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Abstract

The main challenge in Super Resolution (SR) is to dis-

cover the mapping between the low- and high-resolution

manifolds of image patches, a complex ill-posed problem

which has recently been addressed through piecewise linear

regression with promising results. In this paper we present

a novel regression-based SR algorithm that benefits from

an extended knowledge of the structure of both manifolds.

We propose a transform that collapses the 16 variations in-

duced from the dihedral group of transforms (i.e. rotations,

vertical and horizontal reflections) and antipodality (i.e. di-

ametrically opposed points in the unitary sphere) into a sin-

gle primitive. The key idea of our transform is to study the

different dihedral elements as a group of symmetries within

the high-dimensional manifold. We obtain the respective

set of mirror-symmetry axes by means of a frequency anal-

ysis of the dihedral elements, and we use them to collapse

the redundant variability through a modified symmetry dis-

tance. The experimental validation of our algorithm shows

the effectiveness of our approach, which obtains competi-

tive quality with a dictionary of as little as 32 atoms (reduc-

ing other methods’ dictionaries by at least a factor of 32)

and further pushing the state-of-the-art with a 1024 atoms

dictionary.

1. Introduction

The latest achievements in the research of example-

based SR have been possible thanks to the exploitation of

the progressively deeper understanding of the structure of

the natural image patch manifold. In recent years we have

witnessed a shift from costly sparse coding techniques to

more efficient models. In the latter, a relatively costly of-

fline manifold learning enables light inference with var-

ious levels of efficacy in terms of complexity and accu-

racy [21, 22, 26, 5, 25]. The development of these two as-
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Figure 1: PSNR vs time (s) of our algorithm compared to

other SR methods for dictionary sizes from 16 to 2048, in

power-of-two increments. Experiment run on Set14 and ×2
magnification factor. Circled points are found in Table 1.

pects is key for the pervasive adoption of SR, not only as

an end application, but also as a pre-processing stage in vi-

sion applications where the resolution of the capture device

is insufficient for scene understanding or feature detection.

Within the sparse coding techniques [27, 29, 14], the

main idea is to enforce image pairs to have the same sparse

representations over both the low resolution and the high

resolution dictionaries. However, this sparsity constrain in-

volves minimizing a L1 norm function, both at the training

and inference stage, leading to complex minimization pro-

cedures. Newer solutions to avoid sparse representations in-

volve the use of a regression-based approach [21, 25, 26]. In

this case, the main goal is to infer a mapping between low-

and high-resolution manifolds. This mapping, potentially

complex and non-linear, is approximated by a piecewise lin-

earization employing several linear regressors at specific an-

chor points. Sublinear search structures such as trees, hash-

ing functions or forests [17, 25, 19, 18] have been proposed

in order to reduce the regressor search complexity. Other

current light-inference solutions introduce deep neural net-
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works for SR with encouraging results [6, 7]. Although

not necessarily light, single-image self-similarity SR have

shown competitive results partly thanks to improved search

strategies, such as [12]. In a similar direction, there are sev-

eral efforts in the literature to extend the available mani-

fold samples. Most of the approaches aim to expand the

search space by generating new data from the available one,

e.g. multi-scale pyramids [10, 22], homographies [12], with

the resultant increase in the number of search candidates.

In this paper we present PSyCo (Patch Symmetry

Collapse), a method that improves the search without in-

creasing its number of candidates. Our contributions in-

clude the use of the dihedral group (i.e. reflections and rota-

tions) over more complex projective transformation models

and the introduction of a collapsing transform κ that col-

lapses the 16 redundant patch variations induced by the di-

hedral group and the antipodality. This transform has an in-

herently low complexity and therefore is specially suitable

for fast SR algorithms and, by extension, to other patch-

based methods.

2. Related work

2.1. Problem formulation

SR techniques aim to estimate a high-resolution (HR)

image X from a low-resolution (LR) image Y which has

an unsatisfactory pixel resolution, assuming the following

generation model:

Y = (X ∗H) ↓ s, (1)

where H is a low-pass filter and ↓ s denotes downsampling

operator for an s magnification factor. This inverse problem

is usually addressed at a patch level, which we denote with

small case (e.g. x, y, c) when in their original square shape

and with bold small case (e.g. x,y, c) when vectorized.

