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Abstract

We bring together ideas from recent work on feature

design for egocentric action recognition under one frame-

work by exploring the use of deep convolutional neural net-

works (CNN). Recent work has shown that features such

as hand appearance, object attributes, local hand motion

and camera ego-motion are important for characterizing

first-person actions. To integrate these ideas under one

framework, we propose a twin stream network architec-

ture, where one stream analyzes appearance information

and the other stream analyzes motion information. Our ap-

pearance stream encodes prior knowledge of the egocen-

tric paradigm by explicitly training the network to segment

hands and localize objects. By visualizing certain neuron

activation of our network, we show that our proposed ar-

chitecture naturally learns features that capture object at-

tributes and hand-object configurations. Our extensive ex-

periments on benchmark egocentric action datasets show

that our deep architecture enables recognition rates that

significantly outperform state-of-the-art techniques – an av-

erage 6.6% increase in accuracy over all datasets. Further-

more, by learning to recognize objects, actions and activi-

ties jointly, the performance of individual recognition tasks

also increase by 30% (actions) and 14% (objects). We also

include the results of extensive ablative analysis to highlight

the importance of network design decisions.

1. Introduction

Recently there has been a renewed interest in the use of

first-person point-of-view cameras to better understand hu-

man activity. In order to accurately recognize first-person

activities, recent work in first-person activity understanding

has highlighted the importance of taking into consideration

both appearance and motion information. Since the major-

ity of actions are centered around hand-object interactions

in the first-person sensing scenario, it is important to capture

appearance corresponding to such features as hand regions,

grasp shape, object type or object attributes. Capturing mo-

tion information such as local hand movements and global

hand segmentation object localization
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Figure 1: Approach overview. Our framework integrates

both appearance and motion information. The appearance

stream captures hand configurations and object attributes

to recognize objects. The motion stream captures objects

motion and head movement to recognize actions. The two

streams are also learned jointly to recognize activities.

head motion, is another important visual cue as the temporal

motion signature can be used to differentiate between com-

plementary actions such as take and put or periodic actions

such as the cut with knife action. It is also critical to rea-

son about appearance and motion jointly. It has been shown

in both third-person [11] and first-person activity analysis

[20] that these two streams of activity information, appear-

ance and motion, should be analyzed jointly to obtain best

performance.

Based on these insights, we propose a deep learning ar-

chitecture designed specifically for egocentric video, that

integrates both action appearance and motion within a sin-

gle model 1. More specifically, our proposed network

has a two stream architecture composed of an appearance-

based CNN that works on localized object of interest im-

age frames and a motion-based CNN that uses stacked op-

tical flow fields as input. Using the terminology of [5], we

use late fusion with a fully-connected top layer to formu-

late a multi-task prediction network over actions, objects

and activities. The term action describes motions such as

put, scoop or spread. The term object refers to item such as

bread, spoon or cup. The term activity is used to represent

an action-object pair such as take milk container.

The appearance-based stream is customized for ego-
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centric video analysis by explicitly training a hand segmen-

tation network to enable an attention-based mechanism to

focus on certain regions of the image near the hand. The

appearance-based stream is also trained with object images

cropped based on hand location to identify objects of ma-

nipulation. In this way, the appearance-based stream is en-

abled to encode such features such as hand-object configu-

rations and object attributes.

The motion-based stream is a generalized CNN that

takes as input a stack of optical-flow motion fields. This

stream is trained to differentiate between action labels such

as put, take, close, scoop and spread. Instead of compen-

sating for camera ego-motion as a pre-processing step, we

allow the network to automatically discover which motion

patterns (camera, object or hand motion) are most useful for

discriminating between action types. Results show that the

network automatically learns to differentiate between dif-

ferent motion types.

We train the appearance stream and motion stream

jointly as a multi-task learning problem. Our experiments

show that by learning the parameters of our proposed net-

work jointly, we are able to outperform state-of-the-art tech-

niques by over 6.6% on the task of egocentric activity

recognition without the use of gaze information, and in ad-

dition improve the accuracy of each sub-task (30% for ac-

tion recognition and 14% object recognition).

