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Abstract

In this paper, we propose a novel structural correlation

filter (SCF) model for robust visual tracking. The proposed

SCF model takes part-based tracking strategies into ac-

count in a correlation filter tracker, and exploits circular

shifts of all parts for their motion modeling to preserve tar-

get object structure. Compared with existing correlation fil-

ter trackers, our proposed tracker has several advantages:

(1) Due to the part strategy, the learned structural correla-

tion filters are less sensitive to partial occlusion, and have

computational efficiency and robustness. (2) The learned

filters are able to not only distinguish the parts from the

background as the traditional correlation filters, but also

exploit the intrinsic relationship among local parts via spa-

tial constraints to preserve object structure. (3) The learned

correlation filters not only make most parts share similar

motion, but also tolerate outlier parts that have differen-

t motion. Both qualitative and quantitative evaluations on

challenging benchmark image sequences demonstrate that

the proposed SCF tracking algorithm performs favorably a-

gainst several state-of-the-art methods.

1. Introduction

Visual tracking is one of the most fundamental prob-

lems in computer vision with various applications in video

surveillance, human computer interaction and vehicle nav-

igation. Although great progress has been made in recen-

t years, it remains a challenging problem due to factors

such as illumination changes, geometric deformations, par-

tial occlusions, fast motions and background clutters.

Tracking algorithms can be generally categorized as

either generative or discriminative methods. Generative

trackers typically formulate tracking problem as searching

for the best image regions which are similar to the tracked

targets [25, 38, 17, 34]. Different from generative track-

ers, discriminative approaches cast tracking as a classifica-

tion problem that distinguishes tracked targets from back-
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Figure 1. Comparisons of our approach with state-of-the-art cor-

relation filter trackers in challenging situations of partial occlusion

on the Lemming sequence [30]. Our SCF tracker takes part-based

tracking strategy into account for translation estimation, and per-

forms robustly to partial occlusion after the 361th frame than the

DSST [7] and KCF [13] methods.

grounds [2, 3, 16, 11, 32]. Recently, correlation filter based

discriminative tracking methods have been proven to be

able to achieve fairly high speed and robust tracking perfor-

mance [5, 7, 13, 33, 12, 8, 14, 22, 21, 19]. Conventionally,

correlation filters are designed to produce correlation peak-

s for each interested target in the scene while yielding low

responses to background, which are usually used to detect

expected patterns. As proved by Convolution Theorem, the

correlation in time domain corresponds to an element-wise

multiplication in Fourier domain. Thus, the intrinsic idea

of correlation filter is that the correlation can be calculat-

ed in Fourier domain in order to avoid the time-consuming

convolution operation. Due to its computational efficien-

cy, correlation filters have attracted considerable attention

to visual tracking. Although achieved the appealing result-

s both in accuracy and robustness, these correlation filter

based trackers cannot deal with partial occlusion well. Fig-

ure 1 shows one example about the tracking results on the

lemming sequence of two correlation filter based tracker-

s, namely DSST [7] and KCF [13], which have achieved

state-of-art results and have beaten all other attended track-
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(a) The KCF tracker (b) The SCF tracker

Figure 2. Comparisons of our approach with the KCF on the

Jogging sequence [30] for part position estimation. The (m,n) is

circular shift with the maximal value of the response map of each

part, which exploits the motion information of each part.

ers in terms of accuracy in the VOT challenge [20]. How-

ever, these two trackers fail to track the target object when

partial occlusion happens.

To deal with the above issues, [19, 21] have made suc-

cessful attempts to apply part-based tracking strategy to cor-

relation filter tracking. In general, part-based tracking s-

trategy models object appearance based on multiple part-

s of target. Obviously, when target is partially occluded,

remaining visible parts can still provide reliable cues for

tracking. Therefore, this strategy can be helpful to gain

robustness against partial occlusions. In [19, 21], objec-

t parts are independently tracked by the KCF tracker [13],

and these trackers fail to exploit spatial constraints among

object parts. As a result, as shown in Figure 2, objec-

t parts move independently and have different directions,

which eventually leads the tracker to drift away. In fac-

t, there is little change between two consecutive frames as

the time interval is small [22], and most parts should have

similar directions to preserve object structure. Moreover,

in [31, 19, 21], experimental results have shown that the

relationships among parts are effective.Therefore introduc-

ing structural constraints among parts in correlation filter is

supposed to be advantageous.

