
Learning Activity Progression in LSTMs for

Activity Detection and Early Detection

Shugao Ma

Boston University

shugaoma@bu.edu

Leonid Sigal

Disney Research

lsigal@disneyresearch.com

Stan Sclaroff

Boston University

sclaroff@bu.edu

Abstract

In this work we improve training of temporal deep mod-

els to better learn activity progression for activity detec-

tion and early detection tasks. Conventionally, when train-

ing a Recurrent Neural Network, specifically a Long Short

Term Memory (LSTM) model, the training loss only consid-

ers classification error. However, we argue that the detec-

tion score of the correct activity category, or the detection

score margin between the correct and incorrect categories,

should be monotonically non-decreasing as the model ob-

serves more of the activity. We design novel ranking losses

that directly penalize the model on violation of such mono-

tonicities, which are used together with classification loss in

training of LSTM models. Evaluation on ActivityNet shows

significant benefits of the proposed ranking losses in both

activity detection and early detection tasks.

1. Introduction

In this work we study human activity detection and early

detection in videos (Fig. 1). For activity detection, we de-

tect segments of human activities in a video sequence, rec-

ognizing the activities’ categories and detecting their start

and end points. For early detection, we detect the activity

segment after observing only a fraction of the activity.

Automatic detection of human activities, in videos, has

many potential applications, such as video understanding

and retrieval, automatic video surveillance, and human-

computer interaction. Further, for many applications, such

as human-robot interaction it is desirable to detect the activ-

ity as early as possible [5, 19], to make the interaction more

natural, e.g., deploying a robot to help an elderly patient

stand up before he/she is upright and is at risk of a fall.

Activity detection in realistic settings is quite challeng-

ing. There is high variability in the viewpoint from which

the activity is observed, the actors and their appearance,

as well as the execution and overall duration of the activ-

ities (see Fig. 6). This is particularly true for relatively long

Figure 1: We study two problems: activity detection and

early detection. For activity detection, we detect the cate-

gory of the activity and its start and end point. For early

detection, we need to detect the category and the start point

of an activity after observing only a fraction of the activity.

This example sequence contains the activity using ATM.

and complex activities. For example, the activity “making

pasta” typically entails cutting vegetables, setting a pot on

the fire, boiling water, boiling pasta noodles, cooking pasta

sauce, and combining pasta with sauce. To better detect,

i.e., recognize and temporally localize such activities, we

argue that it is critically important for the learned detector

to model the activities’ temporal progression.

Recurrent Neural Network (RNN) models are particu-

larly helpful in this context: the prediction at each time

instant is based not only on the observations at that time

instant, but also on the previous model hidden states that

provide temporal context for the progression of the activ-

ity. More specifically, in the Long Short Term Memory

(LSTM), a type of RNN, memory is used to capture useful

patterns of previous observations, and is used in addition to

the previous hidden states to provide longer-range context

(e.g., as compared to HMMs) for the current prediction.

While RNN models are powerful, using only classifica-

tion loss in training such models typically fails to properly

penalize incorrect predictions, i.e., the prediction error is

penalized the same no matter how much context the model

11942



has already processed. For example, given a video of the ac-

tivity making pasta, to output the activity class label prepar-

ing coffee after the detector sees the activity up to combining

pasta with sauce should be penalized more than the same er-

ror when the detector only sees activity up to boiling water.

The above mentioned defect in training RNN models

is especially critical for activity detection. Unlike con-

ventional applications of RNNs in machine translation and

speech recognition, in which specific output such as words

or phonemes continue for a relatively short time, human ac-

tivities such as making pasta may continue for a relatively

long period, e.g., several minutes or thousands of video

frames. It is thus very important for the model to learn the

progresssion patterns of the activities in training.

In this work, we introduce novel ranking losses within

the RNN learning objective so that the trained model better

captures progression of activities. These ranking losses are

computed for the prediction at each time point, while also

taking into consideration the past predictions starting from

the very beginning of the activity.

The intuition for our formulation is shown in Fig. 2. As

the detector sees more of an activity, it should: (1) become

more confident of the correct activity category, i.e., output a

higher detection score for the correct category as the action

progresses, and (2) become more confident of the absence

of incorrect categories, i.e., the detection score margin be-

tween the correct and incorrect categories should be non-

decreasing as the action progresses.

