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Abstract

Tracking the ball is critical for video-based analysis of

team sports. However, it is difficult, especially in low-

resolution images, due to the small size of the ball, its speed

that creates motion blur, and its often being occluded by

players.

In this paper, we propose a generic and principled ap-

proach to modeling the interaction between the ball and

the players while also imposing appropriate physical con-

straints on the ball’s trajectory.

We show that our approach, formulated in terms of a

Mixed Integer Program, is more robust and more accurate

than several state-of-the-art approaches on real-life volley-

ball, basketball, and soccer sequences.

1. Introduction

Tracking the ball accurately is critically important to an-

alyze and understand the action in sports ranging from ten-

nis to soccer, basketball, volleyball, to name but a few.

While commercial video-based systems exist for the first,

automation remains elusive for the others. This is largely

attributable to the interaction between the ball and the play-

ers, which often results in the ball being either hard to detect

because someone is handling it or even completely hidden

from view. Furthermore, since the players often kick it or

throw it in ways designed to surprise their opponents, its

trajectory is largely unpredictable.

There is a substantial body of literature about dealing

with these issues, but almost always using heuristics that

are specific to a particular sport such as soccer [32], vol-

leyball [10], or basketball [6]. A few more generic ap-

proaches explicitly account for the interaction between the

players and the ball [29] while others impose physics-based

constraints on ball motion [23]. However, neither of these

things alone suffices in difficult cases, such as the one de-

picted by Fig. 1.

In this paper, we, therefore, introduce an approach to

simultaneously accounting for ball/player interactions and

imposing appropriate physics-based constraints. Our ap-

proach is generic and applicable to many team sports. It

involves formulating the ball tracking problem in terms of a

Mixed Integer Program (MIP) in which we account for the

motion of both the players and the ball as well as the fact the

ball moves differently and has different visibility properties

in flight, in possession of a player, or while rolling on the

ground. We model the ball locations in R
3 and impose first

and second-order constraints where appropriate. The result-

ing MIP describes the ball behaviour better than previous

approaches [29, 23] and yields superior performance, both

in terms of tracking accuracy and robustness to occlusions.

Fig. 1(c) depicts the improvement resulting from doing this

rather than only modeling the interactions or only imposing

the physics-based constraints.

In short, our contribution is a principled and generic for-

mulation of the ball tracking problem and related physical

constraints in terms of a MIP. We will demonstrate that it

outperforms state-of-the-art approaches [28, 29, 23, 10] in

soccer, volleyball, and basketball.

2. Related work

While there are approaches to game understanding, such

as [16, 19, 20, 11, 7, 15], which rely on the structured nature

of the data without any explicit reference to the location

of the ball, most others either take advantages of knowing

the ball position or would benefit from being able to [7].

However, while the problem of automated ball tracking can

be considered as solved for some sports such as tennis or

golf, it remains difficult for team sports. This is particularly

true when the image resolution is too low to reliably detect

the ball in individual frames in spite of frequent occlusions.

Current approaches to detecting and tracking can be

roughly classified as those that build physically plausible

trajectory segments on the basis of sets of consecutive de-

tections and those that find a more global trajectory by min-

imizing an objective function. We briefly review both kinds

below.

2.1. Fitting Tracjectory Segments

Many ball-tracking approaches for soccer [21, 18], bas-

ketball [6], and volleyball [5, 10, 4] start with a set of suc-
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Figure 1: Importance of simultaneously modeling interactions and imposing physical constraints. For most of this 70-frame

volleyball sequence depicting the ball crossing the net and being bumped by a defending player and viewed by 3 cameras,

the defending player is on the ground. As a result, she was not detected by the person detector we use [9] because it only

finds people standing up. Furthermore, while the ball was near the player, it was occluded in the views of 2 of the 3 cameras,

and, therefore, not detected as a 3D object. (a) Tracking the players and the ball simultaneously without imposing motion

constraints as in [29] produces physically impossible trajectories. (b) Imposing motion constraints but tracking the players

and the ball separately as in [23] does not properly capture the ball and player interaction. (c) Our approach to both imposing

constraints and modeling the interaction gives a better overall result. The crosses denote the fact that the ball is in the “strike”

state until being bumped and in the “flying” one after that. Transitions between these states can only result from interacting

with a player, which encourages the optimizer to find one in spite of the weak evidence. Best viewed in color.