Motivated by the above observations, we propose a nov-

el Structural Correlation Filter (SCF) for object appear-

ance modeling, which has the following advantages: (1)

The proposed SCF appearance model has the advantages

of both part based trackers and correlation filter trackers,

such as, less sensitive to partial occlusion, computational

efficiency and robustness. (2) The proposed SCF appear-

ance model exploits spatial layout structure among object

parts, which is ignored by all the previous correlation filter

trackers [5, 7, 13, 33, 12, 8, 14, 22, 21, 19] to the best of

our knowledge. Due to this advantage, our proposed mod-

el not only exploits the intrinsic relationship among object

parts to learn their correlation filters jointly, but also pre-

serves the spatial layout structure among object parts. (3)

The proposed SCF appearance model is robust for outlier

parts, which have different motion from most of other parts.

As shown in Figure 2, the jointly learned correlation filters

of all parts not only make most parts have similar motion,

but also tolerate outlier parts that have different motion.

Based on the above structural appearance model, we pro-

pose a robust and efficient SCF tracking approach. In the

proposed tracker, an object is made up of a set of parts, each

with an associated correlation filter. We learn the parameter-

s of correlation filters for all parts jointly. The learned cor-

relation filters not only distinguish object part from back-

ground, but also exploit spatial constraints among parts to

preserve object structure. During tracking, the correlation

filter of each part has a response map, which can help pre-

dict the part state (position) by searching for the location of

the maximal value of the map. Then, the target object loca-

tion is estimated as a weighted average of translations of all

parts. Here, the weight of each part is the maximum value

of its response map. In the experimental results, we show

that it is practical and robust to exploit the intrinsic relation-

ship among parts to learn their correlation filters jointly by

preserving object structure, and it helps locate target object

more accurately and is less sensitive to partial occlusion. As

a result, the incorporation of structural constraints leads to

substantial performance improvements.

2. Related Work

Visual tracking has been extensively studied [26, 30, 24,

28]. In this section, we introduce the methods closely relat-

ed to this work: correlation filter trackers, part based track-

ers, and the KCF tracker [13] in detail.

Correlation Filter Trackers: Correlation filters have

attracted considerable attention recently to visual tracking

due to its computational efficiency and robustness. Bolme

et al. encode target appearance by learning an adaptive cor-

relation filter [5]. Heriques et al. exploit the circulant struc-

ture of adjacent image patches [12], and is further improved

using HOG features [13]. Danelljan et al. exploit adaptive

color attributes in [8], and use adaptive multi-scale correla-

tion filters to handle scale variations in [7]. Zhang et al. [33]

incorporate context information into filter learning. Hong et

al. [14] propose a biology-inspired framework with short-

term processing and long-term processing. In [22], Ma et al.

introduce online random fern classifier for long-term track-

ing. In [21, 19], part based strategy is used in correlation

filter. Different from the existing correlation filter trackers,

we propose a novel structural correlation filter to preserve

object structure for object appearance modeling.

Part based Trackers: Instead of learning a holistic

appearance model, various part-based tracking algorithms

have been proposed to gain robustness against partial oc-

clusions [18, 29, 37, 31, 21, 19, 10, 39]. The Frag track-

er [1] models object appearance with histograms of local

parts. Kwon et al. [18] represent a non-rigid target object

by a number of local patches with color histograms. Ce-
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hovin et al. [29] uses the global and local appearance based

on object parts. Godec et al. [10] extend the Hough forest

for online object tracking. Different from the existing part

based trackers, we introduce part-based tracking strategy in

correlation filter to model the relationships among parts and

preserve object structure. Due to correlation filter, motion

information of parts can be effectively exploited.

The KCF Tracker: The KCF tracker [13] achieves very

impressive results on Tracking Benchmark [30]. The key

idea is that many negative samples are employed to enhance

the discriminative ability of the track-by-detector scheme

while exploring the structure of circulant matrix for high

efficiency. In the following, we briefly introduce the main

idea. Readers may refer to [13] for more details.

