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Abstract

In this paper, we study the challenging problem of pre-

dicting the dynamics of objects in static images. Given a

query object in an image, our goal is to provide a physi-

cal understanding of the object in terms of the forces acting

upon it and its long term motion as response to those forces.

Direct and explicit estimation of the forces and the motion

of objects from a single image is extremely challenging. We

define intermediate physical abstractions called Newtonian

scenarios and introduce Newtonian Neural Network (N3)

that learns to map a single image to a state in a Newto-

nian scenario. Our evaluations show that our method can

reliably predict dynamics of a query object from a single

image. In addition, our approach can provide physical rea-

soning that supports the predicted dynamics in terms of ve-

locity and force vectors. To spur research in this direction

we compiled Visual Newtonian Dynamics (VIND) dataset

that includes more than 6000 videos aligned with Newto-

nian scenarios represented using game engines, and more

than 4500 still images with their ground truth dynamics.

1. Introduction

A key capability in human perception is the ability to

proactively predict what happens next in a scene [4]. Hu-

mans reliably use these predictions for planning their ac-

tions, making everyday decisions, and even correcting vi-

sual interpretations [15]. Examples include predictions in-

volved in passing a busy street, catching a frisbee, or hitting

a tennis ball with a racket. Performing these tasks require

a rich understanding of the dynamics of objects moving in

a scene. For example, hitting a tennis ball with a racket re-

quires knowing the dynamics of the ball, when it hits the

ground, how it bounces back from the ground, and what

form of motion it follows.

Rich physical understanding of human perception even

allows predictions of dynamics on only a single image.

Most people, for example, can reliably predict the dynam-
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Figure 1. Given a static image, our goal is to infer the dynamics

of a query object (forces that are acting upon the object and the

expected motion of the object as a response to those forces). In

this paper, we show an algorithm that learns to map an image to

a state in a physical abstraction called a Newtonian scenario. Our

method provides a rich physical understanding of an object in an

image that allows prediction of long term motion of the object and

reasoning about the direction of net force and velocity vectors.

ics of the volleyball shown in Figure 1. Theories in per-

ception and cognition attribute this capability, among many

explanations, to previous experience [9] and existence of an

underlying physical abstraction [14].

In this paper, we address the problem of physical un-

derstanding of objects in images in terms of the forces ac-

tioning upon them and their long term motions as their re-

sponses to those forces. Our goal is to unfold the dynamics

of objects in still images. Figure 1 shows an example of a

long term motion predicted by our approach along with the

physical reasoning that supports the predicted dynamics.

Motion of objects and its relations to various physical

quantities (mass, friction, external forces, geometry, etc.)

has been extensively studied in Mechanics. In schools, clas-

sical mechanics is taught using basic Newtonian scenarios

that explain a large number of simple motions in real world:

inclined surfaces, falling, swinging, external forces, projec-

tiles, etc. To infer the dynamics of an object, students need

to figure out the Newtonian scenario that explains the situ-
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Figure 2. Newtonian Scenarios are defined according to different physical quantities: direction of motion, forces, etc. We use 12 scenarios

that are depicted here. The circle represents the object, and the arrow shows the direction of its motion.

ation, find the physical quantities that contribute to the mo-

tion, and then plug them into the corresponding equations

that relate contributing physical quantities to the motion.

Estimating physical quantities from an image is an ex-

tremely challenging problem. For example, computer vi-

sion literature does not provide a reliable solution to direct

estimation of mass, friction, the angle of an inclined plane,

etc. from an image. Instead of direct estimation of the phys-

ical quantities from images, we formulate the problem of

physical understanding as a mapping from an image to a

physical abstraction. We follow the same principles of clas-

sical Mechanics and use Newtonian scenarios as our phys-

ical abstraction. These scenarios are depicted in Figure 2.

We chose to learn this mapping in the visual space and thus

render the Newtonian scenarios using game engines.

Mapping a single image to a state in a Newtonian sce-

nario allows us to borrow the rich Newtonian interpretation

offered by game engines. This enables predicting the long

term motion of the object along with rich physical reasoning

that supports the predicted motion in terms of velocity and

force vectors1. Learning such a mapping requires reason-

ing about subtle visual and contextual cues, and common

knowledge of motion. For example, to predict the expected

motion of the ball in Figure 1 one needs to rely on previous

experience, visual cues (subtle hand posture of the player on

the net, the line of sight of other players, their pose, scene

configuration), and the knowledge about how objects move

in a volleyball scene. To perform this mapping, we adopt a

data driven approach and introduce Newtonian Neural Net-

works (N3) that learns the complex interplay between vi-

sual cues and motions of objects.