cessive detections that obey a physical model. They then

greedily extend them and terminate growth based on var-

ious heuristics. In [25], Canny-like hysteresis is used to

select candidates above a certain confidence level and link

them to already hypothesized trajectories. Very recently,

RANSAC has been used to segment ballistic trajectories of

basketball shots towards the basket [23]. These approaches

often rely heavily on domain knowledge, such as audio cues

to detect ball hits [5] or model parameters adapted to spe-

cific sports [4, 6].

While effective when the initial ball detections are suf-

ficiently reliable, these methods tend to suffer from their

greedy nature when the quality of these detections de-

creases. We will show this by comparing our results to

those of [10, 23], for which the code is publicly available

and have been shown to be a good representatives of this set

of methods.

2.2. Global Energy Minimization

One way to increase robustness is to seek the ball trajec-

tory as the minimum of a global objective function. It often

includes high-level semantic knowledge such as players’ lo-

cations [33, 32, 28], state of the game based on ball location,

velocity and acceleration [32, 33], goal events [33] or dy-

namically weighted combination of the features above [26].

In [29, 30], the players and the ball are tracked simulta-

neously and ball possession is explicitly modeled. However,

the tracking is performed on a discretized grid and without

physics-based constraints, which results in reduced accu-

racy. It has nevertheless been shown to work well on soccer

and basketball data. We selected it as our baseline to rep-

resent this class of methods, because of its state-of-the-art

results and publicly available implementation.

3. Problem Formulation

We consider scenarios where there are several calibrated

cameras with overlapping fields of view capturing a sub-

stantial portion of the play area, which means that the ap-

parent size of the ball is generally small. In this setting, tra-

jectory growing methods do not yield very good results both

because the ball is occluded too often by the players to be

detected reliably and because its being kicked or thrown by

them result in abrupt and unpredictable trajectory changes.

To remedy this, we explicitly model the interaction be-

tween the ball and the players as well as the physical con-

straints the ball obeys when far away from the players. To

this end, we first formulate the ball tracking problem in

terms of a maximization of a posteriori probability. We then

reformulate it in terms of an integer program. Finally, by

adding various constraints, we obtain the final problem for-

mulation that is a Mixed Integer Program.

3.1. Graphical Model for Ball Tracking

We model the ball tracking process from one frame to the

next in terms of the factor graph depicted by Fig. 2(a). We

associate to each instant t ∈ {1 . . . T} three variables Xt,

St, and It, which respectively represent the 3D ball posi-

tion, the state of the ball, and the available image evidence.

When the ball is within the capture volume, Xt is a 3D vec-

tor and St can take values such as flying or in possession,

which are common to all sports, as well as sport-dependent

ones, such as strike for volleyball or pass for basketball.

When the ball is not present, we take Xt and St to be ∞
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Figure 2: Graphical models. (a) Factor graph for ball track-

ing. At each time instant t, we consider the ball location Xt

and state St along with the available image evidence It. (b)

Ball graph used to formulate the integer program. To each

node i, is associated a location xi, a state si, and a time

instant ti. The relationship between the variables in both

graphs is spelled out in Eqs 3(d,e).

T,K Number of temporal frames and ball states

It Image evidence at time t

Xt, St Discrete location and state of the ball at time t

P t 3D coordinates of the ball at time t

i, j, k, l Node indices in the ball or players graph

Vb, Vp Sets of nodes in ball and player graphs

Eb, Ep Sets of edges in the ball and player graphs

xi, si, ti Discrete location, state, and time of node i

Sb Special node for the ball at t = 0

Sp, Tp Source and sink nodes of player trajectories

f
j
i , p

j
i Number of balls and players moving from i to j

c
j

bi,c
j
pi Ball and player transition costs from i to j

ΨX ,ΨS ,ΨI Position, state, image evidence potentials

ψ Potential of local image evidence

Dl Max. permissible distance between Xt and P t

Dp Max. permissible distance for ball possession

As,c, Bs,c Physics-based constants for state s, axis c

Cs,c, F c,s

Os,c Constraint-free locations for state s and axis c

F Permissible ball locations and state sequences

Table 1: Notations

and not present respectively. These notations as well as all

the others we use in this paper are summarized in Table 1.

