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Abstract

A first-person video can generate powerful physical sen-

sations of action in an observer. In this paper, we focus on

a problem of Force from Motion—decoding the sensation of

1) passive forces such as the gravity, 2) the physical scale of

the motion (speed) and space, and 3) active forces exerted

by the observer such as pedaling a bike or banking on a ski

turn.

The sensation of gravity can be observed in a natural

image. We learn this image cue for predicting a gravity di-

rection in a 2D image and integrate the prediction across

images to estimate the 3D gravity direction using structure

from motion. The sense of physical scale is revealed to us

when the body is in a dynamically balanced state. We com-

pute the unknown physical scale of 3D reconstructed cam-

era motion by leveraging the torque equilibrium at a banked

turn that relates the centripetal force, gravity, and the body

leaning angle. The active force and torque governs 3D ego-

motion through the physics of rigid body dynamics. Using

an inverse dynamics optimization, we directly minimize 2D

reprojection error (in video) with respect to 3D world struc-

ture, active forces, and additional passive forces such as air

drag and friction force. We use structure from motion with

the physical scale and gravity direction as an initialization

of our bundle adjustment for force estimation. Our method

shows quantitatively equivalent reconstruction comparing

to IMU measurements in terms of gravity and scale recov-

ery and outperforms method based on 2D optical flow for an

active action recognition task. We apply our method to first

person videos of mountain biking, urban bike racing, ski-

ing, speedflying with parachute, and wingsuit flying where

inertial measurements are not accessible.

1. Introduction

A wingsuit BASE jumper, Jeb Corliss, dives from a cliff

in Alps with his body-mounted GoPro camera1 (Figure 1).

This camera records a beautiful scenery that he had seen

but also captures what he experienced and controlled via

the camera egomotion. This egomotion is a resultant of

1https://www.youtube.com/watch?v=IM1vss7FXs8
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3D camera trajectory

Gravity direction

Travel distance: 650 m

11.81 sec

Time: 11.81 sec
Speed: 31.80 m/s
Air drag: 465.54N

Thrust: -68N

Centripedal: 268N

Lift: 1628N

Yaw torque: -16N

Roll torque: 242N

Pitch torque: -15N

Figure 1. This paper presents Force from Motion—decoding the

sensation of 1) passive forces such as the gravity, 2) the physical

scale of the motion (speed) and space, and 3) active forces exerted

by the observer. We model egomotion with rigid body dynam-

ics integrated in a bundle adjustment that allows us to recover the

three sensations (left) via the physical scale and gravity aware re-

construction of the egomotion (right).

physical interactions between passive forces from environ-

ments (e.g., gravity and air pressure) and active forces ex-

erted by him to control his egomotion, e.g., angular momen-

tum change along the roll axis to shift the heading direction.

In this paper, we study a problem of Force from Motion—

reconstructing force and torque from an egocentric video to

revive the physical sensation.

Extracting such forces requires to explicitly measure his

muscle tension—the acceleration computed by a camera or

inertial measurement unit (IMU) is not directly applicable

to find active forces exerted by him because only net ac-

celeration can be measured. Our key question is “can we

extract his input in a form of active force and torque with-

out measuring muscle tension from an egocentric video?”

We show that it is possible to estimate an active force and

torque profile that generates the egomotion. This requires to

overcome three fundamental challenges: a) limited observa-

tions of body parts (body pose is often not visible from an

egocentric video); b) scale and orientation ambiguity inher-

ent in structure from motion; c) scene and activity variabil-

ity (different appearance, camera placement, and motion).

We address these challenges by modeling the observed

camera egomotion with rigid body dynamics that integrates

three key sensations: 1) gravity force; 2) physical scale of

the world; and 3) input force and torque.

The gravity force sensation is captured in the visual im-

age itself. The gravity affects how physical environment is

formed, i.e. trees and buildings are usually vertical and hori-

zon perpendicular to gravity direction. We learn such image
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cues to predict a 2D gravity direction in a 2D image using a

convolutional neural network designed to recognize the ori-

entation of the image. The prediction of multiple frames is

consolidated using 3D reconstructed camera orientation to

estimate the 3D gravity direction. Note only the camera ori-

entation information is needed in this step, and we are still

affected by the unknown scale factor.

The physical scale of the space is important sensation

since it tells us how fast we are going exactly. The abso-

lute scale of our motion is revealed to us when the body is

in a dynamically balanced state. During a banked turn, the

torques produced by centripetal force and gravity force are

balanced with the body leaning angle. This physical con-

straint together with the known gravity constant, i.e., 9.81

m/s2, allows us to compute the physical scale exactly.