Thus, we introduce two explicit constraints in RNN

training. The first is a ranking loss on the detection score

of the correct category, which constrains the detection score

of the correct categorty to be monotonically non-decreasing

as the activity progress. The second is a ranking loss on the

detection score margin between the correct activity category

and all other categories, which constrains that this discrim-

inative margin is monotonically non-decreasing.

In summary, we make the following contributions:

• We propose formulations for ranking loss on the detec-

tion score and on the discriminative margin to better

learn models for human activity progression.

• We implement our proposed ranking losses in train-

ing LSTM models, and show significant improvements

over LSTM model trained only with classification loss

in the tasks of activity detection and early detection.

• We achieve start-of-the-art performance for activity

detection and early detection on a large-scale video

dataset: ActivityNet [4].

2. Related Work

A topic closely related to human activity detection is hu-

man action recognition. In action recognition, the input

video clip is (manually) trimmed so that it only contains

Figure 2: As the detector sees more of the activity, it should

become more confident of the presence of the correct cat-

egory and absence of incorrect categories. This example

sequence contains a high jump. The blue curve is the detec-

tion score of the correct category, which is encouraged to be

non-decreasing. The green curve is the detection score of an

incorrect category running, whose margin with respect to

the correct category (shaded light blue area) is encouraged

to be non-decreasing.

video frames depicting a human action, and the goal is to

correctly recognize the action category. Many past works

focus on this topic, e.g., encoding video clips using a bag-

of-words representation over local space-time features and

training SVM classifiers [11, 13, 23], or modeling human

actions as space-time structures [1, 10, 12, 17, 24, 25]. In

[6, 7], Convolutional Neural Networks (CNNs) with space-

time convolutional filters are trained to capture space-time

patterns from training videos. In [20], separate CNNs are

trained for a spatial stream (i.e., video frames) and motion

stream (i.e., optical flow fields) and the features from both

CNNs are concatenated to train an action classifier. LSTM

models are explored in [14, 26] for recognizing human ac-

tions. In contrast to these works, we not only recognize

activities but also detect their start and end time points.

Human action detection is also a well studied problem.

In [8], simple actions are represented as space-time shapes

that are matched against over-segmented space-time video

volumes. In [28], action detection entailed searching for 3D

subvolumes of space-time invariant points. In [10, 22], hu-

man actions are modeled as space-time structures, using de-

formable part models [2]. In [15, 18] discriminative hand-

centric features are explored for fine grained activity detec-

tion in cooking, i.e., relatively short sub-activities such as

chop and fill. In [3], the detector is trained on CNN fea-

tures extracted from the action tubes in space-time; how-

ever, evaluation is on relatively short video clips (i.e., sev-

eral hundred frames) of relatively short actions. In [27]

an LSTM is trained that takes CNN features of multiple

neighboring frames as input to detect actions at every frame;

while their model is similar to ours, they focus on detecting

1943



Figure 3: Model overview. At each video frame, the model

first computes CNN features (illustrated as fc7) and then the

features are fed into the LSTM to compute detection scores

of activities and non-activity (BG in the figure).

simple actions such as stand up that last only for a few video

frames, and the training loss accounts only for classification

errors. In this work, we focus on accurately localizing ac-

tivities that are long and complex by learning and enforcing

activity progression as part of LSTM learning objective.

Early recognition of human action or activities, i.e., rec-

ognizing human actions or activities given partial observa-

tions, has also been studied in previous works e.g., by using

dynamic bag-of-words of space-time features [19], by mod-

eling actions as a sparse sequence of key-frames [17], or by

using compositional kernels to hierarchically capture rela-

tionships between partial observations [9]. In [5] a struc-

tured output SVM is used for recognizing and also tem-

porally localizing events given partial observations. Com-

pared to [5], which is evaluated on lab collected videos of

simple human actions, we use deep learning techniques to

solve this problem on large scale realistic video dataset of

human activities which are often long and complex.

