural nets

and trained together with a CNN to label pixels, resulting

in large gains. Another alternative is to use eigenvectors

obtained from normalized cuts as an embedding for pix-

els [23, 22].

However, images contain more structure than just local

appearance-dependent smoothness. For instance, one high

informative form of global cue is shape; in the case of per-

sons, it encodes important constraints like two heads cannot

be part of the same person, the head must be above the torso

and so on. There has been prior work on handling such

constraints in the pose estimation task by using graphical

models defined over keypoint locations [34, 31]. However,

in many applications, keypoint locations are unknown and

such constraints must be enforced on raw pixels. Explicitly

specifying these constraints on pixels is impractical, since

it would require formulating potentials that are capable of

localizing different parts of an object, which itself is a chal-

lenging task. Even if this could be done, the potentials that

are induced would be higher order (which arises from the

relative position constraints among multiple parts of an ob-

ject) and non-submodular (due to mutual exclusivity con-

straints between pixels belonging to two different heads).

This makes exact inference and training in these graphical

models intractable.

Auto-context [32] and inference machines [26] take ad-

vantage of the observation that performing accurate infer-

ence does not necessarily require modelling the posterior

distribution explicitly. Instead, these approaches devise ef-

ficient iterative inference procedures that directly approx-

imate message passing. By doing so, they are able to

leverage information from distant spatial locations when

making predictions while remaining computationally effi-

cient. In a similar spirit, other methods model the iter-

ative process as recurrent neural nets [25, 35]. IEF [6]

uses a related approach on the task of human pose esti-

mation by directly refining the prediction rather than ap-

proximating message passing in each iteration. While this

approach shows promise when the predictions lie in a low-

dimensional space of possible 2D locations of human joints,
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Figure 2: The proposed method decomposes the prediction process into multiple steps, each of which consists of performing

unconstrained inference on the input image and the prediction from the preceding step. The diagram above illustrates a three-

step prediction procedure when a convolutional neural net is used as the underlying model, as is the case with our method

when applied to instance segmentation.

it is unclear if it will be effective when the output is high-

dimensional and embeds complex structure like shape, as is

the case with tasks that require a pixel-wise labelling of the

input. In this paper, we devise an iterative method that sup-

ports prediction in high-dimensional spaces without a natu-

ral distance metric for measuring conformity to structure.

3. Method

3.1. Task and Setting

The objective of the instance segmentation task, also

known as simultaneous detection and segmentation (SDS),

is to predict the segmentation mask for each object instance

in an image. Typically, an object detection system is run in

the first stage of the pipeline, which generates a set of can-

didate bounding boxes along with the associated detection

scores and category labels. Next, non-maximum suppres-

sion (NMS) is applied to these detections, which are then

fed into the segmentation system, which predicts a heatmap

for each bounding box representing the probability of each

pixel inside the bounding box belonging to the foreground

object of interest. The heatmaps then optionally undergo

some form of post-processing, such as projection to super-

pixels. Finally, they are binarized by applying a threshold,

yielding the final segmentation mask predictions. We use

fast R-CNN [11] trained on MCG [2] bounding box pro-

posals as our detection system and focus on designing the

segmentation system in this paper.

3.2. Segmentation System

For our segmentation system, we use a CNN that takes

a 224 × 224 patch as input and outputs a 50 × 50 heatmap

prediction. The architecture is based on that of the hyper-

colmumn net proposed by Hariharan et al. [16], which is

designed to be sensitive to image features at finer scales and

relative locations of feature activations within the bound-

ing box. Specifically, we use the architecture based on the

VGG 16-layer net [29] (referred to as “O-Net” in [16]), in

which heatmaps are computed from the concatenation of

upsampled feature maps from multiple intermediate lay-

ers, known as the hypercolumn representation. The CNN

is trained end-to-end on the PASCAL VOC 2012 training

set with ground truth instance segmentation masks from the

Semantic Boundaries Dataset (SBD) [13] starting from an

initialization from the weights of a net finetuned for the de-

tection task using R-CNN [12].