Given the conditional independence assumptions im-
plied by the structure of the factor graph of Fig. 2(a), we
can formulate our tracking problem as one of maximizing
the energy function

Ψ(X,S, I) =
1

Z
ΨI(X

1
, S

1
, I

1)

T
Y

t=2

h

ΨX(Xt−1
, S

t−1
, X

t)

ΨS(S
t−1

, S
t)ΨI(X

t
, S

t
, I

t)
i

(1)

expressed in terms of products of the following potential

functions:

• ΨI(X
t, St, It) encodes the correlation between the

ball position, ball state, and the image evidence.

• ΨS(S
t−1, St) models the temporal smoothness of

states across adjacent frames.

• ΨX(Xt−1, St−1, Xt) encodes the correlation between

the state of the ball and the change of ball position from

one frame to the next one.

• ΨX(X1, S1, X2) and ΨS(S
1, S2) include priors on

the state and position of the ball in the first frame.

In practice, as will be discussed in Sec. 4, the Ψ functions

are learned from training data. Let F be the set of all pos-

sible sequences of ball positions and states. We consider

the log of Eq. 1 and drop the constant normalization factor

logZ. We, therefore, look for the most likely sequence of

ball positions and states as

(X⇤
, S

⇤) = arg max
(X,S)2F

T
X

t=2

h

logΨX(Xt−1
, S

t−1
, S

t)+ (2)

logΨS(S
t−1

, S
t) + logΨI(X

t
, S

t
, I

t)
i

+ logΨI(X
1
, S

1
, I

1) .

In the following subsections, we first reformulate this

maximization problem as an integer program and then in-

troduce additional physics-based and in possession con-

straints.

3.2. Integer Program Formulation

To convert the maximization problem of Eq. 2 into an

Integer Program (IP), we introduce the ball graph Gb =
(Vb, Eb) depicted by Fig. 2(b). Vb represents its nodes,

whose elements each correspond to a location xi ∈ R
3, state

si ∈ {1, · · · ,K}, and time index ti ∈ {1, · · · , T}. In prac-

tice, we instantiate as many as there are possible states at

every time step for every actual and potentially missed ball

detection. Our approach to hypothesizing such missed de-

tections is described in Sec. 5. Vb also contains an additional

node Sb denoting the ball location before the first frame. Eb

represents the edges of Gb and comprises all pairs of nodes

corresponding to consecutive time instants and whose loca-

tions are sufficiently close for a transition to be possible.

Let f
j
i denote the number of balls moving from i to j

and c
j
bi denote the corresponding cost. The maximization

problem of Eq. 2 can be rewritten as

maximize
X

(i,j)2Eb

f
j
i c

j

bi , (3)

where

c
j

bi = logΨX(xi, si, xj) + logΨS(si, sj) + logΨI(xj , sj , I
tj ),

subject to
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(a) f
j
i ∈ {0, 1} ∀(i, j) ∈ Eb

(b)
P

(i,j)2Eb,tj=1

f
j
i = 1

(c)
P

(i,j)2Eb

f
j
i =

P

(j,k)2Eb

fk
j ∀j ∈ Vb : 0 < tj < T

(d) Xt =
P

(i,j)2Eb,tj=t

f
j
i xj ∀t ∈ 1, · · · , T

(e) St =
P

(i,j)2Eb,tj=t

f
j
i sj ∀t ∈ 1, · · · , T

(f) (X,S) ∈ F

We optimize with respect to the f
j
i , which can be considered

as flow variables. The constraints of Eqs.3(a-c) ensure that

at every time frame there exists only one position and one

state to which the only ball transitions from the previous

frame. The constraint of Eq.3(f) is intended to only allow

feasible combinations of locations and states as described

by the set F, which we define below.