The KCF tracker models object appearance using a cor-

relation filter w trained on an image patch x of M × N

pixels, where all the circular shifts of xm,n, (m,n) ∈
{0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1}, are generated as

training samples with Gaussian function label ym,n. The

goal is to find the optimal weights w in (1).

w = argmin
w

∑

m,n

|〈φ(xm,n),w〉 − ym,n|
2
+ λ‖w‖

2
. (1)

Here, φ denotes the mapping to a kernel space and λ is a reg-

ularization parameter. Using the fast Fourier transformation

(FFT) to compute the correlation, the objective function (1)

is minimized as w =
∑

m,n α(m,n)φ(xm,n), and the co-

efficient α is calculated as in (2).

α = F−1(
F(y)

F(〈φ(x), φ(x)〉) + λ
) (2)

Where y = {y(m,n)}, F and F−1 denote the Fourier

transform and its inverse.Given the learned α and target ap-

pearance model x̄, the tracking task is carried out on an im-

age patch z in the new frame with the search window size

M×N by computing the response map as in (3). Here, ⊙ is

the Hadamard product. Then, the target position is detected

by searching for the location of the maximal value of ȳ.

ȳ = F−1(F(α)⊙F(〈φ(z), φ(x̄)〉)). (3)

3. Structural Correlation Filter Tracking

In this section, we give a detailed description of our

structural correlation filter based tracking method that

makes use of the structural correlation filter model to learn

correlation filters of all parts jointly to preserve target object

structure. Next, we will sequentially introduce the structural

correlation filter and SCF tracker.

3.1. Structural Correlation Filter Model

The objective function of the KCF tracker (1) can equiv-

alently be expressed in its dual form (4).

min
α

1

4λ
α⊤XX⊤α+

1

4
α⊤α− α⊤y (4)

Here, the vector α contains M ×N dual optimization vari-

ables αm,n, and X = [x0,0, . . . ,xm,n, . . .xM−1,N−1]
⊤.

The two solutions are related by w = X
⊤α
2λ

.

The KCF tracker (4) is to learn a holistic appearance

model, which is not robust for partial occlusion. To deal

with this issue, we apply part-based tracking strategy to the

correlation filter. Given a target object, its K parts with

M ×N pixels can be sampled. Then, our goal is to learn K

optimal weights wk or αk via (5).

min
{uk}

K
k=1

K
∑

k=1

1

4λ
u⊤
k Gkuk +

1

4
u⊤
k uk − u⊤

k y (5)

Here, for clarity, we adopt uk to denote the dual optimiza-

tion variables, and Gk = XkXk
⊤. The Xk is all training

samples of the k-th part, where k = 1, . . . ,K.

Note that, the basic idea of (4) is to select discriminative

training samples xm,n via αm,n to distinguish the target ob-

ject from the background. Here, the training samples xm,n,

(m,n) ∈ {0, 1, . . . ,M − 1}×{0, 1, . . . , N − 1} are the all

possible circular shifts, which represent the possible motion

of the target object. Therefore, selecting training samples

xm,n via αm,n can predict the motion or state of target ob-

ject. Ideally, the individual parts should stay close to each

other to cover the entire target. As shown in Figure 2, most

parts of target object move in the same way between two

consecutive frames. Therefore, they should select the simi-

lar circular shifts to make them have similar motion. Con-

sidering that some parts may have different motions, and

they may select different discriminative training samples.

Based on the above observation, it is clear that most parts

have similar uk to make them move in the same direction

to preserve target object structure, and some parts may have

separate motion. Therefore, in (5), we assume all uk can be

written as uk = u0 + vk, where the vectors vk are small

when the selected circular shifts of all parts are similar to

each other. That is to say, u0 carries the information of the

commonality, and vp carries the information of the special-

ty (outlier) and should be sparse.

min
{uk}

K
k=1

K
∑

k=1

1

4λ
u⊤
k Gkuk + 1

4
uk⊤uk − u⊤

k y + γ‖vk‖1

s.t. uk = vk + u0, k = 1, . . . ,K (6)

Motivated by the above points, the part based correlation

filters (5) can be reformulated as structural correlation fil-

ter model (6), which can learn the correlation filters of all

parts jointly, and distinguish the parts from the background.