3.3. Algorithm

We would like to incorporate global cues like shape

when making predictions. Shape encodes important struc-

tural constraints, such as the fact that a person cannot have

two heads, which is why humans are capable of recognizing

the category of an object from its silhouette almost effort-

lessly. So, leveraging shape enables us to disambiguate re-

gion hypotheses that all correctly cover pixels belonging to

the category of interest but may group pixels into instances

incorrectly.

Producing a heatmap prediction that is consistent with

shape cues is a structured prediction problem, with the

structure being shape constraints. The proposed algorithm

works by reducing the structured prediction problem to a

sequence of unconstrained prediction problems. Instead of

forcing the model to produce a prediction that is consistent

with both the input and the structure in a single step, we al-

low the model to disregard structure initially and train it to

correct its mistakes arising from disregarding structure over

multiple steps, while ensuring consistency of the prediction

with the input in each step. The final prediction is there-

fore consistent with both the input and the structure. Later,

we demonstrate that this procedure is capable to learning
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a shape prior, a contiguity prior and a contour smoothness

prior purely from data without any a priori specification to

bias the learning towards finding these priors.

At test time, in each step, we feed the input image and

the prediction from the previous step, which defaults to con-

stant prediction of 1/2 in the initial step, into the model and

take the prediction from the last step as our final prediction.

In our setting, the model takes the form of a CNN. Please

see Figure 2 for a conceptual illustration of this procedure.

Algorithm 1 Training Procedure

Require: D is a training set consisting of (x, y) pairs, where x and y
denote the instance and the ground truth labelling respectively, and f is

the model

function TRAIN(D, f )

// p
(t)
x is the predicted labelling of x in the tth stage

p
(0)
x ←

(

1/2 · · · 1/2
)

T
∀ (x, y) ∈ D

for t = 1 to N do

// Training set for the current stage

T ←

{((

x

p
(i)
x

)

, y

)
∣

∣

∣

∣

(x, y) ∈ D, i < t

}

Train model f on T starting from the current parameters of f

p
(t)
x ← f

(

x

p
(t−1)
x

)

∀ (x, y) ∈ D

end for

return f
end function

Algorithm 2 Testing Procedure

Require: f is the model and x is an instance

function TEST(f , x)

// ŷ(t) is the predicted labelling of x after t iterations

ŷ(0) ←
(

1/2 · · · 1/2
)

T

for t = 1 to M do

ŷ(t) ← f

(

x

ŷ(t−1)

)

end for

return ŷ(M)

end function

Training the model is straightforward and is done in

stages: in the first stage, the model is trained to predict the

ground truth segmentation mask with the previous heatmap

prediction set to 1/2 for all pixels and the predictions of the

model at the end of training are stored for later use. In each

subsequent stage, the model is trained starting from the pa-

rameter values at the end of the previous stage to predict

the ground truth segmentation mask from the input image

and a prediction for the image generated during any of the

preceding stages.

Pseudocode of the training and testing procedures are

shown in Algorithms 1 and 2.

3.4. Discussion

Modelling shape constraints using traditional structured

prediction approaches would be challenging for three rea-

sons. First, because the notion of shape is highly abstract, it

is difficult to explicitly formulate the set of structural con-

straints it imposes on the output. Furthermore, even if it

could be done, manual specification would introduce bi-

ases that favour human preconceptions and lead to inaccu-

racies in the predictions. Therefore, manually engineering

the form of structural constraints is neither feasible or de-

sirable. Hence, the structural constraints are unknown and

must be learned from data automatically. Second, because

shape imposes constraints on the relationship between dif-

ferent parts of the object, such as the fact that a person can-

not have two heads, it is dependent on the semantics of the

image. As a result, the potentials must be capable of repre-

senting high-level semantic concepts like “head” and would

need to have complex non-linear dependence on the input

image, which would complicate learning. Finally, because

shape simultaneously constrains the labels of many pixels

and enforce mutual exclusivity between competing region

hypotheses, the potentials would need to be of higher order

and non-submodular, often making inference intractable.