3.3. Mixed Integer Program Formulation

Some ball states impose first and second order con-

straints on ball motion, such as zero acceleration for the

freely flying ball or zero vertical velocity and limited nega-

tive acceleration for the rolling ball. Possession implies that

the ball must be near the player.

In this section, we assume that the players’ trajectories

are available in the form of a player graph Gp = (Vp, Ep)
similar to the ball graph of Sec. 3.2 and whose nodes com-

prise locations xi and time indices ti. In practice, we com-

pute it using publicly available code as described in Sec. 5.1.

Given Gp, the physics-based and possession constraints

can be imposed by introducing auxiliary continuous vari-

ables and expanding constraint of Eq. 3(f), as follows.

Continuous Variables. The xi represent specific 3D lo-

cations where the ball could potentially be, that is, ei-

ther actual ball detections or hypothesized ones as will

be discussed in Sec. 5.2. Since they cannot be expected

to be totally accurate, let the continuous variables P t =
(P t

x, P
t
y , P

t
z) denote the true ball position of at time t. We

impose

||P t −X
t|| ≤ Dl (4)

where Dl is a constant that depends on the expected accu-

racy of the xi. These continuous variables can then be used

to impose ballistic constraints when the ball is in flight or

rolling on the ground as follows.

Second-Order Constraints. For each state s and coordi-

nate c of P , we can formulate a second-order constraint of

the form

A
s,c(P t

c − 2P t−1
c + P

t−2
c ) +B

s,c(P t
c − P

t−1
c )+ (5)

C
s,c

P
t
c − F

s,c ≤ K(3−M
t
s,c −M

t−1
s,c −M

t−2
s,c ) ,

where M
t
s,c =

X

(i,j)2Eb,tj=t,sj=s,xj 62Os,c

f
j
i ,

K is a large positive constant and Os,c denotes the loca-

tions where there are scene elements with which the ball

can collide, such as those near the basketball hoops or close

to the ground. Given the constraints of Eq. 3, M t
s,c, M t−1

s,c ,

and M t−2

s,c must be zero or one. This implies that right side

of the above inequality is either zero if M t
s,c = M t−1

s,c =
M t−2

s,c = 1 or a large number otherwise. In other words,

the constraint is only effectively active in the first case, that

is, when the ball consistently is in a given state. When this

is the case, (As,c, Bs,c, Cs,c,F s,c) model the correspond-

ing physics. For example, when the ball is in the flying

state, we use (1, 0, 0, −g
fps2

) for the z coordinate to model

the parabolic motion of an object subject to the sole force

of gravity whose intensity is g. In the rolling state, we use

(1, 0, 0, 0) for both the x and y coordinates to denote a con-

stant speed motion in the xy plane. In both cases, we ne-

glect the effect of friction. We give more details for all states

we represent in the supplementary materials. Note that we

turn off these constraints altogether at locations in Os,c.

Possession constraints. While the ball is in possession of
a player, we do not impose any physics-based constraints.
Instead, we require the presence of someone nearby. The
algorithm we use for tracking the players [2] is implemented

in terms of people flows that we denote as p
j
i on a player

graph Gp = (Vp, Ep) that plays the same role as the ball

graph. The p
j
i are taken to be those that

maximize
X

(i,j)2Ep

p
j
i c

j
pi , (6)

where c
j
pi =

logPp(xi|I
ti )

1−logPp(xi|I
ti )

,

subject to

(a) p
j
i ∈ {0, 1} ∀(i, j) ∈ Ep

(b)
P

i:(i,j)2Ep

p
j
i ≤ 1 ∀j ∈ Vp \ {Sp}

(c)
P

(i,j)2Ep

p
j
i =

P

(j,k)2Ep

pkj ∀j ∈ Vp \ {Sp, Tp} .

Here Pp(xi|I
ti) represents the output of probabilistic peo-

ple detector at location xi given image evidence Iti .

Sp, Tp ∈ Vp are the source and sink nodes that serve as

starting and finishing points for people trajectories, as in [2].

In practice we use the publicly available code of [9] to com-

pute the probabilities Pp in each grid cell of discretized ver-

sion of the court.