Perhaps more importantly, the trained network also helps

to better understand and to reconfirm the value of key fea-

tures needed to discriminate between various egocentric ac-

tivities. We include visualizations of neuron activations and

show that the network has learned intuitive features such as

hand-object configurations, object attributes and hand mo-

tion signatures isolated from global motion.

Contributions: (1) we formulate a deep learning archi-

tecture customized for ego-centric vision; (2) we obtain

state-of-the-art performance propelling the field towards

higher performance; (3) we provide ablative analysis of de-

sign choices to help understand how each component con-

tributes to performance; and (4) visualization and analysis

of the resulting network to understand what is being learned

at the intermediate layers of the network. The related work

is summarized as follows.

Human Activity Recognition: Traditionally, in video-

based human activity understanding research [1, 24], many

approaches make use of local visual features like HOG [17],

HOF [17] and MBH [34] to encode appearance informa-

tion. These features are typically extracted from spatio-

temporal keypoints [16] but can also be extracted over dense

trajectories [33, 35], which can improve recognition per-

formance. Most recently, it has been shown that the vi-

sual feature representation can be learned automatically us-

ing a deep convolutional neural network for image under-

standing tasks [15]. In the realm of action recognition, Si-

monyan and Zisserman [30] proposed a two-stream network

to capture spatial appearance on still images and tempo-

ral motion between frames. Ji et al. [12] used 3D con-

volutions to extract both spatial and temporal features us-

ing a one stream network. Wang et al. [36] further devel-

ops trajectory-pooled deep-convolutional descriptor (TDD)

to incorporate both specially designed features and deep-

learned features to achieve state-of-the-art results.

First-Person Video Analysis: In a similar fashion to third-

person activity analysis, the first-person vision community

has also explored various types of visual features for repre-

senting human activity. Kitani et al. [14] used optical flow-

based global motion descriptors to discover ego-action in

sports videos. Spriggs et al. [32] performed activity seg-

mentation GIST descriptors. Pirsiavash et al. [27] devel-

oped a composition of HOG features to model object and

hand appearance during an activity. Bambach et al. [2]

used hand regions to understand activity. Fathi et al. pro-

posed mid-level motion features and gaze for recognizing

ego-centric activities in [6, 7]. To encode first-person videos

using those features, the most prevalent representations are

BoW and improved Fisher Vector [25]. In [20], Li et al.

performed a systemic evaluation of features and provided a

list of best practices of combining different cues to achieve

state-of-the-art results for activity recognition. Similar to

third-person vision activity recognition research, there has

also been a number of attempts to use CNN for understand-

ing activities in first-person videos. Ryoo et al. [29] de-

velops a new pooled feature representation and shows su-

perior performance using CNN as a appearance feature ex-

tractor. Poleg et al. [28] proposes to use temporal convo-

lutions over optical flow motion fields to index first-person

videos. However, a framework to integrate the success of

ego-centric features and the power of CNNs is still missing

due to challenges of feature diversity and limited training

data. In this paper, we aim to design such a framework to

address the problem of ego-centric activity recognition.

2. Egocentric Activity Deep Network

We describe our proposed deep network architecture for

recognizing activity labels from short video clips taken by

an egocentric camera. As we have argued above, the man-

ifestation of an activity can be decomposed into observed

appearance (hand and objects) and observed motion (local

hand movement and user ego-motion). Based on this de-

composition, we develop two base networks: (1) ObjectNet

takes a single image as input to determine the appearance

features of the activity and is trained using object labels;

(2) ActionNet takes a sequence of optical flow fields to de-

termine the motion features of the activity and is trained

using action labels. Taking the output of both of these net-

works, we use a late fusion step to concatenate the output

of the two networks and uses the joint representation to pre-
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Figure 2: Framework architecture for action, object and activity recognition. Hand segmentation network is first trained to

capture hand appearance. It is then fine-tuned to a localization network to localize object of interest. Object CNN and motion