To facilitate research in this challenging direction, we

compiled VIND, VIsual Newtonian Dynamics dataset, that

contains 6806 videos, with the corresponding game engine

videos for training and 4516 still images with the predicted

motions for testing.

Our experimental evaluations show promising results in

Newtonian understanding of objects in images and enable

1Throughout this paper we refer to force and velocity vector as normal-

ized unit vectors that show the direction of force or velocity.

prediction of long-term motions of objects backed by ab-

stract Newtonian explanations of the predicted dynamics.

This allows us to unfold the dynamics of moving objects in

static images. Our experimental evaluations also show the

benefits of using an intermediate physical abstraction com-

pared to competitive baselines that make direct predictions

of the motion.

2. Related Work

Cognitive studies: Recent studies in computational cog-

nitive science show that humans approximate the principles

of Newtonian dynamics and simulate the future states of the

world using these principles [14, 5]. Our use of Newtonian

scenarios as an intermediate representation is inspired by

these studies.

Motion prediction: The problem of predicting future

movements and trajectories has been tackled from different

perspectives. Data-driven approaches have been proposed

in [37, 25] to predict motion field in a single image. Fu-

ture trajectories of people are inferred in [19]. [33] pro-

posed to infer the most likely path for objects. In contrast,

our method focuses on the physics of the motion and esti-

mates a 3D long-term motion for objects. There are recent

methods that address prediction of optical flow in static im-

ages [28, 34]. Flow does not carry semantics and represents

very short-term motions in 2D whereas our method can in-

fer long term 3D motions using force and velocity informa-

tion. Physic-based human motion modeling was studied by

[8, 6, 7, 32]. They employed human movement dynamics to

predict future pose of humans. In contrast, we estimate the

dynamics of objects.

Scene understanding: Reasoning about the stability of

a scene has been addressed in [18] that use physical con-

straints to reason about the stability of objects that are mod-

eled by 3D volumes. Our work is different in that we rea-

son about the dynamics of stable and moving objects. The

approach of [38] computes the probability that an object

falls based on inferring disturbances caused naturally or by

human actions. In contrast, we do not explicitly encode

physics equations and we rely on images and direct percep-
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Figure 3. Viewpoint annotation. We ask the annotators to choose the game engine video (among 8 different views of the Newtonian

scenario) that best describes the view of the object in the image. The object in the game engine video is shown in red, and its direction of

movement is shown in yellow. The video with a green border is the selected viewpoint. These videos correspond to Newtonian scenario

(1).

tion. The early work of Mann et al. [26] studies the percep-

tion of scene dynamics to interpret image sequences. Their

method, unlike ours, requires complete geometric specifica-

tion of the scene. A rich set of experiments are performed

by [35] on sliding motion in the lab settings to estimate ob-

ject mass and friction coefficients. Our method is not lim-

ited to sliding and works on a wide range of physical sce-

narios in various types of scenes.

Action Recognition: Early prediction of activities has

been discussed in [29, 27, 16, 23]. Our work is quite differ-

ent since we estimate long-term motions as opposed to the

class of actions.

Human object interaction: Prediction of human action

based on object interactions has been studied in [20]. Pre-

diction of the behavior of humans based on functional ob-

jects in a scene has been explored in [36]. Relative motion

of objects in a scene are inferred in [13]. Our work is related

to this line of thought in terms of predicting future events

from still images. But our objective is quite different. We

do not predict the next action, we care about understanding

the underlying physics that justifies future motions in still

images.

Tracking: Note that our approach is quite different from

tracking [17, 11, 10] since tracking methods are not destined

for single image reasoning. [32] incorporates simulations to

properly model human motion and prevent physically im-

possible hypotheses during tracking.

3. Problem Statement & Overview

Given a static image, our goal is to reason about the

expected long-term motion of a query object in 3D. To

this end, we use an intermediate physical abstraction called

Newtonian scenarios (Figure 2) rendered by a game engine.