Moreover, the SCF model is less insensitive to partial oc-

clusion, but has computational efficiency and robustness.

3.2. The Proposed SCF Tracker

Based on the structural correlation filter model, we pro-

pose a novel SCF tracker with several important modules,

4314



including model updating, target state estimation, kernel s-

election, and feature representation.

Model Updating: In tracking, object appearance will

change because of a number of factors such as illumina-

tion and pose changes. Hence it is necessary to update part

classifiers over time. In the proposed tracker, the model

consists of the learned target appearance x̄k and the trans-

formed classifier coefficients uk. Moreover, different parts

of targets may suffer from different appearance changes, il-

lumination variation or partial occlusion. If we simply com-

bine all parts with the same weight, their correlations filters

may be unfairly emphasized. Therefore, for each part, we

have its weight πk to emphasize its importance. For each

part, its model parameters at time t are updated as in (7).

F(uk)
t = (1− η)F(uk)

t−1 + ηF(uk)

F(x̄k)
t = (1− η)F(x̄k)

t−1 + ηF(xk)

πt
k = (1− η)πt

k + ηπk (7)

Where η is a learning rate parameter. The uk is comput-

ed by simple linear interpolation, and the x̄k is updated by

taking the current appearance into account. The πk is the

maximal value of the response map of the k-th part.

Target State Estimation: The target state estimation in-

cludes position prediction and scale decision. (1) Position

Estimation. Given the learned model x̄k, uk of part k, it-

s new position is detected by searching for the location of

the maximal value of ȳk as in (3). Then, we can obtain its

translation sk. For simplicity, the translation of the target

object is calculated as s =
∑

k πksk, which shows more

robust tracking parts with larger detection scores have high-

er effect on the target position estimation. (2) Scale Han-

dling. To handle scale variation, windows with different

sizes are sampled around the target, and are correlated with

the learned filter. Subsequently, the window with the high-

est correlation score can be predicted as the new state. This

searching strategy is also used in the DSST [7].

Kernel Selection: Inspired by the effectiveness of the

Gaussian kernel in the existing correlation filter tracker-

s, the Gk is computed with the same kernel κ(x1,x2) =

exp(− |x1−x2|
2

δ2
), which is defined as κ(x1,x2) =

〈φ(x1), φ(x2)〉 with a mapping φ. We compute the full ker-

nel correlation for each part in (5) and (6) efficiently in the

Fourier domain. The details are discussed in Section 4.

Feature Representation: Similar to [13], we use HOG

features with 31 bins. However, our tracker is quite generic

and any dense feature representation with arbitrary dimen-

sions can be incorporated.

4. Optimization

In this section, we present how to solve the optimization

problem (6) using the fast first order Alternating Direction

Method of Multipliers (ADMM) [6] approach. By intro-

ducing augmented Lagrange multipliers to incorporate the

equality constraints into the objective function, we obtain

the Lagrangian function in (8) that can be optimized through

a sequence of simple closed form update operations in (9)

where θk and βk > 0 are Lagrange multipliers and penalty

parameters, respectively.

L({uk,vk, θk, βk}
K
k=1

,u0)

=
K
∑

k=1

1

4λ
u⊤
k Gkuk +

1

4
u⊤
k uk − u⊤

k y + γ‖vk‖1

+ θ⊤k (uk − vk − u0) +
βk

2
‖uk − vk − u0‖

2
(8)

⇒ min
{uk,vk,θk,βk}K

k=1
,u0

L({uk,vk, θk, βk}
K
k=1

,u0) (9)

The ADMM method iteratively updates one of the vari-

ables u0, {vk}
K
k=1

, {uk}
K
k=1

, and the Lagrange multiplier

{θk}
K
k=1

by minimizing (9), while keeping the others fixed

to their most recent values. By updating these variables it-

eratively, the convergence can be guaranteed [6]. Conse-

quently, we have four update steps corresponding to all the

variables with closed form solutions as follows.