CNN are then trained separately to recognize objects and actions. Finally, the two networks are fine-tuned jointly with a

triplet loss function to recognize objects, actions and activities. This proposed network beats all baseline models.
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Figure 3: Pipeline for localization network training. Hand

segmentation network is first trained using images and bi-

nary hand masks. Localization network is then fine-tuned

from hand segmentation network using images and object

location heatmaps synthesized from object locations.

dict three outputs, namely, action, object and activity. More

formally, given a short video sequence of N image frames

I = {I1, . . . , IN}, our network predicts three output labels:

{yobject, yaction, yactivity}. The architecture of the entire net-

work is illustrated in Figure 2.

2.1. ObjectNet: Recognizing Objects from Appear­
ance

As shown in [10, 27], recognizing objects in videos is an

important aspect of ego-centric activity understanding. We

aim to predict the object label yobject in this section. To do

so, we are particularly interested in the object being inter-

acted with or manipulated – the object of interest. However,

detecting all objects accurately in the scene is difficult. It

also provides limited information about the interested ob-

ject. Our proposed model will first localize and then recog-

nize the object of interest.

Although we can assume that the object of interest is of-

ten located at the center of the subject’s reachable region,

it is not always present at the center of the camera image

due to head motion. Instead, we observe that the object of

interest most frequently appears in the vicinity of hands. A

similar observation was also made in [19, 9]. Besides hand

location, hand pose and shape is also important to estimate

the manipulation points as shown in [19]. We therefore seek

to segment the hands out of the image and use hand appear-

ance to predict the location of the object of interest. We first

train a pixel-to-pixel hand segmentation network using raw

images and binary hand masks. This network will output

a hand probability map. To predict object of interest loca-

tion using this hand representation, a naive approach is to

build a regression model on top. For instance, we can train

another CNN or a regressor using features from the hand

segmentation network. However, our experiments with this

approach achieve low performance due to limited training

data. The prediction tends to favor the image center as it

is where the object of interest occurs most frequently. Our

final pipeline is illustrated in Figure 3. After training the

hand segmentation network, we fine-tune a localization net-

work to predict a pixel-level object occurrence probability

map. Inspired by previous work in pose estimation [26],

we synthesize a heatmap by placing a 2D Gaussian distri-

bution at the location of the object of interest. We use this

heatmap as ground-truth and use per-pixel Euclidean loss

to train the network. To transfer the hand representation

learned from the segmentation network, we initialize the lo-

calization network with the weights from the segmentation

network and then fine-tune the localization network with the

new loss layer. The details of the segmentation and local-

ization CNNs are listed as follows.

(1) Hand segmentation network: For training data, we

can either use annotated ground-truth hand masks or output

of pixel-level hand detectors like [18]. For the network ar-

chitecture, we use a low resolution FCN32-s as in [21] as

it is a relatively smaller model and converges faster. The

loss function for the segmentation network is the sum of
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Figure 4: Training data examples for localization CNN. (a)

Raw video images with annotated object locations (in red).

(b) Ground-truth hand masks which can be annotated manu-

ally or generated using hand detectors such as [18]. (c) Syn-

thesized location heat-maps by placing a Gaussian bump at

the object location.

per-pixel two-class softmax losses.

(2) Object localization network: For training data, we

first manually annotate object of interest locations in the

training images of the hand segmentation network. We then

synthesize the location heatmaps using a Gaussian distri-

bution as discussed above. Examples of training data are

shown in Figure 4. We use the same FCN32-s network ar-

chitecture and replace the softmax layer with a per-pixel

Euclidean loss layer.