We learn a mapping from a single image to a state in a New-

tonian scenario by our proposed Newtonian Neural Net-

work (N3). A state in a Newtonian scenario corresponds

to a specific moment in the video generated by the game

engine and includes a set of rich physical quantities (force,

velocity, 3D motion) for that moment. Mapping to a state in

a Newtonian scenario allows us to borrow the correspond-

ing physical quantities and use them to make predictions

about the long term motion of the query object in a single

image.

Mapping from a single image to a state in a Newtonian

scenario involves solving two problems: (a) figuring out

which Newtonian scenario explains the dynamics of the im-

age best; (b) finding the correct moment in the scenario that

matches the state of the object in motion. There are strong

contextual and visual cues that can help to solve the first

problem. However, the second problem involves reasoning

about subtle visual cues and is even hard for human anno-

tators. For example, to predict the expected motion and the

current state of the ball in Figure 1 one needs to reason from

previous experiences, visual cues, and knowledge about the

motion of the object. N3 adopts a data driven approach

to use visual cues and the abstract knowledge of motion to

learn (a) and (b) at the same time. To encode the visual

cues N3 uses 2D Convolutional Neural Networks (CNN) to

represent the image. To learn about motions N3 uses 3D

CNNs to represent game engine videos of Newtonian sce-

narios. By joint embedding N3 learns to map visual cues to

exact states in Newtonian scenarios.

4. VIND Dataset

We collect VIsual Newtonian Dynamics (VIND) dataset,

which contains game engine videos, natural videos and

static images corresponding to the Newtonian scenarios.

The Newtonian scenarios that we consider are inspired by

the way Mechanics is taught in school and cover commonly

seen simple motions of objects (Figure 2). Few factors dis-

tinguish these scenarios from each other: (a) the path of the

object, e.g. scenario (3) describes a projectile motion, while

scenario (4) describes a linear motion, (b) whether the ap-

plied force is continuous or not, e.g., in scenario (8), the

external force is continuously applied, while in scenario (4)

the force is applied only in the beginning. (c) whether the

object has contact with a support surface or not, e.g., this is

the factor that distinguishes scenario (10) from scenario (4).

Newtonian Scenarios: Representing a Newtonian scenario

by a natural video is not ideal due to the noise caused by
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Figure 4. Newtonian Neural Network (N3): This figure illustrates a schematic view of our proposed neural network model. The first

row (referred to as image row), processes the static image augmented by an extra channel that shows the localization of the query object

with a Gaussian-smoothed binary mask. Image row has the same architecture as AlexNet [21] for image classification. The larger cubes

in the row indicate the convolutional outputs. The dimensions for convolutional outputs are Channels, Height, Width. The smaller cubes

inside them indicate 2D convolutional filters, which are convolved across Width and Height. The second row (referred to as motion row),

processes the video inputs from game engine. This row has similar architecture to C3D [31]. The dimensions for convolutional outputs

in this row are Channels, Frames, Height, Width. The filters in the motion row are convolved across Frames, Width and Height. These

two rows meet by a cosine similarity layer that measures the similarities between the input image and each frame in the game engine

videos. The maximum value of these similarities, in each Newtonian scenario is used as the confidence score for that scenario describing

the motion of the object in the input image.

camera motion, object clutter, irrelevant visual nuisances,

etc. To abstract away the Newtonian dynamics from noise

and clutter in real world, we construct the Newtonian sce-

narios (shown in Figure 2) using a game engine. A game

engine takes a scene configuration as input (e.g. a ball above

the ground plane) and simulates it forward in time accord-

ing to laws of motion in physics. For each Newtonian sce-

nario, we render its corresponding game engine scenario

from different viewpoints. In total, we obtain 66 game en-

gine videos. For each game engine video, we store its depth

map, surface normals and optical flow information in ad-

dition to the RGB image. In total each frame in the game

engine video has 10 channels.

Images and Videos: We also collect a dataset of natural

videos and images depicting moving objects. The current

datasets for action or object recognition are not suitable for

our task as they either show complicated movements that go

beyond classical dynamics (e.g. head massage or make up

in UCF-101 [30], HMDB-51 [22]) or they show no motion

(most images in PASCAL [12] or COCO [24]).