Compared to the traditional single-step structured pre-

diction paradigm, the proposed multi-step prediction pro-

cedure is more powerful because it is easier to model local

corrections than the global structure. This can be viewed ge-

ometrically – a single-step prediction procedure effectively

attempts to model the manifold defined by the structure di-

rectly, the geometry of which could be very complex. In

contrast, our multi-step procedure learns to model the gradi-

ent of an implicit function whose level set defines the mani-

fold, which tends to have much simpler geometry. Because

it is possible to recover the manifold, which is a level set

of an implicit function, from the gradient of the function,

learning the gradient suffices for modelling structure.

3.5. Implementation Details

We modify the architecture introduced by Hariharan et

al. [16] as follows. Because shape is only expected to

be consistent for objects in the same category, we make

the weights of the first layer category-dependent by adding

twenty channels to the input layer, each corresponding to

a different object category. The channel that corresponds

to the category given by the detection system contains the

heatmap prediction from the previous step, and channels

corresponding to other categories are filled with zeros. To

prepare the input to the CNN, patches inside the bounding

boxes generated by the detection system are extracted and

anisotropically scaled to 224 × 224 and the ground truth

segmentation mask is transformed accordingly. Because

the heatmap prediction from the preceding step is 50 × 50,

we upsample it to 224 × 224 using bilinear interpolation

before feeding it in as input. To ensure learning is well-

conditioned, the heatmap prediction is rescaled and cen-

tred element-wise to lie in the range [−127, 128] and the

weights corresponding to the additional channels are ini-
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tialized randomly with the same standard deviation as that

of the weights corresponding to the colour channels.

The training set includes all detection boxes that overlap

with the ground truth bounding boxes by more than 70%.

At training time, boxes are uniformly sampled by category,

and the weights for upsampled patches are set proportion-

ally to their original areas for the purposes of computing the

loss. The weights for all layers that are present in the VGG

16-layer architecture are initialized from the weights fine-

tuned on the detection task and the weights for all other lay-

ers are initialized randomly. The loss function is the sum of

the pixel-wise negative log likelihoods of the ground truth.

The net is trained end-to-end using SGD on mini-batches

of 32 patches with a learning rate of 5× 10−5 and momen-

tum of 0.9. We perform four stages of training and train

for 30K, 42.5K, 50K and 20K iterations in stages one, two,

three and four respectively. We find that the inference pro-

cedure typically converges after three steps and so we use

three iterations at test time.

We can optionally perform post-processing by project-

ing to superpixels. To generate region predictions from

heatmaps, we colour in a pixel or superpixel if the mean heat

intensity inside a pixel or superpixel is greater than 40%. Fi-

nally, we can rescore the detections in the same manner as

[16] by training support vector machines (SVMs) on fea-

tures computed on the bounding box and the region predic-

tions. To construct the training set, we take all bounding

box detections that pass non-maximum suppression (NMS)

using a bounding box overlap threshold of 70% and include

those that overlap with the ground truth by more than 70%
as positive instances and those by less than 50% as negative

instances. To compute the features, we feed in the origi-

nal image patch and the patch with the region background

masked out to two CNNs trained as described in [15]. To

obtain the final set of detections, we compute scores using

the trained SVMs and apply NMS using a region overlap

threshold of 30%.

3.6. Evaluation

We evaluate the proposed method in terms of region av-

erage precision (APr), which is introduced by [15]. Region

average precision is defined in the same way as the standard

average precision metric used for the detection task, with

the difference being the computation of overlap between the

prediction and the ground truth. For instance segmentation,

overlap is defined as the pixel-wise intersection-over-union

(IoU) of the region prediction and the ground truth segmen-

tation mask, instead of the IoU of their respective bounding

boxes. We evaluate against the SBD instance segmentation

annotations on the PASCAL VOC 2012 validation set.

4. Experiments

First, we visualize the improvement in prediction accu-

racy as training progresses. In Figure 3, we show the pixel-

wise heatmap predictions on image patches from the PAS-

CAL VOC 2012 validation set after each stage of training.

As shown, prediction quality steadily improves with each

successive stage of training. Initially, the model is only able

to identify some parts of the object; with each stage of train-

ing, it learns to recover additional parts of the object that

were previously missed. After four stages of training, the

model is able to correctly identify most parts belonging to

the object. This indicates that the model is able to learn to

make local corrections to its predictions in each stage. After

four stages of training, the predictions are reasonably visu-

ally coherent and consistent with the underlying structure of

the output space. Interestingly, the model gradually learns

to suppress parts of other objects, as shown by the predic-

tions on the bicycle and horse images, where the model

learns to suppress parts of the pole and the other horse in

later stages.