Given the ball flow variables f
j
i and people flow ones p

j
i ,

we express the in possession constraints as

X

(k,l)2Ep,tl=tj ,

||xj−xl||2Dp

p
l
k ≥

X

i:(i,j)2Eb

f
j
i ∀j : sj ≡ in possession , (7)

where Dp is the maximum possible distance between the

player and the ball location when the player is in control of

it, which is sport-specific.
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Resulting MIP. Using the physics-based constraints of
Eq. 4 and 5 and the possession constraints of Eq. 7 along
with the formulation of people tracking from Eq. 6 to rep-
resent the feasible set of states F of Eq. 3(f) yields the MIP

maximize
X

(i,j)2Eb

f
j
i c

j

bi +
X

(i,j)2Ep

p
j
i c

j
pi

subject to the constraints of Eqs.3(a-e), 4, 5, 6(a-c), and 7.

(8)

In practice, we use the Gurobi [12] solver to perform the

optimization. Note that we can either consider the people

flows as given and optimize only on the ball flows or opti-

mize on both simultaneously. We will show in the results

section that the latter is only slightly more expensive but

yields improvements in cases such as the one of Fig. 1.

4. Learning the Potentials

In this section, we define the potentials introduced in

Eq. 2 and discuss how their parameters are learned from

training data. They are computed on the nodes of the ball

graph Gb and are used to compute the cost of the edges,

according to Eq. 3. We discuss its construction in Sec. 5.2.

Image evidence potential ΨI . It models the agreement
between location, state, and the image evidence. We write

ΨI(xi, si, I) = ψ(xi, si, I)
Y

j2Vb:tj=t,

(xj ,sj) 6=(xi,si)

⇣

1− ψ(xj , sj , I)
⌘

,

ψ(x, s, I) = σs(Pb(x|I)Pc(s|x, I)) , (9)

σs(y) =
1

1 + e−θs0−θs1y
,

where Pb(x) represents the output of a ball detector for lo-

cation x, Pc(s|x, I) the output of multiclass classifier that

predicts the state s given the position and the local image

evidence. psi(x, s, I) is close to one when the ball is likely

to be located at x in state s with great certainty based on im-

age evidence only and its value decreases as the uncertainty

of either estimates increases.

In practice, we train a Random Forest classifier [3] to

estimate Pc(s|x, I). As features, it uses the 3D location

of the ball. Additionally, when the player trajectories are

given, it uses the number of people in its vicinity as a fea-

ture. When simultaneously tracking the players and the ball,

we instead use the integrated outputs of the people detector

in the vicinity of the ball. We give additional details in the

supplementary materials.

The parameters θs0, θs1 of the logistic function σs are

learned from training data for each state s. Given the spe-

cific ball detector we rely on, we use true and false detec-

tions in the training data as positive and negative examples

to perform a logistic regression.

State transition potential ΨS . We define it as the tran-

sition probability between states, which we learn from the

training data, that is:

ΨS(si, sj) = P (St = si|S
t−1 = sj) . (10)

As noted in Sec. 3.1, potential for the first time frame has

a special form P (S2 = si|S
1 = sj)P (S1 = sj), where

P (S1 = sj) is the probability of the ball being in state sj at

arbitrary time instant; it is learned from the training data.

Location change potential ΨX . It models the transition

of the ball between two time instants. Let Ds denote the

maximum speed of the ball when in state s. We write it as

ΨX(xi, si, xj) = 1(||xi − x||2 ≤ D
si) . (11)

For the not present state, we only allow transitions between

the node representing the absent ball and the nodes near the

border of the tracking area. For the first frame the potential

has an additional factor of P (X1 = xi), ball location prior,

which we assume to be uniform inside of the tracking area.

5. Building the Graphs

Recall from Sections 3.2 and 3.3, that our algorithm op-

erates on a ball and player graph. We build them as follows.