Annotations. We provide three types of annotations for

each image/frame: (1) bounding box annotations for the

objects that are described by at least one of our Newtonian

scenarios, (2) viewpoint information i.e. which viewpoint of

the game engine videos best describes the direction of the

movements in the image/video, (3) state annotations. By

state, we mean how far the object has moved on the ex-

pected scenario (e.g. is it at the beginning of the projectile

motion? or is it at the peak point?). More details about

the collection of the dataset and the annotation procedure

can be found in Section 6 and the supplementary material.

Example game engine videos corresponding to Newtonian

scenario (1) are shown in Figure 3.

5. Newtonian Neural Network

N3 is shaped by two parallel convolutional neural net-

works (CNNs); one to encode visual cues and another to

represent Newtonian motions. The input to N3 is a static

image with four channels (RGBM; where M is the object

mask channel that specifies the location of the query object

by a bounding-box mask smoothed with a Gaussian ker-

nel) and 66 videos of Newtonian scenarios2(as described in

Section 4) where each video has 10 frames (equally-spaced

frames sampled from the entire video) and each frame has

10 channels (RGB, flow, depth, and surface normal). The

output of N3 is a 66 dimensional vector where each dimen-

sion shows the confidence of the input image being assigned

2From now on, we refer to the game engine videos rendered for New-

tonian scenarios as Newtonian scenarios.
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to a viewpoint of a Newtonian scenario. N3 learns the map-

ping by enforcing similarities between the vector represen-

tations of static images and that of video frames correspond-

ing to Newtonian scenarios. The state prediction is achieved

by finding the most similar frame to the static image in the

Newtonian space.

Figure 4 depicts a schematic illustration of N3. The

first row resembles the standard CNN architecture for im-

age classification introduced by [21]. We refer to this row

as image row. Image row has five 2D CONV layers (convo-

lutional layers) and two FC layers (fully connected layers).

The second row is a volumetric convolutional neural net-

work inspired by [31]. We refer to this row as motion row.

Motion row has six 3D CONV layers and one FC. The input

to the motion row is a batch of 66 videos (corresponding to

66 Newtonian scenarios rendered by game engines). The

motion row generates a 4096x10 matrix as output for each

video, where a column in this matrix can be seen as a de-

scriptor for a frame in the video. To preserve the same num-

ber of frames in the output, we eliminate MaxPooling over

the temporal dimension for all CONV layers in the motion

row. The two rows are joined by a matching layer that uses

cosine similarity as a matching measure. The input to the

image row is an RGBM image and the output is a 4096 di-

mensional vector (values after FC7 layer). This vector can

be seen as a visual descriptor for the input image.

The matching layer takes the output of the image row and

the output of the motion row as input and computes the co-

sine similarity between the image descriptors and all of the

10 frames’ descriptors in each video in the batch. Therefore,

the output of matching layer are 66 vectors where each vec-

tor has 10 dimensions. The dimension with maximum sim-

ilarity value indicates the state of dynamics for each New-

tonian scenario. For example, if the third dimension has the

maximum value, it means, the input image has maximum

similarity with the third frame of the game engine video,

thus it must have the same state as that of the third frame

in the corresponding game engine video. SoftMax layers

are appended after the cosine similarity layer to pick the

maximum similarity as a confidence score for each Newto-

nian scenario. This enables N3 to learn the state prediction

without any state level annotations. This is an advantage

for N3 that can implicitly learn the state of the motion by

directly optimizing for the prediction of Newtonian scenar-

ios. These confidence scores are linearly combined with the

confidence scores from the image row to produce the final

scores. This linear combination is controlled by a parame-

ter λ ∈ [0, 1] that weights the effect of motion for the final

score.

Training: In order to train N3, we feed the input by

picking a batch of random images from the training set and

a batch of game engine videos that cover all Newtonian sce-

narios (66 videos). Each iteration involves a forward and

a backward pass through the network. We use cross en-

tropy as our loss function:E = − 1

n

Pn

i=1
[pi log p̂i + (1 −

pi) log (1− p̂i)], where pi is the ground truth label of the

input image (the value is 1 for the ground truth class and 0

otherwise) and p̂i is the predicted probability obtained by

taking SoftMax over the output of N3. In each iteration,

we feed a random batch of images to the network, but a

fixed batch of videos across all iterations. This enables N3

to penalize the error over all of the Newtonian scenarios at

each iteration. The other option could be passing a pair of

a random image and a game engine video, then predicting

a binary output showing whether the image corresponds to

the Newtonian scenario or not. This requires a lot more

iterations to see all the possible positive and negative pair-

ings for an image and has shown to be less effective for our

problem.