To this extent, we have trained an object localization net-

work that outputs a per-pixel occurrence probability map of

the object of interest. To generate the final object region

proposals, we first run the localization network on input im-

age sequence I = {I1, I2, . . . , IN} and generate probability

maps of object locations H = {H1, H2, . . . , HN}. We then

threshold each probability map and use the centroid of the

largest blob as the predicted center of the object. We then

crop the object out of the raw image at the predicted center

using a fixed-size bounding box. We fix the crop size and

ignore the scale difference by observing that the object of

interest is always within the reachable distance of the sub-

ject. In this way, we generate a sequence of cropped object

region images O = {O1, O2, . . . , ON} as the input of the

object recognition CNN. The localization result is stable on

a per-frame basis, hence there is no temporal smoothness

adopted.

With the cropped image sequence of objects of interest

{Oi}, we then train the object CNN using the model of

CNN-M-2048 [3] to recognize the objects. We choose this

network architecture due to its high performance on Ima-

geNet image classification. Since a better architecture of

base network is out of the scope of this work, we use this

network as our base network in this paper unless otherwise

mentioned. We adapt it to different tasks (e.g. action recog-

nition) with minimum modifications in this paper. For ob-

ject recognition, we train the network using {(Oi, yobject})
pairs as training data and softmax as the loss function. At

testing time, we run the network on the cropped object im-

age Oi to predict object class scores. We then calculate

the mean score of all frames in a sequence for each activity

class and select the activity label with largest mean score as

the final predicted label of object.

Up until now, we have trained a localization network

to localize the object of interest by explicitly incorporating

hand appearance. Using the cropped images of the localized

object of interested, we have trained an object recognition

network to predict the object label yobject. We will show

later that this recognition pipeline also captures important

appearance cues such as object attributes and hand appear-

ance. We now move forward to the motion stream of our

framework.

2.2. ActionNet: Recognizing Actions from Motion

In this section, our target is to predict the action label

yaction from motion. Unlike straightforward appearance cues

like hands and objects discussed in previous section, motion

features in ego-centric videos are more complex because the

head motion might cancel the object and hand motion. Al-

though Wang et al. [35] shows that compensation of camera

motion improves accuracy in traditional action recognition

tasks, for ego-centric videos, background motion is often a

good estimation of head motion and thus an important cue

for recognizing actions [20]. Instead of decoupling fore-

ground (object and hand) motion and background (camera)

motion and calculating features separately, we aim to use

CNN to capture different local motion features and tempo-

ral features together implicitly.

In order to train a CNN network with motion input, we

follow [30] to use optical flow images to represent mo-

tion information. In particular, given a video sequence

of N frames I = {I1, I2, ..., IN} and corresponding ac-

tion label yaction, we first calculate optical flow of each two

consecutive frames and encode the horizontal and verti-

cal flow separately in U = {U1, U2, ..., UN−1} and V =
{V1, V2, ..., VN−1}. To incorporate temporal information,

we use a fixed length of L frames and stack correspond-

ing optical flow images together as input samples of the

network noted as X = {X1, ..., XN−L+1} where Xi =
{Ui, Vi, ..., Ui+L−1, Vi+L−1}.

With motion represented in optical flow images, we train

the motion CNN using {(Xi, yaction)} pairs as training data

and softmax as the loss function. At testing time, we run the

network on input motion data Xi to predict the scores for

each action class. We then average the scores for all frames

in the sequence and pick the action class with maximum

average score as the predicted label of the action. With the

learned representation of objects and actions, we now move

to the next section for activity recognition.
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2.3. Fusion Layer: Recognizing Activity

In this section, we seek to recognize the activity label

yactivity given the representations learned from the two net-

work streams in previous sections. A natural approach is

to use the two networks as feature extractors and training a

classifier using activity labels. However, this approach ig-

nores the co-relation between actions, objects and activities.

For instance, if we are confident that the action is stir from

repeated circular motion, it is highly probable that the ob-

ject is tea or coffee. In the other way, if we know the object

is tea or coffee, the probability that the action is cut or fold

should be very low. Based on this intuition, we fuse the

action and object networks together as one network by con-

catenating the second last fully connected layers from the

two networks and add another fully connected layer on top.