5.1. Player Graph

To detect the players, we first compute a Probability Oc-

cupancy Map on a discretized version of the court or field

using the algorithm of [9]. We then follow the promising

approach of [29]. We use the K-Shortest-Path (KSP) [2]

algorithm to produce tracklets, which are short trajectories

with high confidence detections. To hypothesize the missed

detections, we use the Viterbi algorithm on the discretized

grid to connect the tracklets. Each individual location in a

tracklet or path connecting tracklets becomes a node of the

player graph Gp, it is then connected by an edge to the next

location in the tracklet or path.

5.2. Ball Graph

To detect the ball, we use a SVM [13] to classify im-

age patches in each camera view based on Histograms of

Oriented Gradients, HSV color histograms, and motion his-

tograms. We then triangulate these detections to gener-

ate candidate 3D locations and perform non-maximum sup-

pression to remove duplicates. We then aggregate features

from all camera view for each remaining candidate and train

a second SVM to only retain the best.

Given these high-confidence detections, we use KSP

tracker to produce ball tracklets, as we did for people. How-

ever, we can no longer use the Viterbi algorithm to connect

them as the resulting connections may not obey the required

physical constraints. We instead use an approach briefly de-

scribed below. More details in supplementary materials.

To model the ball states associated to a physical model,

we grow the trajectories from each tracklet based on the

physical model, and then join the end points of the tracklets

and grown trajectories, by fitting the physical model. An
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Figure 3: An example of ball detections, hypothesized ball

locations when it is missed, and graph construction.

example of such procedure is shown in Fig. 3. To model

the state in possession, we create a copy of each node and

edge in the players graph. To model the state not present,

we create one node in each time instant and connect it to the

node in the next time instant, and nodes for all other states

in the vicinity of the tracking area border. Finally, we add

edges between pairs of nodes with different states, as long

as they are in the vicinity of each other (bold in Fig. 2(b)).

6. Experiments

In this section, we compare our results to those of several

state-of-the-art multi-view ball-tracking algorithms [28, 29,

23], a monocular one [10], as well as two tracking methods

that could easily be adapted for this purpose [31, 2].

We first describe the datasets we use for evaluation pur-

poses. We then briefly introduce the methods we compare

against and finally present our results.

6.1. Datasets

We use two volleyball, three basketball, and one soccer

sequences, which we detail below.

Basket-1 and Basket-2 comprise a 4000- and a 3000-

frame basketball sequences captured by 6 and 7 cameras, re-

spectively. These synchronized 25-frame-per-second cam-

eras are placed around the court. We manually annotated

each 10th frame of Basket-1 and 500 consecutive frames of

Basket-2 that feature flying ball, passed ball, possessed ball

and ball out of play. We used the Basket-1 annotations to

train our classifiers and the Basket-2 ones to evaluate the

quality of our results, and vice versa.

Basket-APIDIS is also a basketball dataset [27] captured

by seven unsynchronized 22-frame-per-second cameras. A

pseudo-synchronized 25-frame-per-second version of the

dataset is also available and this is what we use. The dataset

is challenging because the camera locations are not good for

ball tracking and lighting conditions are difficult. We use

1500 frames with manually labeled ball locations provided

by [23] to train the ball detector, and Basket-1 sequence to

train the state classifier. We report our results on another

1500 frames that were annotated manually in [27].

Volley-1 and Volley-2 comprise a 10000- and a 19500-

frame volleyball sequences captured by three synchronized

60-frame-per-second cameras placed at both ends of the

court and in the middle. Detecting the ball is often diffi-

cult both because on either side of the court the ball can be

seen by at most two cameras and because, after a strike, the

ball moves so fast that it is blurred in middle camera im-

ages. We manually labeled each third frame in 1500-frame

segments of both sequences. As before, we used one for

training and the other for evaluation.

Soccer-ISSIA is a soccer dataset [8] captured by six

synchronized 25-frame-per-second cameras located on

both sides of the field. As it is designed for player tracking,

the ball is often out of the field of view when flying. We

train on the 1000 frames and report results on another 1000.

In all datasets, the apparent size of the ball is so small that

state-of-the-art monocular object tracker [31] was unable

to track the ball reliably for more than several seconds.

6.2. Baselines

We use several recent multi-camera ball tracking algo-

rithms as baselines. To ensure a fair comparison, we ran all

publicly available approaches with the same set of detec-

tions, which were produced by the ball detector described

in Sec. 5.2. We briefly describe these algorithms below.