The input force sensation includes 3D active force

(thrust) and torque (roll and yaw). For each type of first

person sport video, we construct a rigid body dynamics and

model egomotion as a function of the input forces and grav-

ity. Given the physical scale and gravity direction, we min-

imize the 2D geometrical reprojection error (in video) with

respect to the unknown 3D world and egomotion governed

by rigid body dynamics. The reconstructed camera egomo-

tion that is corrected by physical scale and gravity direction

is used for an initialization of the bundle adjustment for ac-

tive force and torque estimation.

In total, our system takes an input, a first person sport

video, and outputs active force and torque profile in metric

scale as shown in Figure 1. We predict the 3D gravity di-

rection by integrating 2D prediction by a convolutional neu-

ral network and recover physical scale using the roll torque

equilibrium. These factors are embedded in the bundle ad-

justment that finds a plausible active force and torque profile

that can simulate the camera egomotion via inverse dynam-

ics while simultaneously minimizing reprojection error.

Why Egocentric Video? As a form factor of a video

camera facilitates seamless integration into body, hundreds

of thousands of egocentric videos are captured and shared

via online video repositories such as YouTube, Vimeo, and

Facebook. For instance, currently more than 6,000 GoPro

videos are posted in YouTube in a day. Many of these videos

capture speed sport activities such as downhill mountain

biking (1-10 m/s), glade skiing (5-12 m/s), skydiving (60-

80 m/s) from first person view. These videos excite visual

motion stimuli that are strongly dominated by physical sen-

sation. Decoding such physical sensation provides a new

computational representation of such videos that can be not

only applied to vision tasks such as activity recognition,

video indexing, content generation for virtual reality [32]

but also computational sport analytics [28], sensorimotor

learning [39], and sport product design [7].

Contributions This paper includes three core technical

contributions. (1) Force from motion: we integrate rigid

body dynamics into a bundle adjustment to estimate active

force and torque profile; (2) Gravity direction estimation:

we learn image cues to predict gravity direction and up-

grade to 3D by employing the reconstructed camera orienta-

tions; (3) physical scale recovery: we recover a scale factor

from the roll torque equilibrium relationship. We quanti-

tatively evaluate our method using a controlled experiment

with inertial measurement units (IMU). Our method shows

quantitatively equivalent reconstruction comparing to IMU

measurements in terms of gravity and scale recovery and

outperforms method based on 2D optical flow for an active

action recognition task. We apply our method to first per-

son videos of mountain biking, urban bike racing, skiing,

speedflying with parachute, and wingsuit flying where iner-

tial measurements are not accessible.

2. Related Work

This paper studies physics based human behavior model-

ing via egocentric vision. In this section, we briefly review

the most related work.

2.1. Human Behavior Modeling in 3rd Person View

Johansson’s experiment [12] has shown that human mo-

tion can be perceived and predicted by a sparse represen-

tation with short duration of visual observation. However,

enabling such perception for a machine is still challenging

without prior knowledge due to a large degree of freedom of

an articulated body structure. This requires a compact rep-

resentation to describe human body motion. While a large

body of literature have studied this problem based on geom-

etry [2, 34, 42] and statistical model [33, 6, 35], we focus

on physics based representation.

Markerless motion capture often benefits from physics

based approaches2. Brubaker et al [4, 3] explicitly mod-

eled the ground reaction force as an impulse function during

bipedal walking. Wei and Chai [38] have shown a keyframe

based human motion reconstruction where physics based

simulation interpolates between keyframes. Vondrak et

al. [37, 36] introduced a feedback control system based on

multibody dynamics that provides a Bayesian prior to track

human body motion.

2.2. Egocentric Perception

An egocentric camera is a powerful tool to understand

human behaviors as it records what the camera wearer has

experienced. Therefore, it is a viable solution for behavior

science and quality of life technology [13, 27, 26], and this

motivates many vision tasks such as understanding fixation

point [18], identifying eye contact [43], and localizing joint

attention [9, 24].

An egocentric video is biased by camera egomotion

which is highly discriminative for activity recognition.