We then add another loss layer for activity on top. The final

fused network therefore has three weighted losses: action,

object and activity loss. Then weighted sum of three losses

is calculated as the overall loss. We can set the weights em-

pirically by the relative importance of three tasks and train

one network to learn activity, action and object simultane-

ously. The loss function for the final network can be formu-

lated as Lnetwork = w1 · Laction + w2 · Lobject + w3 · Lactivity.

To train the fused network, we transfer the weights of

the trained motion CNN and object CNN and fine-tune it

to recognize the activity. Specifically, given a video se-

quence of N frames I = {I1, I2, ..., IN}, we follow section

2.1 to localize the objects of interest and get a sequence

of object images O = {O1, O2, ..., ON}. We follow sec-

tion 2.2 to calculate optical flow image pairs {U,V} and

stack them using a fixed length of L frames into X =
{X1, ..., XN−L+1} where Xi = (Ui, Vi). At training time,

for each optical flow blob Xi, we randomly pick a object

image Oj where i ≤ j < i + L and form the training

data pair (Xi, Oj , yaction, yobject, yactivity). This is also a way

to augment the training data to avoid over-fitting. At test-

ing time, we pick the center object image frame such that

j = (2i + L)/2 as the annotated boundary of an activity

sequence is loose. We run the network on all data pairs to

predict the scores for activity. We then average the scores

and use the activity class with maximum average score as

the predicted activity label.

3. Experiments

We briefly introduce the datasets in Section 3.1 and de-

scribe the details for training networks in Section 3.2. We

then present experimental results for the three tasks of ob-

ject recognition (Section 3.3), action recognition (Section

3.4) and activity recognition (Section 3.5).

3.1. Dataset

We run experiments on three public datasets: GTEA,

GTEA gaze (Gaze) and GTEA gaze+ (Gaze+) as these

datasets were collected using a head-mount camera and

most of the activities involve hand-object interactions. The

annotation label for each activity contains a verb (action)

and a set of nouns (object). We perform all our experiments

using leave-one-subject-out cross-validation. We also re-

port results on fixed-splits following previous work.

GTEA: This dataset [9] contains 7 types of activities per-

formed by 4 different subjects. There are 71 activity cate-

gories and 525 instances in the original labels. We report

comparative results on two subsets used in previous work

[8, 20, 9]: 71 classes and 61 classes. Gaze: This dataset

[6] contains 17 sequences performed by 14 different sub-

jects. There are 40 activity categories and 331 instances in

the original labels. We report results on two subsets used in

previous works [20, 6]: 40 classes and 25 classes. Gaze+:

This dataset [6] contains 7 types of activities performed by

10 different subjects. We report results on a 44 classes sub-

set with 1958 action instances following [20].

3.2. Network Training

For network architecture, we use FCN32-s [21] for hand

segmentation and object localization. We use CNN-M-

2048 [3] for action and object recognition. Due to the lim-

ited sizes of the three public datasets, we adopt the fine-

tuning [23] approach to initialize our networks. Specif-

ically, we use available pre-trained models from three

large-scale datasets: UCF101[31], Pascal-Context[22] and

ImageNet[4] for motion, hand segmentation and object

CNN respectively.

Data augmentation. To further address the problem of

limited data, we apply data augmentation [15] to improve

generalization of CNN networks. Crop: All of our net-

work inputs are resized to K × C × 256 × 256, where K
is batch size, C is input channels. We randomly crop them

to K × C × 224 × 224 at training time. Flip: We ran-

domly mirror input images horizontally. For optical flow

frames (Ui, Vi), we mirror them to (255−Ui, Vi). Replica-

tion: We also replicate training data by repeating minority

classes to match with majority classes at training time.

Training details. We use a modified version of Caffe

[13] and Nvidia Titan X GPU to train our networks. We

use stochastic gradient descent with momentum as our opti-

mization method. We use a fixed learning rate of γ = 1e−8
for fine-tuning hand segmentation and object localization

CNNs, γ = 5e − 4 for motion CNN and γ = 1e − 4 for

object CNN. For joint training, we lower the learning rate

of two sub-networks by a factor of 10. We use batch sizes

of 16, 128, 180 for localization, object and motion CNNs

respectively.