Testing: At test time, the 4096x10 descriptors for ab-

stract motions can be pre-computed from the motion row of

N3 after CONV6 layer. For each test, we only feed a single

RGBM image as input and obtain the underlying Newtonian

scenario h and its matching state sh. The predicted scenario

(h) is the scenario with maximum confidence in the output.

The matching state sh is achieved by

sh = argmax
i

{Sim(x, vih)} (1)

where x is the 4096x1 image descriptor, vi
h is the

4096x10 video descriptor for Newtonian scenario h and

i ∈ {1, 2, .., 10} indicates the frame index in the video.

Sim(., .) is the standard cosine similarity between two vec-

tors. Given h and sh, a long-term 3D motion path can be

drawn for the query object by borrowing the game engine

parameters (e.g. direction of velocity and force, 3D motion,

and camera view point) from the state sh of Newtonian sce-

nario h.

6. Experiments

We compare our method with a number of baselines in

predicting the motion of a query object in an image and

provide an ablation study that examines the utility of differ-

ent components in our method. We further show qualitative

results for motion prediction and estimation of force and

velocity directions. We also show the benefits of estimat-

ing optical flow from our long term motions predicted by

our method. Additionally, we show the generalization to

unseen scene types.

6.1. Settings

Network: We implemented our proposed neural net-

work N3 in Torch [2]. We use a machine with a 3.5GHz

Intel Xeon CPU and GeForce TITAN X GPU to train

and test our model. To train N3, we initialized the im-
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Figure 5. The expected motion of the object in the static image is shown in orange. We have visualized the 3D motion of the object (red

sphere) and its superposition on the image (left image). We also show failure cases in the red box, where the red and green curves represent

our prediction and ground truth, respectively.

age row (refer to Figure 4) by a publicly available 3 pre-

trained CNN model. We initialize the fourth channel (M)

by random values drawn from a Gaussian distribution (µ =
0,σ = 10

filter size
). The motion row was initialized ran-

domly, where the random parameters came from a Gaus-

sian distribution (µ = 0,σ = 10

filter size
). For training, we

use batches of 128 input images in the image row and 66

videos in the motion row. We run the forward and backward

passes for 5000 iterations4. We started by the learning rate

of 10−1 and gradually decreased it down to 10−4. In order

to prevent the numerical instability of the cosine similarity

function, we use the smooth version of cosine similarity,

which is defined as: S(x, y) = x.y
|x||y|+✏

, where ✏ = 10−5.

Dataset details: We use Blender [1] game engine to ren-

der the game engine videos corresponding to the 12 Newto-

nian scenarios. We factor out the effect of force magnitude

and camera distance.

The Newtonian scenarios are rendered from 8 different

azimuth angles. Scenarios 6, 7, and 11 in Figure 2 are

symmetric across different azimuth angles and we there-

fore render them from 3 different elevations of the cam-

era. The Newtonian scenarios 2 and 12 are the same across

viewpoints with 180◦ azimuth difference. We consider four

views for those scenarios. For stability (scenario (5)), we

consider only 1 viewpoint (there is no motion). In total, we

obtain 66 videos for all 12 Newtonian scenarios.

Our new dataset (VIND) contains more than 6000 video

clips in natural scenes. These videos contain more than

200,000 frames in total. For training, we use frames

randomly sampled from these video clips. To train our

3https://github.com/BVLC/caffe/tree/master/models/bvlc alexnet
4 In our experiments the loss values start converging after 5K iterations.

model, we use bounding box information of query objects

and viewpoint annotations for the corresponding Newtonian

scenario (the procedure for viewpoint annotations is shown

in Figure 3).

The image portion of our dataset includes 4516 images

that are divided into 1458 and 3058 images for validation

and testing, respectively. We tune our parameters using the

validation set and report our results on the test subset. For

evaluation, each image has bounding box, viewpoint and

state annotations. The details of the annotation and collec-

tion process is described in the supplementary material.