Step 1: Update u0 (with others fixed): The u0 is updated

by solving the optimization problem (10) with the closed

form solution (11).

u0 = argmin
u0

K
∑

k=1

−θTk u0 +
βk

2
‖uk − vk − u0‖

2
(10)

⇒ u0 =
1

K

K
∑

k=1

uk − vk +
1

βk

θk (11)

Step 2: Update vk (with others fixed): The minimization

problem (8) with respect to {vk}
K

k=1
is decomposed into K

independent subproblems. The k-th subproblem to update

vk can be equivalently rewritten as (12).

vk = argmin
vk

γ‖vk‖1 + θ⊤k (uk − vk − u0)

+
βk

2
‖uk − vk − u0‖

2
(12)

The solution of (12) can be obtained by rearranging it into

the optimization problem (13) with the closed form solu-

tion (14).

vk = argmin
vk

γ

βk

‖vk‖1 +
1

2

∥

∥

∥

∥

vk − (uk +
1

βk

θk − u0)

∥

∥

∥

∥

2

(13)

⇒ vk = S γ
βk

(uk +
1

βk

θk − u0) (14)

Here, Sλ(xi) = sign(xi)max(0, |xi| − λ) is the soft-

thresholding operator for a vector x.
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Algorithm 1: The optimization for (9) via ADMM.

Input : Training Data: Gk and y. Initialization of λ,

γ, uk = 0, u0 = 0, vk = 0, θ = 0, and β > 0.

Output: Correlation filters uk, k = 1, . . . ,K.

1 while not converged do

2 Update u0 via (11);

3 for k = 1 to K do

4 Update vk via (14);

5 Update uk as in (16);

6 Update θk as in (17);

7 end

8 end

Step 3: Update uk (with others fixed): The minimization

problem (8) with respect to {uk}
K

k=1
is decomposed into K

independent subproblems. The k-th subproblem to update

uk can be equivalently rewritten as (15).

uk = argmin
uk

1

4λ
u⊤
k Gkuk +

1

4
u⊤
k uk − u⊤

k y

+ θ⊤k (uk − vk − u0) +
βk

2
‖uk − vk − u0‖

2
(15)

Then, for each uk, it is updated by solving the optimization

problem (15) with the closed form solution (16).

uk = (
1

2λ
Gk +

1

2
I+ βkI)

−1(y − θk + βkvk + βku0)

(16)

Here, I is a MN ×MN identity matrix.

Step 4: Update Multiplier θk: The Lagrange multipliers

are updated as in (17), where ρ > 1,

θk = θk + βk(uk − vk − u0); βk = ρβk (17)

The ADMM algorithm that solves (9) is shown in Algo-

rithm 1, where convergence is reached when the change in

the objective function or solution uk is below a pre-defined

threshold (e.g., τ = 10−3 in this work). In addition, we set

β1 = · · ·βk = · · · = βK = β. Here, we note that other

penalty update rules and stopping criteria can be used for

this optimization problem as discussed in [6]. As shown in

Algorithm 1, the major computation cost is the fifth step to

update uk with matrix inverse and multiplication in spatial

domain. However, it can be calculated very efficiently in the

Fourer domain by considering the circulant structure prop-

erty of Xk. Assume x is the base sample of Xk, the uk can

be updated with only the base sample as (18).

ûk =
ŷ − θ̂k + βkv̂k + βkû0

1

2λ
x̂∗ ⊙ x̂+ 1

2
+ βk

(18)

Here, the fraction denotes element-wise division, x∗ is the

complex-conjugate of x, x̂ denotes the Discrete Fourier

Figure 3. The generated 3 parts based on the target’s ratio.

Transform (DFT) of the generating vector x̂ = F(x), and

⊙ denotes the element-wise product. Finally, the uk can

be obtained via uk = F−1(ûk). Moreover, to make the

SCF tracker faster, the Algorithm 1 can be implemented in

matrix form without the for loop.

5. Experimental Results

We first introduce experimental setup including param-

eters, datasets, and evaluation metrics. Then, we provide

both quantitative and qualitative comparisons with state-of-

the-art trackers.