3. Model Overview

Fig. 3 illustrates our model for activity detection. It con-

tains two major components: a CNN that computes visual

features from each video frame, and an LSTM with a lin-

ear layer that computes activity detection scores based on

the CNN features of the current frame and the hidden states

and memory of the LSTM from the previous time step. We

adopt the VGG19 [21] CNN architecture, whose output of

the second fully connected layer (fc7) is fed into the LSTM.

We use the LSTM described in [16] that applies dropout on

non-recurrent connections. A similar model has been used

in [27] for detecting relatively short actions. Our key con-

tributions are in exploring the rank losses, during training,

that encourage monotinicity in detection score and margin

produced by the model as a training activity progresses.

4. Learning Activity Progression

To accurately detect the complete duration of human ac-

tivities, especially for relatively long and complex ones, it

is important for the model to capture the progression pat-

terns of activities during training. An RNN only implicitly

considers progression via the context that is passed along

time in the form of the previous hidden state and, in LSTM,

memory as well. We introduce ranking loss into the learning

objective, to explicitly capture activity progression globally

from the activity start to the current time:

Lt = Lt
c + λrL

t
r, (1)

where Lt
c and Lt

r are the classification loss and the ranking

loss, respectively, at the current time t, and λr is a positive

scalar constant that controls relative term contribution.

Usually, for training deep models, the cross entropy loss

is used to formulate Lt
c:

Lt
c = − log pyt

t , (2)

where yt is the ground truth activity category of the training

video sequence at the t-th video frame, and pyt

t is the de-

tection score of the ground truth label yt for the t-th frame,

i.e., the softmax output of the model.

We explore two formulations of the ranking loss, Lt
r.

The first constrains the model to output a non-decreasing

detection score for the correct category throughout the du-

ration of the activity. Our second ranking loss constrains

the output of the model to have non-decreasing discrimina-

tive margin: at any point in the activity, the margin between

the detection score of the correct category and the maxi-

mum detection score among all other categories should be

non-decreasing. Detailed formulations of these two ranking

losses are given below. For easier reading, we use Lt
s and

Lt
m to denote ranking loss on the detection score and mar-

gin, respectively. While these two ranking losses are differ-

ent, they are related. Note that the output of softmax layer

of the LSTM sums to 1, so Lt
s considers the margin between

pyt

t and
∑

y′ 6=yt
py

′

t , whereas Lt
m considers the margin be-

tween pyt

t and maxy′ 6=yt
py

′

t . We will discuss this more at

the end of Section 5.6.

4.1. Ranking Loss on Detection Score

Ideally we want the activity detector to produce mono-

tonically non-decreasing detection scores for the correct

activity category as the detector sees more of the activity

(Fig. 2). To this end, we introduce the ranking loss Lt
s into

the learning objective at time step t as:

Lt
s = max(0, −δt · (p

yt−1

t − p∗t )), (3)

where δt is set to 1 if yt−1 = yt, i.e., when there is no

activity transition from t− 1 to t according to ground truth

1944



Figure 4: Detection score pyt (blue curve) of an activity yt
spanning [ts, t]. p

yt

tb
and pyt

t are smaller than pyt

ta
(which is

also p∗yt

t in this example), violating the monotonicity of the

detection score, so Ltb
s and Lt

s are non-zero.

labeling (e.g. δt = 1 for ta, tb and t in Fig. 4); otherwise,

δt is set to −1.

In Eq. (3) p∗t is computed as:

p∗t =

{

p∗yt

t , if δt = 1,

0, otherwise,
(4)

where

p∗yt

t = max
t′∈[ts, t−1]

pyt

t′ . (5)

ts = min{t′ | yt′ = yt, ∀t
′ ∈ [ts, t]}, (6)

where ts is the starting point of the current activity yt, and

p∗yt

t is the highest previous detection score in [ts, t − 1]
(illustrated by the dashed horizontal line in Fig. 4).