Fathi et al. [8, 9] used gaze and object segmentation cues

to classify activities. 2D motion features were exploited

by Kitani et al. [14] to categorize and segment a first per-

son sport video in a unsupervised manner. Coarse-to-fine

2Other applications of physics based approaches have been used to in-

fer motion [20, 40].
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Figure 2. (a) We compute a maximum a posteriori estimate of the 3D gravity direction, ĝ ∈ S
2. We model the prior using a mixture of

von Mises-Fisher distributions and learn a likelihood function using a convolutional neural network (CNN). (b) We show the likelihood

given an image with the red heatmap. The dotted lines are the ground truth gravity direction. The per pixel evidence [19] is encoded as

transparency, i.e., the stronger evidence, the more transparent. The CNN correctly predicts gravity direction while the last image produces

15 degree error due to the tilted bicycler.

motion models [30] and a pretrained convolutional neural

network [31] provided a strong cue to recognize activities.

Yonetani et al. [44] utilized a motion correlation between

first and third person videos to recognize people’s identity.

Kopf et al. [15] stabilized first person footage via 3D re-

construction of camera egomotion. In a social setting, joint

attention was estimated via triangulation of multiple camera

optical rays [24] and the estimated joint attention was used

to edit social video footage [1].

Another information that the egocentric camera captures

is exomotion or scene motion. Pirsiavash and Ramanan [25]

used an object centric representation and temporal corre-

lation to recognize active/passive objects from a egocen-

tric video, and Rogez et al. [29] leveraged a prior distribu-

tion of body and hand coordination to estimate poses from

a chest mounted RGBD camera. Lee et al. [17] summa-

rized a life-logging video by discovering important people

and objects based on temporal correlation, and Xiong and

Grauman [41] utilized a web image prior to select a set of

good images from egocentric videos. Fathi et al. [9] used

observed faces to identify social interactions and Pusiol et

al. [26] learned a feature that indicates joint attention in

child-caregiver interactions.

Our approach: To our best knowledge, this is the first

paper that provides a computational framework to under-

stand an egocentric video based on physical body dynam-

ics. We leverage two motion cues: 1) 3D reconstruction

from egomotion, and 2) gravity and scale recovery from ex-

omotion. As an egocentric video has limited observation

of body parts, estimating force and its control significantly

differs from previous problems of physics based tracking

and reconstruction. We introduce a novel Force from Mo-

tion method that computes the control input applied by the

camera wearer. It also produces a scaled and oriented 3D

reconstruction via dynamics.

3. Force from Motion

Gravity, scale, and active force are three key ingredients

that generate physical sensation in movement. In this sec-

tion, we estimate these physical quantities.

3.1. Gravity Direction

A natural image encodes gravity direction because it af-

fects how physical environment is formed, i.e. trees and

buildings are usually vertical and horizon perpendicular to

gravity direction [23, 10]. We exploit such image cues

learned by a convolutional neural network [16] to predict a

gravity direction in a 2D image. This per image prediction

is integrated over multiple frames by leveraging structure

from motion.

We define a 3D unit gravity direction, ĝ(θ, φ) =
[

sin θ cosφ sin θ sinφ cos θ
]T

∈ S2. We normalize

the representation with respect to the instantaneous velocity

direction such that ĝ(0, 0) = v/‖v‖ where v is the instan-

taneous velocity. This allows us to register different camera

orientations in an unified coordinate system (with respect to

the gravity).

We compute the maximum a posteriori (MAP) estimate

of the gravity direction given a set of images, {Ii}
F
i=1:

ĝ∗ = argmax
ĝ∈S2

p(ĝ|I1, · · · , IF )

= argmax
ĝ∈S2

p(ĝ)

F
∏

i=1

p(Ii|ĝ), (1)

where p(ĝ) is a prior distribution of the gravity direction

and a likelihood p(Ii|ĝ) measures how well the 3D gravity

direction is aligned with image, Ii.
The prior distribution encodes how the gravity is oriented

with respect to the heading direction. Given a gravity direc-

tion in a training dataset3, we model this prior distribution

using a mixture of von Mises-Fisher distributions:

p(ĝ) =

K
∑

k=1

κk

4π sinhκk

exp
(

κkĝ
Tm̂k

)

(2)