5.1. Experimental Setup

Parameters: The γ in (6) is set to 0.01. All the other pa-

rameters are set to the same values as the KCF tracker. To

generate the parts, we use the spatial layout as shown in Fig-

ure 3 to sample 3 parts based on the target’s height-width

ratio. Note that, any other part sampling methods can also

be adopted. We use the same parameter values and initial-

ization for all the sequences. All the parameter settings are

available in the source code to be released for accessible

reproducible research.

Datasets and Evaluation Metrics: We evaluate the pro-

posed method on a large benchmark dataset [30] that con-

tains 50 videos with comparisons to state-of-the-art meth-

ods. The performance of our approach is quantitatively val-

idated by three metrics used in [30] including distance pre-

cision (DP), centre location error (CLE) and overlap preci-

sion (OP). The DP is computed as the relative number of

frames in the sequence where the centre location error is s-

maller than a certain threshold. As in [30], the DP values at

a threshold of 20 pixels are reported. The CLE is comput-

ed as the average Euclidean distance between the ground-

truth and the estimated centre location of the target. The

OP is defined as the percentage of frames where the bound-

ing box overlap surpasses a threshold. We report the results

at a threshold of 0.5, which correspond to the PASCAL e-

valuation criteria. We provide results using the average DP,

CLE and OP over all 50 sequences. In addition, we plot the
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Table 1. Comparison with state-of-the-art trackers on the 50 benchmark sequences. Our approach performs favorably against existing

methods in overlap precision (OP) (%) at an overlap threshold 0.5, distance precision (DP) (%) at a threshold of 20 pixels and centre

location error (CLE) (in pixels). The top rank 3 values are highlighted by bold and different colors: red, blue, and green, respectively.

Metrics SCF
TLD Struck CSK VTD KCF L1APG LOT DFT MEEM TGPR RPT MUSTer DSST SCM MIL ASLA

[16] [11] [12] [17] [13] [4] [23] [27] [32] [9] [19] [14] [7] [41] [3] [15]

OP 79.7 52.1 55.9 44.3 49.3 62.3 44.0 41.3 44.4 69.8 65.1 70.7 78.4 66.7 61.6 37.3 51.1

DP 86.6 60.8 65.6 54.5 57.6 74.0 48.5 52.2 49.6 83.0 71.4 81.9 86.5 73.7 64.9 47.5 53.2

CLE 22.5 48.1 50.6 88.8 47.4 35.5 77.4 58.2 69.3 21.4 47.2 35.9 17.3 41.3 54.1 62.3 71.1

Figure 4. Precision and success plots over all the 50 sequences

using one-pass evaluation (OPE). The legend contains the area-

under-the-curve score for each tracker. The proposed SCF method

performs favorably against the state-of-the-art trackers.

precision and success plots as in [30].

5.2. Comparison with StateoftheArt

We evaluate the proposed tracker on the benchmark with

comparisons to 34 trackers including 29 trackers in [30] in-

cluding SCM [41], MTT [35, 36], and TLD [16], and oth-

er 5 recently published state-of-the-art trackers with their

shared source code: MEEM [32], TGPR [9], RPT [19],

MUSTer [14], DSST [7]. The details of the 29 trackers in

the benchmark can be found in [30]. We present the results

using average OP, DP and CLE over all sequences in Ta-

ble 1, and report the results in one-pass evaluation (OPE)

using the distance precision and overlap success rate in Fig-

ure 4 and attribute-based evaluation in Figure 5.

Table 1 shows that our algorithm performs favorably a-

gainst state-of-the-art methods. Among the trackers in the

literature, the MUSTer method achieves the best result-

s with an average OP of 78.4%, DP of 86.5%, and CLE

of 17.3 pixels. Our algorithm performs well with OP of

79.7%, DP of 86.6%, and CLE of 22.5 pixels. These re-

sults show the proposed SCF tracker achieves slightly bet-

ter tracking performance than the MUSTer. Note that, the

proposed SCF tracker can be improved more by consid-

ering other tracking strategy, such as, long-term strategy,

and keypoint matching strategy in the MUSTer tracker [14].