In other words, if there is no activity transition at time

t, i.e., yt = yt−1, then we want the current detection score

to be no less than any previous detection score for the same

activity, computing the ranking loss as:

Lt
s = max(0, p∗yt

t − pyt

t ). (7)

On the other hand, if an activity transition happens at time t,
i.e., yt 6= yt−1, we want the detection score of the previous

activity to drop to zero at t and compute the ranking loss as:

Lt
s = p

yt−1

t . (8)

Fig. 4 shows the detection scores pyt (the blue curve) of

an activity yt spanning [ts, t]. In [ta + 1, t], the detection

scores are smaller than pyt

ta
, violating the monotonicity of

the detection score, so the ranking losses in this period are

non-zero, e.g. Ltb
s and Lt

s as shown in the figure.

One may be tempted to simply require pyt

t to be no less

than pyt

t−1 when there is no activity transition, replacing

Eq. 7 with:

Lt
s = max(0, pyt

t−1 − pyt

t ). (9)

However, as shown in Fig. 4, in this situation, the ranking

loss will be zero in [tb+1, tc] even though the monotonicity

of detection score is also violated.

Figure 5: Discriminative margin myt (red curve) of an ac-

tivity yt spanning [ts, t]. The margin myt is computed as

the difference between the ground truth activity detection

scores pyt (blue curve) and the maximum detection scores

maxy′ 6=yt
py

′

(dashed blue curve) of all incorrect activity

categories at each time point in [ts, t]. myt

tb
and myt

t are

smaller than myt

ta
(which is also m∗yt

t ), violating the mono-

tonicity of the margin, so Ltb
m and Lt

m are non-zero.

4.2. Ranking Loss on Discriminative Margin

When more of an activity is observed, the detector

should become more confident in discriminating between

the correct category vs. the incorrect categories. We guide

the training of our model to achieve such behavior by im-

plementing the following ranking loss:

Lt
m = max(0, −δt · (m

yt−1

t −m∗
t )). (10)

where my
t is the discriminative margin of an activity label

y at time step t (the blue point on the red curve at time t in

Fig. 5), computed as:

my
t = pyt −max{py

′

t | ∀y′ ∈ Y, y′ 6= y}, (11)

where Y is the set of all activity category labels. The m∗
t in

Eq. 10 is computed as:

m∗
t =

{

m∗yt

t , if δt = 1,

0, otherwise.
(12)

where m∗yt

t is computed as:

m∗yt

t = max
t′∈[ts, t−1]

myt

t′ , (13)

i.e., the largest previous discriminative margin of the cur-

rent activity yt that started at ts (illustrated by the dashed

horizontal line in Fig. 5).

In other words, when there is no activity transition at

t, we want the current discriminative margin to be no less

than any previous margin in the same activity, computing

the ranking loss as:

Lt
m = max(0, m∗yt

t −myt

t ). (14)

If an activity transition happens at time t, we want the dis-

criminative margin of the previous activity to drop and com-

pute the ranking loss as:

Lt
m = m

yt−1

t . (15)

1945



Fig. 5 illustrates the discriminative margins (red curve)

myt of the current activity yt spanning [ts, t] . The margin

myt is equal to the difference between the detection scores

pyt of the correct category yt (blue curve) and the maxi-

mum of the detection scores maxy′ 6=yt
py

′

for the incorrect

categories (dashed blue curve). Note that within the time

interval [ta+1, t], the margins are smaller than myt

ta
, violat-

ing the monotonicity; consequently, the ranking losses are

non-zero within the interval [ta + 1, t]. Also note that sim-

ply requiring the current margin to be less then that of the

previous timestep is insufficient, which will result in zero

ranking loss in interval [tb + 1, t] in Fig. 5.

4.3. Training

In training, we compute the gradient of the ranking loss

with respect to the softmax output at each time step:

∂Lt

∂pyt
=
∂Lt

c

∂pyt
+ λr

∂Lt
r

∂pyt
(16)

which is then back propagated through time to compute the

gradients with respect to the model parameters. At a non-

activity frame, if the previous frame has activity, i.e., an

activity to non-activity transition happens, the ranking loss

at this frame is computed according to Eq. 8 or Eq. 15; oth-

erwise, if the previous frame is also a non-activity frame,

the ranking loss is fixed to 0. Although Lt
s and Lt

m are also

functions of pyt′ for t′ < t, i.e., the softmax output of previ-

ous time steps, to simplify computation, we do not compute

and back propagate the gradients of the ranking loss with

respect to these variables.