Figure 3: Heatmap predictions on images from the PAS-

CAL VOC 2012 validation set after each stage of training.

Best viewed in colour.

Next, we compare the performance of the proposed

method with that of existing methods. As shown in Table

1, the proposed method outperforms all existing methods

in terms of mean APr at both 50% and 70%. We analyze

performance at a more granular level by comparing the pro-

posed method to the state-of-the-art method, the hypercol-

umn net [16], under three settings: without superpixel pro-

jection, with superpixel projection and with superpixel pro-

jection and rescoring. As shown in Table 2, the proposed

method achieves higher mean APr at 50% and 70% than

the state-of-the-art in each setting. In particular, the pro-

posed method achieves an 9.3-point gain over the state-of-
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Proposed  
Method 

Hypercolumn 

Pixel-wise Prediction Superpixel Projection Pixel-wise Prediction Superpixel Projection 

Figure 4: Comparison of heatmap and region predictions produced by the proposed method and the vanilla hypercolumn net

on images from the PASCAL VOC 2012 validation set. Best viewed in colour.

Method mAPr at 50% mAPr at 70%

O2P [7] 25.2 −

SDS [15] 49.7 25.3
CFM [8] 60.7 39.6
Hypercolumn [16] 62.4 39.4
Proposed Method 63 .6 43 .3

Table 1: Performance of the proposed method compared to

existing methods.

the-art in terms of its raw pixel-wise prediction performance

at 70% overlap. This indicates the raw heatmaps produced

by the proposed method are more accurate than those pro-

duced by the vanilla hypercolumn net. As a result, the pro-

posed method requires less reliance on post-processing. We

confirm this intuition by visualizing the heatmaps in Fig-

ure 4. When superpixel projection is applied, the proposed

method improves performance by 1.7 points and 3.8 points

at 50% and 70% overlaps respectively. With rescoring, the

proposed method obtains a mean APr of 63.6% at 50%
overlap and 43.3% at 70% overlap, which represent the best

performance on the instance segmentation task to date. We

break down performance by category under each setting in

the supplementary material.

We examine heatmap and region predictions of the pro-

posed method and the vanilla hypercolumn net, both with

and without applying superpixel projection. As shown in

Figure 4, the pixel-wise heatmap predictions produced by

the proposed method are generally more visually coherent

than those produced by the vanilla hypercolumn net. In par-

ticular, the proposed method predicts regions that are more

consistent with shape. For example, the heatmap predic-

tions produced by the proposed method for the sportscaster

Method and Setting mAPr at 50% mAPr at 70%

Raw pixel-wise prediction:

Hypercolumn [16] 56.1 29.4
Proposed Method 60 .1 38 .7

With superpixel projection:

Hypercolumn [16] 58.6 36.4
Proposed Method 60 .3 40 .2

With superpixel projection

and rescoring:

Hypercolumn [16] 62.4 39.4
Proposed Method 63 .6 43 .3

Table 2: Performance comparison of the proposed method

and the state-of-the-art under different settings.

and the toddler images contain less noise and correctly iden-

tify most foreground pixels with high confidence. In con-

trast, the heatmap predictions produced by the hypercolumn

net are both noisy and inconsistent with the typical shape

of persons. On the bicycle image, the proposed method is

able to produce a fairly accurate segmentation, whereas the

hypercolumn net largely fails to find the contours of the bi-

cycle. On the horse image, the proposed method correctly

identifies the body and the legs of the horse. It also incor-

rectly hallucinates the head of the horse, which is actually

occluded; this mistake is reasonable given the similar ap-

pearance of adjacent horses. This effect provides some evi-

dence that the method is able to learn a shape prior success-

fully; because the shape prior discounts the probability of

seeing a headless horse, it causes the model to hallucinate

a head. On the other hand, the hypercolumn net chooses

to hedge its bets on the possible locations of the head and

so the resulting region prediction is noisy in the area near
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