3.3. ObjectNet Performance

We evaluate the localization network and object recogni-

tion network of the ObjectNet stream.

Localizing object of interest. As described in Section 2.1

and illustrated in Figure 3, we first train a hand segmen-
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(a)

(b)

Figure 5: Object localization using Hand Information. Vi-

sualization of object location probability map (red) and ob-

ject bounding box (green). (a: GTEA, b: Gaze+)

tation to learn the bottom layers of the object localization

network. The intuition behind this training procedure is to

purposefully bias the object localization network to use the

hands as evidence to infer an object bounding box. We first

train a hand segmentation network using the model of [21]

to capture hand appearance information. We then swap out

the top layer for segmentation with a top layer optimized

for object localization (i.e., fine-tune the network to repur-

pose it for object localization). The network has an input

size of K × 3× 256× 256 where K is the batch size. After

five convolutional (conv1− conv5) layers of 2× 2 pooling

operations, the input image dimension is down-sampled to

1/32 of the original size. The final deconvolution layer up-

samples it back to the original size of K×2×256×256. We

use raw images and hand masks provided with GTEA and

Gaze as training data for the hand segmentation network.

Since Gaze+ is not annotated with hand masks, we use [18]

to detect hands and use the result to train the network. Once

the segmentation network is trained, we use manually anno-

tated training images of object locations to re-purpose the

the network for localization. Instead of using raw object

locations (exact center position of the object), we place a

Gaussian bump at the center position to create a heat-map

representation as described in Section 2.1.

Figure 5 shows qualitative results of the localization net-

work. The localization network successfully predicts the

key object of interest out of other irrelevant objects in the

scene. Notice that the result is strongly tied to the hand as

the network is pre-train for hand segmentation. The results

also show that the model can deal seamlessly with different

hand configurations like one-hand or two-hand scenarios.

Recognizing object of interest. The localized object im-

ages are used to train the object CNN. Table 1 compares

the performance of our proposed methods with [5]. Our

proposed method dramatically outperforms [5] by 14%.

As seen in Table 1 the boost in performance can be at-

tributed to improved localization through the use of hand

segmentation-based pre-training.

We visualize the activations of the object recognition net-

work and present two important findings: (1) Hands are

important for object recognition: Although the localiza-

tion network is targeted for object of interest, the cropped

image also contains a large portion of hands. We visual-

ize the activations of the conv5 layer and find that the 50th

Object Recognition GTEA(71) Gaze(40) Gaze+(44)

Fathi et al. [9] 61.36 N/A N/A

Object CNN 67.74 38.05 61.87

Joint training (Ours) 76.15 55.55 74.34

Table 1: Average object recognition accuracy. Proposed

method performs 14% better than the baseline. Joint

training of motion and object networks improves accuracy

across all datasets.

(a)

(b)

Figure 6: (a) Top 5 training images with strongest activa-

tions from the 50th neuron unit in the conv5 layer. (b) 5 test

images (top row) and 13×13 activations (bottom row) of the

same unit. The visualization shows that this unit responds

strongly to hand regions. The object network is capturing

hand appearance.

neuron unit responds particularly strongly to training im-

ages with large hand regions as shown in Figure 6. We fur-

ther test the network with test images shown in Figure 6.

We observe that the strongest activations overlap with hand

regions. We therefore conclude that the object recognition

network is learning appearance features from hand regions

to help recognize objects. When there is no hand in the

scene, the localization network will predict no interacting

object. Since some of the iterating objects as tea bags and

utensils are small, it is extremely challenging to locate them

using an traditional object detector. The hands, their shape

and their motion can act as a type of proxy small objects.

(2) Object attributes are important for object recogni-

tion: Figure 7 shows examples of a particular neuron unit

responding to particular object attributes like color, texture

and shape. In Figure 7b, we observe that this specific neu-

ron is activated when it observes round objects.

3.4. ActionNet performance

We first evaluate the ActionNet to recognize actions.