5. Experiments

We evaluate our formulation on a large-scale, realistic

activity dataset: ActivityNet [4]. Using our proposed rank-

ing losses in training significantly improves performance in

both the activity detection and early activity detection tasks.

5.1. Dataset

The ActivityNet [4] dataset comprises 28K videos of 203
activity categories collected from YouTube. Fig. 6 shows

sample frames from video sequences of this dataset. The

lengths of the videos range from several minutes to half an

hour. The total length of the whole dataset is 849 hours. A

single video may contain multiple activities and often also

contains periods with none of the annotated activities. On

average, 1.4 activities are annotated per video. The activity

category, along with the start and end point of each activ-

ity are annotated by crowd-workers, leading to some anno-

tation noise. Many of the videos are shot by amateurs in

uncontrolled environments, and variances within the same

activity category are often large. More importantly, many

activities are relatively long and complex, and the viewpoint

Checking 
Tire

Using 
ATM

Sailing

Preparing 
Pasta

Figure 6: Each row contains sample frames of one example

video sequence in ActivityNet. Frames with green borders

contain the activities labeled on the left. Note the signif-

icant viewpoint and foreground object changes within the

activities Using ATM, Sailing and Preparing Pasta.

and foreground objects may change significantly within the

same activity, e.g., Using ATM and Preparing pasta shown

in Fig. 6. Given these challenges, it is important that the

model learns the progression of activities for accurate activ-

ity detection and early detection.

The authors of ActivityNet use one fourth of the dataset

as a validation set, but have not released the test set used in

their paper.1 In our experiments, we use the validation set

as our test set, and we split the remaining videos into one

fifth for validation and four fifths for training. To reduce

computational cost, we temporally down-sample the videos

to 6 frames per second for all our experiments.

5.2. Model Training

For the CNN component (see Fig. 3), we first use train-

ing video frames of ActivityNet to fine-tune a VGG19

model [21] that is pre-trained on ImageNet. The output di-

mension of the softmax layer is 204, which corresponds to

the 203 activities plus one additional class corresponding

to non-activity. We set the learning batch size to 32. The

learning rate starts at 10−4 and is divided by 10 after every

40K iterations. The fine-tuning stops at 120K iterations.

For LSTM training, the output of the second fully con-

nected layer (fc7) of the fine-tuned VGG19 model is used

as input to the LSTM. We use learning batches of 64 se-

quences, where each sequence comprises 100 frames. Back

propagation through time is performed for 20 time steps.

The momentum and weight decay are set to 0.9 and 0.0005
respectively. The learning rate starts at 0.01 and is divided

1According to communication with the authors of [4], this test split is

kept confidential for use in a future challenge.

1946



by 10 after every 20K iterations. Training stops after 50K

iterations. In this training phase, the CNN fc7 layer is also

further trained together with the LSTM but with a lower

starting learning rate of 10−4.

5.3. Experimental Setup

In testing, we run the model across the whole input se-

quence and output activity detection scores at each input

frame. We reset the LSTM memory whenever the model

predicts non-activity, which we find slightly improves per-

formance. For both activity detection and early detection,

we detect video segments of activities from an input video

sequence. To achieve this, we first classify each video frame

to the activity category for which the detection score is the

highest at this frame. Note that non-activity is treated sim-

ply as a special category. We then find continuous video

frame segments that are classified to belong to the same ac-

tivity category; this produces the initial detection spans. Fi-

nally, we iteratively merge the detection spans that are tem-

porally close (less than 20 frames apart in our experiments).

The score of each detection is then computed as the mean

of the detection scores of all its video frames.

Following [4], we use the mAP (mean average precision)

in evaluating performance. A detection is a true positive

if: 1) its IOU (intersection-over-union) of temporal duration

with a ground truth activity is above the IOU threshold, and

2) its activity label is equal to the ground truth activity label.

If multiple detections overlap with the same ground truth

activity, only the one with the longest duration is treated as

a true positive. All the other detections are false positives.

For evaluating performance on early detection, we split each

input test sequence into multiple sequences so that each new

sequence contains the non-activity segment (if there is any)

before a test activity, and a portion of the test activity.