• InterTrack [29] introduces an Integer Programming

approach to tracking two types of interacting objects,

one of which can contain another. Modeling the ball as

being “contained” by the player in possession of it was

demonstrated as a potential application. In [30], this

approach is shown to outperform several multi-target

tracking approaches [24, 17] for ball tracking task.

• RANSAC [23] focuses on segmenting ballistic trajec-

tories of the ball and was originally proposed to track

it in the Basket-APIDIS dataset. Approach is shown to

outperform the earlier graph-based filtering technique

of [22]. We found that it also performs well in our vol-

leyball datasets that feature many ballistic trajectories.

For the Soccer-ISSIA dataset, we modified the code to

produce linear rather than ballistic trajectories.

• FoS [28] focuses on modeling the interaction between

the ball and the players, assuming that long passes are

already segmented. In the absence of a publicly avail-

able code, we use the numbers reported in the article

for Basket-1-2-APIDIS and on Soccer-ISSIA.

• Growth [10] greedily grows the trajectories instanti-

ated from points in consecutive frames. Heuristics

are used to terminate trajectories, extend them and

link neighbouring ones. It is based on the approach
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of [5] and shown to outperform approaches based on

the Hough transform. Unlike the other approaches, it

is monocular and we used as input our 3D detections

reprojected into the camera frame.

To refine our analysis and test the influence of specific ele-

ment of our approach, we used the following approaches.

• MaxDetection. To demonstrate the importance of

tracking the ball, we give the results obtained by sim-

ply choosing the detection with maximum confidence.

• KSP [2]. To demonstrate the importance of model-

ing interactions between the ball and the players, we

use the publicly available KSP tracker to track only

the ball, while ignoring the players.

• OUR-No-Physics. To demonstrate the importance of

second-order constraints of Eq. 5, we turn them off.

• OUR-Two-States. To demonstrate the impact of keep-

ing track of many ball states, we assume that the ball

can only be in possession and free motion.

6.3. Metrics

Our method tracks the ball and estimates its state. We

use a different metric for each of these two tasks.

Tracking accuracy at distance d is defined as the percent

of frames in which the location of the tracked ball is closer

than d to the ground truth location.

The curve obtained by varying d is known as the “preci-

sion plot” [1]. When the ball is in possession, its location is

assumed to be that of the player possessing it. If the ball is

reported to be not present while it really is present, or vice

versa, the distance is taken to be infinite.

Event accuracy measures how well we estimate the state

of the ball. We take an event to be a maximal sequence of

consecutive frames with identical ball states. Two events

are said to match if there are not more than 5 frames during

which one occurs and not the other. Event accuracy then

is a symmetric measure we obtain by counting recovered

events that matched ground truth ones, as well as the ground

truth ones that matched the recovered ones, normalized by

dividing it by the number of events in both sequences.

6.4. Comparative Results

We now compare our approach to the baselines in terms

of the above metrics. As mentioned in Sec. 3.3, we obtain

the players trajectories by first running the code of [9] to

compute the player’s probabilities of presence in each sep-

arate fame and then that of [2] to compute their trajectories.

We first report accuracy results when these are treated as

being correct, which amounts to fixing the p
j
i in Eq. 8, and

show that our approach performs well. We then perform

joint optimization, which yields a further improvement. We

report the computational efficiency and all the algorithm

parameters in our supplementary materials. Our approach

requires 3 to 40 seconds for the 500-frame sequences we

tested. Our code will be made publicly available 1.

Tracking and Event Accuracy. As shown in Fig. 4(a-

f), OUR complete approach, outperforms the others on all

6 datasets. Two other methods that explicitly model the

ball/player interactions, OUR-No-Physics and InterTrack,

come next. FoS also accounts for interactions but does

markedly worse for small distances, probably due to the

lack of an integrated second order model.

Volleyball. The differences are particularly visible in

the Volleyball datasets that feature both interactions with

the players and ballistic trajectories. Note that OUR-Two-

States does considerably worse, which highlights the im-

portance of modeling the different states accurately.