In our experiments, we crop and resize input images to

256 × 256 and calculate optical flow using OpenCV GPU

implementation of [37]. We clip and normalize the flow val-

ues from [−20, 20] to [0, 255]. We found empirically that

L = 10 optical flow frames generates good performance.

Table 2 compares our proposed method with the baseline

in [5]. While our motion network significantly improves

the average recognition accuracy, we are also interested in

understanding what the network is learning. Our visual-
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(a) (b) (c) (d)

Figure 7: Neuron activation in the conv5 layer for test

images. Neuron responding to: (a) transparent bottle, (b)

edges of container, (c) cups, (d) white round shapes.

Method & dataset GTEA(71) Gaze(40) Gaze+(44)

Fathi et al. [5] 47.70 N/A N/A

Motion CNN 75.85 33.65 62.62

Joint training 78.33 36.27 65.05

Table 2: Average action recognition accuracy. Proposed

method performs 30% better than the baseline. Joint

training of motion and object networks improves accuracy

across all datasets.

~

(a)

~

(b) (c)

Figure 8: Top 4 training sequences with strongest activa-

tions for the 346th neuron unit in conv5 layer. (a) Start/end

image frames, (b) Start/end optical flow images, (c) Average

optical flow for each sequence. From top to bottom, ground-

truth activity labels are put cupPlateBowl, put knife, put

cupPlateBowl and put lettuce container.

ization shows two important discoveries: (1) our motion

network automatically identifies foreground (objects and

hands) motion out of complex background (camera) mo-

tion (2) our motion network automatically encodes tempo-

ral motion patterns.

(1) Camera motion compensation is important for action

recognition: As summarized in [20], motion compensation

is important for ego-centric action understanding as it pro-

vides more reliable foreground motion features. Through

visualization, we discover that the network is automatically

learning to identify foreground objects and hands. Figure

8 shows top 4 training sequences that activate a particular

neuron unit most strongly in the conv5 layer. All these se-

quences have the same action verb put despite the diversity

in camera egomotion. This shows that the network auto-

matically learns to ignore background camera motion for

~

(a)

~

(b) (c) (d) (e) (f)

Figure 9: 4 test sequences and activations of the 346th neu-

ron unit in conv5 layer. (a) Start/end image frames, (b)

Start/end optical flow images, (c) Average optical flow, (d)

13 × 13 activation maps of the neuron unit using the opti-

cal flow sequence, (e) Overlay of activation map on the end

image frame, (f) 13× 13 activation maps of the neuron unit

using reversed optical flow sequence. From top to bottom,

ground-truth activity labels are put milk container, put

milk container, put cupPlateBowl, put tomato cupPlate-

Bowl.

this neuron. We further test the network with a few test se-

quences of put actions. The results (in Figure 9) agree with

our observation in the following aspects: (1) Activation of

the same unit is very strong on all these test put actions com-

pared with other actions; (2) The strongest activation loca-

tion coincides roughly with foreground objects and hands

location in Figure 9e.

(2) Temporal motion patterns are important for action

recognition: While instantaneous motion is an important

cue for action recognition, it is also crucial to integrate tem-

poral motion information as shown in [20, 29, 33, 35]. Fig-

ure 8 shows that the neuron unit is able to capture the move-

ment of subjects during image sequences. We perform an-

other experiment by reversing the order of the input optical

flow images to observe how this neuron responds. Figure

9f shows the activation maps of the same neuron unit with

respect to reversed optical flow frames. The weak responses

on suggests that the temporal ordering has been encoded in

this neuron. This is reasonable, as actions such as put and

take can only be differentiated be preserving temporal or-

dering.