3Our training data consists of 32 Bike, 19 Ski, 23 Urban bike, 23 Jetski,

29 Wingsuit fly, and 30 Speed fly sequences and each sequence ranges be-

tween 1 mins to 38 mins. We annotate the 2D gravity direction of images

in the training set and reconstruct it in 3D. This 3D reconstructed grav-

ity allows us to propagate over 100 frames. Optionally, we also use IMU

attached camera to automatically annotate the gravity. See the supplemen-

tary material for the detailed description of the training data.
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Figure 3. (a) We recover the physical scale of a 3D reconstruction by exploiting the torque equilibrium at a banked turn where the torques

generated by normal force and centripetal force TN + TL = 0 must be canceled to maintain the leaning angle, � b. (b) The scale factor can

be estimated by the slope, |ax |=tan � b. (c) We model the egomotion of a camera wearer using single rigid body dynamics (6 degree of

freedom). Force and torque are decomposed into passive components (gravity, mg; centripetal force, FL; normal force, FN; friction force,

FF; air drag, FD; pitch torque, TP) and active components (thrust, FT; roll torque, TR; yaw torque, TY).

where {m̂k, κk} is a set of modes and concentration param-

eters that can be learned by an Expectation-Maximization

algorithm as shown in Prior of Figure 2(a).

The image likelihood, p(Ii|ĝ) measures how well the

projected 3D gravity direction onto the ith image agrees

with the image cues learned from the training data. By the

projection, we measure the orientation of the image, ξ =

atan2(rT2 ĝ, r
T

1 ĝ) ∈ S where R(ti) =
[

rT1 rT2 rT3
]T

and R(t) ∈ SO(3) is the camera orientation at the tth time

instant. We learn this likelihood function using the convo-

lutional neural network (CNN) proposed by Krizhevsky et

al. [16] with a few minor modifications. We correct the fish-

eye lens distortion and warp the image with a homography,

H = KRvR(ϕp)R(ϕr)R
TK−1 where K and R are the

camera intrinsic parameter and orientation matrices, respec-

tively. Rv is the rotation matrix whose Z axis aligns with

the instantaneous velocity, v. The body coordinate system,

{B} is defined in Figure 3(c), and R(ϕp) is the constant

rotation about the pitch axis to minimize the area outside

of the image. R(ϕr) is a rotation about the roll axis used

for data augmentation. The warped image (1280 × 720)

is resized to 320 × 180 as an input for the CNN. We train

the network to predict a probability of the projected angle ξ
discretized by 1 degree between −30◦ and 30◦, i.e., ξ = 0
means the gravity direction is aligned with y axis of the im-

age. We augment the data by rotating the image with R(ϕr)
and its horizontal flip. Figure 2(b) illustrates the likelihood

of the gravity directions learned by CNN as shown in the red

heatmap and the ground truth gravity direction with dotted

line.

Predictions on multiple images are consolidated by the

3D reconstructed camera orientations. Note that a single

image cannot predict the 3D gravity direction due to 2D

projection. Each image produces a streak in a likelihood

distribution as shown in Likelihood of Figure 2(a)—any

gravity direction along the streak is projected onto the same

direction in 2D. The product of multiple image predictions

in Equation (1) by leveraging the 3D reconstructed camera

orientations can collapse the streak into a unimodal distri-

bution4.

3.2. Physical Scale

The leaning angle, θb, at a banked turn is formed to bal-

ance the roll torque at the center of mass. The normal force,

FN, produces a torque, TN = lFN cos θb and the friction

force, or centripetal force (no slip condition), FL produces

an opposite directional torque TL = lFL sin θb with respect

to the center of mass where l is the distance between the

center of mass to the ground contact point as shown in Fig-

ure 3(a) and 3(c). These two torques must be balanced to

maintain the leaning angle, i.e., the tangential velocity, v, is

defined by the leaning angle and the curvature of the turn.

By equating these two torques, i.e., TL + TN = 0, we

obtain the following relationship with gravity constant:

‖g‖ = 9.81 m/s
2
= c

|âx|

tan θb
, (3)

where âx is the linear acceleration in the lateral direction,

which is measured from the reconstructed 3D camera tra-

jectory in {W} (Figure 3(c)) and c is a scale factor that

maps from the 3D reconstruction to the physical world.

In Figure 3(b), we plot the scale factors measured from

different time instances with their median and variance. The

slope of the data points represents the scale factor of the

reconstruction. We compute these data points along the

video sequences that include a number of banked turns.

Figure 3(a) shows the torques produced by the scale fac-

tor and two torques are roughly canceled out. Note that

−TN is plotted for a direct comparison. This allows us to

reconstruct physical dimension of the terrain and speed as

shown in Figure 4(a). Note that the speed profile is physi-

cally meaningful, i.e., average speed of the mountain biking

ranges between 1-6 m/s2.

4If ones goes straight without changing camera orientation, the streak

remains constant as shown in Likelihood of Figure 2(a).
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