Basketball. The differences are less obvious in the

basketball datasets where OUR-No-Physics and Inter-

Track, which model the ball/player interactions without im-

posing global physics-based constraints, also do well. This

reflects the fact that the ball is handled much more than in

volleyball. As a result, our method’s ability to also impose

strong physics-based constraints has less overall impact.

Soccer. On the soccer dataset, the ball is only present

in about 75% of the frames and we report our results on

those. Since the ball is almost never seen flying, the

two states (in possession and rolling) suffice, which ex-

plains the very similar performance of OUR and OUR-

Two-States. KSP also performs well because in soccer oc-

clusions during interactions are less common than in other

sports. Therefore, handling them delivers less of a benefit.

Our method also does best in terms of event accuracy,

among the methods that report the state of the ball, as shown

in Fig. 4(g). As can be seen in Fig. 5, both the trajectory

and the predicted state are typically correct. Most state as-

signment errors happen when the ball is briefly assigned to

be in possession of a player when it actually flies nearby,

or when the ball is wrongly assumed to be in free motion,

while is is really in possession but clearly visible.

Simultaneous tracking of the ball and players. All the

results shown above were obtained by processing sequences

of at least 500 frames. In such sequences, the people tracker

is very reliable and makes few mistakes. This contributes to

the quality of our results at the cost of an inevitable delay

in producing the results. Since this could be damaging in

the live-broadcast situation, we have experimented with us-

ing shorter sequences. We show here that simultaneously

tracking the ball and the players can mitigate the loss of re-

liability of the people tracker, albeit to a small extent.

As shown in Tab. 2 for the Volley-1 dataset, we need 200-

long frames to get the best people tracking accuracy when

1http://cvlab.epfl.ch/research/balltracking
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Figure 4: Comparative results. (a-f) OUR outperforms the other approaches in terms of ball accuracy, followed by the other

methods that also model ball/player interaction, OUR-No-Physics, InterTrack, and FoS for larger values of d. (g) OUR

also does best in terms of event accuracy.

Volley-1 Basket-1 Soccer-ISSIA

Figure 5: Visualisation of results on 3 10-second sequences from different sports. Cirlces indicate true ball location: empty

circles correspond to free motion, filled circles indicate ball in possession. Line indicates predicted ball locations: thick when

predicted state is in possession, thin otherwise. Best viewed in color.

Metric MODA [14],% Tracking acc. @ 25 cm,%

50 94.1 / 93.9 / 0.26 69.2 / 67.2 / 2.03

75 94.5 / 94.2 / 0.31 71.4 / 69.4 / 2.03

100 96.5 / 96.3 / 0.21 72.5 / 71.0 / 1.41

150 97.2 / 97.1 / 0.09 73.8 / 73.0 / 0.82

200 97.3 / 97.4 / 0.00 74.1 / 74.1 / 0.00

(a) (b)

Table 2: Tracking the ball given the players’ locations vs.

simultaneous tracking of the ball and players. The three

numbers in both columns correspond to simultaneous track-

ing of the players and ball / sequential tracking of the play-

ers and then the ball / improvement, as function of the

lengths of the sequences. (a) People tracking accuracy in

terms of the MODA score. (b) Ball tracking accuracy.

first tracking the people by themselves first, as we did be-

fore. As the number of frames decreases, the people tracker

becomes less reliable but performing the tracking simulta-

neously yields a small but noticeable improvement both for

the ball and the players. The case of Fig. 1 is an example

of this. We identified 3 similar cases in 1500 frames of the

volleyball sequence used for the experiment.

7. Conclusion

We have introduced an approach to ball tracking and

state estimation in team sports. It uses Mixed Integer Pro-

gram that allows to account for second order motion of the

ball, interaction of the ball and the players, and different

states that the ball can be in, while ensuring globally op-

timal solution. We showed our approach on several real-

world sequences from multiple team sports. In future, we

would like to extend this approach to more complex tasks of

activity recognition and event detection. For this purpose,

we can treat events as another kind of objects that can be

tracked through time, and use interactions between events

and other objects to define their state.
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