3.5. Activity recognition

We finally evaluate our framework for the task of ac-

tivity recognition. In this experiment, we concatenate the

two fully connected layers from the ActionNet and Object-

Net and add another fully connected layer on top. Then

we fine-tune the two streams together with optical flow im-

ages, cropped object images and three weighted losses for

three tasks. We compare our results with the state-of-the-art

method from Li et al. [20] in Table 3. We also report results

using the two-stream networks from Simonyan and Zisser-

man [30] without decomposing activity labels. The confu-

sion matrices are shown in Figure 10. Our proposed method
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Methods GTEA(61)∗ GTEA(61) GTEA(71) Gaze(25)∗ Gaze(40)∗ Gaze+(44)

Li et al.[20]

O+M+E+H 61.10 59.10 59.20 53.20 35.70 60.50

O+M+E+G N/A N/A N/A 60.90 39.60 60.30

O+E+H 66.80 64.00 62.10 51.10 35.10 57.40

S. & Z.[30]

temporal-cnn 34.30 30.92 30.33 38.76 22.01 44.45

spatial-cnn 53.77 41.13 40.16 30.84 18.46 45.97

temporal+spatial-svm 46.51 35.69 35.81 25.94 22.18 43.23

temporal+spatial-joint 57.64 51.58 49.65 44.29 34.70 58.77

Ours

object-cnn 60.02 56.49 50.35 47.09 35.56 46.38

motion+object-svm 53.01 50.45 47.07 28.42 16.00 34.75

motion+object-joint 75.08 73.02 73.24 62.40 43.42 66.40

Table 3: Quantitative results for activity recognition. (a) Best results reported from Li et al. [20]. (b) Two-stream CNN [30]

results with single streams, SVM-fusion and joint training. (c) Results from our proposed methods with localized object only,

SVM-fusion and joint training. Our proposed joint training model significantly outperforms the two baseline approaches on

all datasets. Note that even the network trained using only cropped object images (object-cnn) achieves very promising results

thanks to our localization network. (∗: fixed split, O: object, M: motion, E: egocentric, H: hand, G: gaze).

(a) GTEA 71 classes (b) Gaze 40 classes (c) Gaze+ 44 classes

Figure 10: Confusion matrices of our proposed method for activity recognition. Improvement on the Gaze dataset is lower

due to low video quality and inefficient data. (best view in color)

significantly improves the state-of-the-art performance on

all datasets. We conclude that this is due to better repre-

sentations of action and object from the base motion and

appearance streams in our framework. We further analyze

two main findings from our experiments.

(1) Joint training is effective: Instead of fixing Action-

Net and ObjectNet, and only training stacked layers on top,

we jointly train all three networks using three losses as dis-

cussed in Section 2.3. This avoids over-fitting the newly

added top layers and leads to a joint representation of ac-

tivities with actions and objects. In our experiments, we set

waction = 0.2, wobject = 0.2 and wactivity = 1.0. We set the

activity loss weight higher for faster convergence of activ-

ity recognition. We also compare joint training with SVM

fusion of two networks in Table 3. Joint training boosts the

performance consistently by 27% over all datasets.

(2) Object localization is crucial: We seek to understand

the importance of localizing objects by training a network

using cropped object images and activity labels. We com-

pare three networks for activity recognition with best results

reported in [20]: (1) motion-cnn (temporal-cnn) using opti-

cal flow images and activity labels (2) spatial-cnn using raw

images and activity labels (3) object-cnn using cropped ob-

ject images and activity labels. The performance is lower

than [20] on three networks as shown in Table 3 because we

are not using any motion or temporal information. How-

ever, the performance of object-cnn is surprisingly close,

only 9.6% lower (25.5% lower with motion-cnn, 20.6%
lower with spatial-cnn) on average. We conclude that lo-

calizing the key object of interest is crucial for egocentric

activity understanding.

4. Conclusion

We have developed a twin stream CNN network archi-

tecture to integrate features that characterize ego-centric ac-

tivities. We demonstrated how our proposed network jointly

learns to recognize actions, objects and activities. We eval-

uated our model on three public datasets and it significantly

outperformed the state-of-the-art methods. We further ana-

lyzed what the networks were learning. Our visualizations

showed that the networks learned important cues like hand

appearance, object attribute, local hand motion and global

ego-motion as designed. We believe this will help advance

the field of ego-centric activity analysis.
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