We evaluate the performance of four models: i) the fine-

tuned VGG19 CNN model; ii) the LSTM model shown

in Fig. 3 trained with the classification loss only (Eq. 2);

iii) the LSTM-s model trained with both the classification

loss and ranking loss on the detection score (Eq. 3); iv) the

LSTM-m model trained with classification loss and rank-

ing loss on the discriminative margin (Eq. 10). In LSTM-s

and LSTM-m, the weight for ranking loss (λr in Eq. 1) is

empirically set to 6, according to performance on our vali-

dation set. We find that using a combination of both ranking

losses in training offers no further improvement over using

just one so we do not include results for this in the paper.

5.4. Activity Detection

Table 1 shows the activity detection performance of the

evaluated models under different IOU thresholds, α. The

results of Heilbron et al. [4] are produced on their test set,

which is not publicly available; therefore, their results are

not directly comparable to ours. Heilbron et al. [4] use a

Figure 7: Top 20 activity categories for which the detection

performance improved the most by using either LSTM-s or

LSTM-m in training.

sliding window approach to detect activities in the video

sequences, where the temporal lengths of the sliding win-

dows are empirically selected and fixed. In our approach

the length of each detection is automatically determined as

described in Section 5.3.

The LSTM models greatly outperform the CNN model.

This demonstrates the benefit of using a recurrent neural

network model in activity detection. Both of the proposed

ranking losses are beneficial in training a better LSTM

model for activity detection: significant improvements are

achieved over the LSTM model trained only using classifi-

cation loss. For LSTM-s the improvements are consistently

around 4.1∼5.9% at all IOU thresholds. Note that the rel-

ative improvement of LSTM-m and LSTM-s over LSTM

increases when requiring the detection to more accurately

overlap with ground truth, e.g., growing from 12.3% when

α = 0.1 to 16.7% when α = 0.8 with LSTM-s. This shows

that the proposed ranking-losses are even more useful in ap-

plications where accurate temporal localization is required.

Fig. 7 shows the top 20 activities for which the detection

performance are improved the most by using ranking loss

(LSTM-s or LSTM-m) in training (IOU threshold α = 0.5).

It is interesting to note that using the proposed ranking

losses, detection performance improves both for relatively

simple activities such as playing saxophone and for rela-

tively complex activities such as high jump. This shows

that the proposed ranking losses may improve the detection

of various types of activities.

5.5. Activity Early Detection

In this experiment, the goal is to recognize and also tem-

porally localize partially observed activities. Table 2 shows

the detection performances when we only observe 3/10,

1947



Table 1: Activity detection performance measured in mAP at different IOU thresholds α. Note that the results of Heilbron et

al. [4] are produced on their own test split that is unavailable to us, so their results are not directly comparable to ours.

Model α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8

Heilbron et al. [4] 12.5% 11.9% 11.1% 10.4% 9.7% - - -

CNN 30.1% 26.9% 23.4% 21.2% 18.9% 17.5% 16.5% 15.8%

LSTM 48.1% 44.3% 40.6% 35.6% 31.3% 28.3% 26.0% 24.6%

LSTM-m 52.6% 48.9% 45.1% 40.1% 35.1% 31.8% 29.1% 27.2%

LSTM-s 54.0% 50.1% 46.3% 41.2% 36.4% 33.0% 30.4% 28.7%

Table 2: Activity early detection performance at different IOU thresholds (α), when only 3/10 of each activity is observed.

Model α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8

CNN 27.0% 23.4% 20.4% 17.2% 14.6% 12.3% 11.0% 10.3%

LSTM 49.5% 44.7% 38.8% 33.9% 29.6% 25.6% 23.5% 22.4%

LSTM-m 52.6% 47.9% 41.5% 36.2% 31.4% 27.1% 24.8% 23.5%

LSTM-s 55.1% 50.3% 44.0% 38.9% 34.1% 29.8% 27.4% 26.1%

Figure 8: Activity early detection performance plotted as a

function of the observed fraction of each test activity.

i.e., approximately the first third, of each testing activ-

ity. The LSTM models greatly outperform the CNN model

on the early detection task. Moreover, the LSTM mod-

els trained with the proposed ranking losses (LSTM-s or

LSTM-m) clearly outperform the LSTM model trained only

with classification loss. For instance, with LSTM-s, the ab-

solute improvements are consistently around 5.6∼3.7% at

all IOU thresholds α, with relative improvement increasing

from 11.3% at α = 0.1 to 16.5% at α = 0.8.