6.2. Estimating the motion of query objects

Given a single image and a query object, we evaluate

how well our method can estimate the motion of the object.

We compare the resulting 3D curves from our method with

that of the ground truth.

Evaluation Metric. We use an evaluation metric which

is similar to the F-measure used for comparing contours

(e.g. [3]). The 3D curve of groundtruth and the estimated

motion are in XY Z space. However, the two curves do

not necessarily have the same length. We slide the shorter

curve over the longer curve to find an alignment with the

minimum distance. We then compute precision and recall

by thresholding the distance between corresponding points

on the curves.

We also report results using the Modified Hausdorff Dis-

tance (MHD), however the F-measure is more interpretable

since it is a number between 0 and 100.

Baselines. A set of comparisons with a number of base-

lines are presented in Table 1. The first baseline, called Di-

rect Regression, is a direct regression from images to the

trajectories in the 3D space (groundtruth curves are rep-
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(1) (2) (3) (4)(5) (6) (7) (8) (9) (10) (11) (12)
Avg.

Direct Regression 32.7 59.9 12.4 16.1 84.6 48.8 8.2 20.2 1.6 13.8 49.0 16.4 30.31

Direct Regression - Nearest 52.7 38.4 17.3 23.5 64.9 69.2 18.1 36.2 3.2 20.4 76.5 24.2 37.05

N3
(ours) 60.8 64.7 39.4 37.6 95.4 54.1 50.3 76.9 9.4 38.1 72.1 72.4 55.96

Table 1. Estimation of the motion of the objects in 3D. F-measure is used as the evaluation metric.

resented by B-splines with 1200 knots). For this base-

line, we modify AlexNet architecture to regress each im-

age to its corresponding 3D curve. More specifically, we

replace the classification loss layer with a Mean Squared

Error (MSE) loss layer. Table 1 shows that N3 signif-

icantly outperforms this baseline that aims at directly re-

gressing the motion from visual data. We postulate that this

is mainly due to the dimensionality of the output and the

complex interplay between subtle visual cues and the 3D

motion of objects. To further probe that if the direct regres-

sion can even roughly estimate the shape of the trajectory

we build an even stronger baseline. For this new baseline,

called Direct Regression-Nearest, we use the output of the

direct regression baseline above to find the most similar 3D

curve among Newtonian scenarios (based on normalized

Euclidean distance between the B-spline representations).

Table 1 shows that N3 also outperforms this competitive

baseline. In terms of the MHD metric, N3 also outperforms

the baselines (5.59 versus 5.97 and 7.32 for the baseline

methods; lower is better).

Figure 5 shows qualitative results in estimating the ex-

pected motion of the object in still images. When N3 pre-

dicts a 3D curve for an image it also estimates the view-

point. This allows us to project the 3D curve back onto the

image. Figure 5 shows examples of these estimated mo-

tions. For example, N3 correctly predicts the motion of the

football thrown (Figure 5(f)), and estimates the right mo-

tion for the ping pong ball falling (Figure 5(e)). Note that

N3 cannot reason about possible future collisions with other

elements in the scene. For example Figure 5(a) shows a pre-

dicted motion that goes through soccer players. This figure

also shows some examples of failures. The mistake in Fig-

ure 5(h) can be attributed to the large distance between the

player and the basketball. Note that when we project 3D

curves to images we need to make assumptions about the

distance to the camera and the 2D projected curves might

have inconsistent scales.

Ablation studies. To study our method in further details,

we test two variations of our method. In the first variation, λ

(defined in Section 5) is set to 1, which means that we are ig-

noring the motion row in the network. We refer to this vari-

ation as N3 −NV in Table 2. N3 outperforms N3 −NV ,

indicating that the motion abstraction is an important factor

in N3. To study the effectiveness of N3 in state prediction,

in the second variation, we measure the utility of providing

state supervision for training N3. We modified the output

Ablations N3 −NV N3 N3 + SS

F-measure 52.67 55.96 56.10

Table 2. Ablation study of 3D motion estimation. The average

across 12 Newtonian scenarios is reported.

layer of N3 to learn the exact state of the motion from the

groundtruth augmented by state level annotations. This case

is referred to as N3+SS in Table 2. The small gap between

the results in N3 and N3 + SS shows that N3 can reliably

predict the correct state without state supervision. The pro-

cedure of annotating states (i.e. specifying which frame of

the game engine video corresponds to the state of the object

in the image) is explained in the supplementary material.