Overall, our SCF tracker achieves significantly improve-

ment than other existing trackers. The details are as fol-

lows. (1) MEEM and RPT are top 2 existing methods with

average OP of 69.8% and 70.7% respectively. Our ap-

proach achieves better tracking performance by 9.8% and

9%. (2) The proposed SCF method performs well against

the MUSTer (by 0.1%), MEEM (by 3.6%), and RPT (by

4.7%) methods in terms of average DP. (3) Among the other

existing trackers, MEEM provides the best results with an

average CLE of 21.4 pixels. Our approach achieves com-

parable results with an average CLE of 22.5 pixels. (4)

Compared with the correlation filter trackers, the proposed

SCF method performs well against the KCF (by 17.4%)

and DSST (by 13%) methods in terms of average OP, and

achieves performance gain of 12.6% and 12.9% in term of

average DP. In term of average CLE, the proposed SCF

method has about 13.0 pixels and 18.8 pixels improvement.

Figure 4 contains the precision and success plots illus-

trating the mean distance and overlap precision over all the

50 sequences. In both precision and success plots, our ap-

proach shows comparable results as the MUSTer and signif-

icantly outperforms the best existing correlation filter meth-

ods (DSST and KCF). Note that, when overlap threshold

is from 0.2 to 0.6, the proposed SCF method achieves s-

lightly better than the MUSTer in success plots of OPE. In

summary, the precision plot demonstrates that our approach

performs well against the existing methods (KCF, MEEM,

TGPR, SCM, Struck).In Figure 5, We analyze the tracking

performance based on attributes of image sequences [30],

which annotates 11 attributes to describe the different chal-

lenges in the tracking problem, e.g., occlusions or out-of-

view. These attributes are useful for analyzing the perfor-

mance of trackers in different aspects. Due to space con-

straints, we present the success and precision plots of OPE

for 4 attributes in Figure 5 and more results can be found

in the supplementary material. For presentation clarity, we

present the top 10 performing methods in each plot. We

note that the proposed tracking method performs well in

dealing with challenging factors including deformation, oc-

clusion, out-of-plane rotation, and out of view.

5.3. Qualitative Comparison

We compare our algorithm with the top 9 existing track-

ers in our evaluation (MUSTer [14], RPT [19], MEEM [32],

DSST [7], KCF [13], TGPR [9], SCM [41], Struck [11],

and TLD [16]) on 10 challenging sequences in Figure 6.

Overall, these trackers perform well, but the existing track-

ers have the following issues: The MUSTer drifts when fast

motion happens (couple). The RPT does not perform well

in scale variation (singer2, walking2, lemming, and tiger1),

fast motion (couple), and partial occlusion (jogging-2). The

MEEM cannot handle partial occlusion well (suv, walking2,
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Figure 5. The precision and success plots of OPE over four tracking challenges of out-of-plane rotation, deformation, out-of-view, and

occlusion. The legend contains the AUC score for each tracker. Our SCF method performs favorably against the state-of-the-art trackers.

and jogging-2). The KCF, DSST, and Struck methods drift

when target objects undergo heavy occlusion (jogging-2)

and fast motion (couple). The SCM and TLD methods do

not follow targets undergoing significant deformation and

fast motion (tiger1 and lemming) well. The TGPR does

not perform well in fast motion (couple) and partial oc-

clusion (suv). Overall, the proposed SCF tracker performs

well in tracking objects on these challenging sequences. In

addition, we compare the center location error frame-by-

frame on the 10 sequences in Figure 7, which shows that

our method performs well against existing trackers. More

results can be found in the supplementary material.

6. Conclusion

In this paper, we propose a novel structural correlation

filter namely SCF to model target appearance for robust vi-

sual tracking. The proposed SCF model fuses part-based

tracking strategy into correlation filter tracker, and exploits

circular shifts of all parts for their motion modeling to p-

reserve target object structure. As a result, it not only has

the advantages of existing correlation filter trackers, such

as, computational efficiency and robustness, but also can

be less sensitive to partial occlusion, preserve object struc-

ture, and enable the capture of outlier parts to have differ-

ent motion. Both qualitative and quantitative evaluations on

challenging benchmark image sequences demonstrate that

the proposed SCF tracking algorithm performs favorably a-

gainst several state-of-the-art methods. In the future, we

will evaluate the proposed SCF model on more datasets and

make use of co-learning algorithm [40] to obtain more im-

provement.
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