Fig. 8 shows the performance of early detection when

the observed fraction of each test activity increases from

0.1 to 1 with IOU threshold fixed at 0.4 or 0.5. All LSTM

models greatly outperform the CNN, no matter how much

of each activity is observed. Both ranking losses, LSTM-

m and LSTM-s, outperform LSTM. Although the increase

in detection performance slows down after observing ap-

proximately half of each activity, the performance gap be-

tween LSTM-s (LSTM-m) and LSTM increases as more of

each activity is observed. More interestingly, LSTM-s sig-

nificantly outperforms LSTM even when we only observe a

small faction of each activity, e.g., one tenth. This could be

Figure 9: Top 20 activity categories for which the early

detection performance improved the most by using either

LSTM-s or LSTM-m in training. Only the first 3/10 of each

test activity is observed. The IOU threshold α = 0.5.

quite useful for applications that require detecting activities

as early as possible.

Fig. 9 lists the top 20 activity categories for which the

early detection performance improves the most when using

either of the proposed ranking losses in training. Interest-

ingly, among these activities, some may have relatively lit-

tle visual content change across the whole duration of the

activity, such as Playing lacrosse, whereas others may un-

dergo significant visual content change, such as Layup drill

in basketball. This suggests that the benefits of the proposed

ranking losses are applicable to various types of activities in

the task of early detection.

1948



Figure 10: Mean curves of the detection score and the discriminative margin as function of time over all test activity sequences

produced by snapshots of the LSTM-m and LSTM-s models trained after 10K, 20K, 30K, 40K and 50K iterations.

Figure 11: Mean curves of (a) the detection score and (b)

the discriminative margin, as function of time over all test

sequences for CNN, LSTM, LSTM-m and LSTM-s. The

mean curves of the detection score for the worst negative

category, i.e., negative activity category with the highest de-

tection score, are also shown as the dashed curves.

5.6. Effects of the Ranking Losses

We now analyze what effects the proposed ranking losses

introduce over the evolving time scale of model training.

We first analyze how the detection score of the correct activ-

ity category and the discriminative margin (Eq. 11) change

as we train LSTM-m and LSTM-s. We compute the detec-

tion scores and the discriminative margins at every frame

in each test sequence using snapshots of the LSTM models

trained after 10K, 20K, 30K, 40K and 50K iterations. This

produces for each activity sequence a curve of the detec-

tion score (or discriminative margin) as a function of time.

We normalize the curves so that each has a length of 20

points, and finally compute the mean curve over the whole

test set. Fig. 10 shows the mean curves. For both mod-

els, the mean curves are approximately non-decreasing, and

such monotonicity becomes more apparent as we train for

more iterations. The absolute values of the detection scores

and discriminative margins increase as we train for more it-

erations, but converge after roughly 40K training iterations.

Fig. 11 compares the mean curves of the detection score

and discriminative margin produced by LSTM-s, LSTM-

m and LSTM trained after 50K iterations, as well as the

CNN model. The mean curves of LSTM-s and LSTM-

m (solid green curves and solid red curves) for both the

detection score and discriminative margin are significantly

higher than those of LSTM (blue curves). The LSTM-s and

LSTM-m curves also show a more apparent monotone in-

creasing trend compared to LSTM, which tends to be flat

after approximately the first half of the activity. We also

show the mean detection score curves for the worst negative

category, i.e., the negative activity category with the highest

detection score for LSTM, LSTM-s and LSTM-m using the

dashed curves. The curves of LSTM-m and LSTM-s for the

worst negative category are lower than that of LSTM.

It is interesting to note that each of the proposed ranking

losses has useful impacts on both the detection score and the

discriminative margin, despite the fact that they are either

computed based on detection scores only or discriminative

margins only. This conforms to our intuition that encour-

aging a non-decreasing detection score may help in produc-

ing a non-decreasing discriminative margin and vice versa.