Another ablation is to study the effectiveness of N3

in classifying images into 66 classes corresponding to 12

Newtonian scenarios rendered from different viewpoints.

In this ablation, shown in Table 3, we compare N3 to

N3 − NV with and without state supervision (SS) in a

classification setting (not prediction of the motion). Also,

our experiments show that N3 and N3 − NV make dif-

ferent types of mistakes since fusing these variations in an

optimal way (by an oracle) results in an improvement in

classification (25.87).

Ablations N
3
−NV N

3
−NV + SS N

3
N

3
+ SS

Avg. Accuracy 20.37 19.32 21.71 21.94

Table 3. Estimation of Newtonian scenario and viewpoint (no state

estimation).

Short-term flow estimation. Our method is designed to

predict long-term motions in 3D, yet it can estimate short

term motions by projecting the long term 3D motion onto

the image. We compare the effectiveness of N3 in esti-

mating the flow with the state of the art methods explic-

itly trained to predict short-term flow from a single im-

age. In particular, we compare with the recent method of

Predictive-CNN [34]. For each query object, we average

the dense flow predicted by [34] over the pixels in the ob-

ject box and obtain a single flow vector. The evaluation

metric is angular error (we do not compute flow magnitude).

As shown in Table 4, our method outperforms [34] on our

dataset.

Method Angular Err.

Predictive-CNN [34] 1.53

N3 (ours) 1.29
Table 4. Short-term flow prediction in a single image. The evalua-

tion metric is angular error.
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Figure 6. Visualization of the direction of net force and object velocity. The velocity is shown in green and the net force is shown in

magenta. The corresponding Newtonian scenario is shown above each image.

Method F-measure

Direct Regression 25.76

N3 (ours) 36.40
Table 5. Generalization to unseen scene types.

Force and velocity estimation. It is interesting to see

that N3 can predict the direction of the net force and ve-

locity in a static image for a query object! Figure 6 shows

qualitative examples. For example, it is exciting to show

that N3 can predict the friction in the bowling example, and

the gravity in the basketball example. The net force applied

to the chair in the bottom row (left) is zero since the normal

force from the floor cancels the gravity.

Generalization to unseen scene types. We also evalu-

ate how well our model generalizes to unseen scene types.

We remove all images that represent the same scene type

(e.g., all images that show a billiard scene in scenario (4))

from our training data and test how well we can estimate

the motion of the object in images that show those scene

types. Our method outperforms the baseline method (Ta-

ble 5). The reported result is the average over 12 Newto-

nian scenarios, where we remove one scene type from each

Newtonian scenario during training. The complete list of

the removed scene types is available in the supp. material.

7. Conclusions
In this paper we address the challenging problem of

Newtonian understanding of objects in static images. Nu-

merous physical quantities contribute to shaping the dy-

namics of objects in a scene. Direct estimation of those

quantities is extremely challenging. In this paper, we as-

sume intermediate physical abstractions, Newtonian scenar-

ios and introduce a model that can map from a single image

to a state in a Newtonian scenario. This mapping needs to

learn subtle visual and contextual cues to be able to rea-

son about the correct Newtonian scenario, state, viewpoint,

etc. Rich physical predictions about the dynamics of ob-

jects in an images can then be made by borrowing informa-

tion through the established correspondences to Newtonian

scenarios. This allows us to predict the motion and reason

about it in terms of velocity and force directions for a query

object in a still image.

Our current solution can only reason about simple mo-

tions of rigid bodies and cannot handle complex and com-

pound motions, specially when it is affected by other exter-

nal elements in the scene (e.g. the motion of thrown ball

would change if there is a wall in front of it in the scene).

In addition, our method does not provide estimates for mag-

nitude of the force and velocity vectors. We postulate that

there might be very subtle visual cues that can contribute

tho those estimates.

Rich physical understanding of images is an important

building block towards deeper understanding of images, en-

ables visual reasoning, and opens several new and excit-

ing research directions in scene understanding. Reasoning

about how objects move in an image is tightly coupled with

semantic and geometric scene understanding. Explicit joint

reasoning about these interactions is an exciting research

direction.
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