Also note that LSTM-s produces higher detection scores for

the correct category than LSTM-m, while LSTM-m pushes

the detection scores of the worst negative category signifi-

cantly lower, as shown Fig. 11 (a). In practice one can use

either of these ranking loss formulations, depending on the

application, e.g., selecting the best one via cross-validation.

6. Conclusion

We improve training of the LSTM model to better learn

activity progression. We introduce two novel formulations

for ranking loss in LSTM training, designed to encourage

consistent scoring and margin for detecting the correct ac-

tivity as more of the activity sequence is observed. We gain

significant performance improvements in activity detection

and early detection on ActivityNet. In future work, we plan

to conduct further in-depth study of the relative advantages

of the two ranking losses.

Acknowledgments. This work was supported in part by
NSF grant 1029430 and a gift from NVIDIA.

1949



References

[1] W. Brendel and S. Todorovic. Learning spatiotemporal

graphs of human activities. In ICCV, 2011. 2

[2] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and

D. Ramanan. Object detection with discriminatively trained

part-based models. TPAMI, 32(9):1627–1645, 2010. 2

[3] G. Gkioxari and J. Malik. Finding action tubes. In CVPR,

2015. 2

[4] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.

Activitynet: A large-scale video benchmark for human ac-

tivity understanding. In CVPR, 2015. 2, 5, 6, 7

[5] M. Hoai and F. De la Torre. Max-margin early event detec-

tors. IJCV, 107(2):191–202, 2014. 1, 3

[6] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. TPAMI, 35(1):221–

231, 2013. 2

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 2

[8] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in

crowded videos. In ICCV, 2007. 2

[9] Y. Kong and Y. Fu. Max-margin action prediction machine.

TPAMI, PP(99):1–1, 2015. 3

[10] T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric

models for joint action localization and recognition. In

ICCV, 2011. 2

[11] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In CVPR,

2008. 2

[12] S. Ma, L. Sigal, and S. Sclaroff. Space-time tree ensemble

for action recognition. In CVPR, 2015. 2

[13] S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaroff. Action

recognition and localization by hierarchical space-time seg-

ments. In ICCV, 2013. 2

[14] J. Y. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals,

R. Monga, and G. Toderici. Beyond short snippets: Deep

networks for video classification. CoRR, abs/1503.08909,

2015. 2

[15] B. Ni, V. R. Paramathayalan, and P. Moulin. Multiple gran-

ularity analysis for fine-grained action detection. In CVPR,

2014. 2

[16] V. Pham, C. Kermorvant, and J. Louradour. Dropout im-

proves recurrent neural networks for handwriting recogni-

tion. CoRR, 2013. 3

[17] M. Raptis and L. Sigal. Poselet key-framing: A model for

human activity recognition. In CVPR, 2013. 2, 3

[18] M. Rohrbach, A. Rohrbach, M. Regneri, S. Amin, M. An-

driluka, M. Pinkal, and B. Schiele. Recognizing fine-grained

and composite activities using hand-centric features and

script data. CoRR, abs/1502.06648, 2015. 2

[19] M. Ryoo. Human activity prediction: Early recognition of

ongoing activities from streaming videos. In ICCV, 2011. 1,

3

[20] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 2

[21] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015. 3,

5

[22] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal de-

formable part models for action detection. In CVPR, 2013.

2

[23] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013. 2

[24] L. Wang, Y. Qiao, and X. Tang. Video action detection with

relational dynamic-poselets. In ECCV, 2014. 2

[25] Y. Wang and G. Mori. Hidden part models for human ac-

tion recognition: Probabilistic versus max margin. TPAMI,

33(7):1310–1323, 2011. 2

[26] Z. Wu, X. Wang, Y. Jiang, H. Ye, and X. Xue. Modeling

spatial-temporal clues in a hybrid deep learning framework

for video classification. CoRR, abs/1504.01561, 2015. 2

[27] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori,

and F. Li. Every moment counts: Dense detailed labeling of

actions in complex videos. CoRR, 2015. 2, 3

[28] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search

for efficient action detection. In CVPR, 2009. 2

1950