2.2. Dictionary learning

The usage of a pair of sparse dictionaries (Dh and Dl)

was popularized by the SR method of Yang et al. [27], in

which they propose a sparse prior for SR. Sparse coding

represents input vectors as a weighted linear combination

of a small set of basis vectors, thus extracting high level

patterns of the input unlabeled data and obtaining compact

and meaningful dictionaries. In their sparse SR [27], the

optimization of the dictionary is performed jointly for both

Dh and Dl, resulting in great computational cost. During

testing time, they minimize the following function:

min
α

‖y −Dlα‖
2

2
+ λ ‖α‖

1
, (2)

where the first term ensures a good LR reconstruction and

the L1-norm regularization term enforces sparsity in the

solution. The sparse decomposition α is then applied to

Dh to obtain the HR patch. Later work on sparse SR by

Zeyde et al. [29] introduced faster algorithms for dictionary

optimization (e.g. k-SVD [1]) and a different optimization

scheme: the dictionaries are learned separately, obtaining

first Dl independently from Dh, and afterwards the latter is

generated with the sparse encoding of Dl. The results im-

prove both in time and quality those of the original work of

Yang et al. [27].

Despite alleviating some of the most time-consuming

processing of its predecessor, the sparse decomposition

in [29] is still the bottleneck during inference time. As a nat-

ural solution for that, Timofte et al. proposed the Anchored

Neighborhood Regression (ANR) [21] where there is no

sparse decomposition during inference time, but instead a

selection within a discrete set of points (i.e. anchor points)

for which a linear ridge regressor has been trained off-line.

This method coincided with other similar regression-based

SR algorithms such as [25, 26], and also triggered several

follow-ups, e.g. [22, 19, 17].

2.3. Coarse to fine regression

Regression-based SR tackles the upscaling problem by

estimating the mapping function between the LR and the

HR manifolds, most commonly through an off-line learning

stage. Under a locally linear assumption [4], this function

can be split into several piecewise linear regression func-

tions that are trained with a subset of the full training set,

e.g. a cluster or neighborhood. For the sake of clarity, we

introduce the regression framework using the opening work

of ANR [21], as this is fundamentally the framework we use

in our proposed method.

Let us denote by Dl the set of k anchor points and Dh

the correspondent HR counterparts, both of them obtained

with k-SVD as in the scheme of Zeyde et al. [29]. For

each atom di in Dl, a certain neighborhood or cluster Ni
l is

found through a nearest neighbor (NN) search from a train-

ing pool of examples, which in ANR is the same Dl. The

associated ridge regressor Ri is then trained with the closed

form expression Ri = Ni
h(N

i ⊺
l Ni

l + λI)−1N
i ⊺
l .

During inference, the closest anchor point d∗ to the input

features yF is obtained through NN search and the associ-

ated regressor R∗ is applied in the following form:

x = c+R∗yF, (3)

where c is a first coarse approximation of x (obtained by

e.g. bicubic, Iterative Back Projection (IBP) [13, 27]). In

the later A+ [22] and the Dense Local Regressor [17], Nl

is obtained from a large pool of training samples (in the

order of millions), which greatly improves quality results.

2.4. Search space and manifold collapse

Finding meaningful examples for SR is crucial both for

internal learning (where the search space is limited by the
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Figure 2: Reduction of the manifold’s span and complexity by the procedures introduced in Section 3. The manifold is

composed of three dimensional (i.e. 3× 1) patches in the range of [−1, 1] extracted from images.

image) and external learning. In this direction, Timofte et

al. [22] proposed to generate new training data from differ-

ent multi-scale images, Zhu et al. [30] proposed to deform

patches based on optical flow and, more recently, Huang et

al. [12] incorporate 3D scene geometry for cross-scale self-

similarity using a modified PatchMatch [2].

Another approach to improve the NN search consists in

reducing variability of the manifold through the knowledge

of its redundancy. In the early work of Freeman et al. [9],

the concept of improving the NN search through the col-

lapse of the manifold’s variability was already addressed. In

their learning process, to predict the highest frequency band

they only consider the mid-frequency band and discard the

rest of low-frequencies (LF), thus collapsing the training

data for all possible LF values into one value. Similarly in

concept, when subtracting the mean to a patch, all possible

means are mapped to a single 0-mean patch. The benefit of

removing the undesired variability of the manifold versus

generating more data is obvious as the first one obtains the

same advantages while not increasing the number of search

candidates. In this paper we further deepen the knowledge

of natural image patch manifold, analyzing the redundancy

present within the manifold due to the dihedral group of

transforms (i.e. rotation, vertical and horizontal reflections),

which are invariant across scales and easily invertible (i.e. a

lossless f−1(x) exists).

3. Reducing the manifold span

In this section we first overview two basic patch pre-

processing steps (mean subtraction and normalization) and

their effects within the manifold, followed by a geomet-

ric transformation model that can reduce the manifold span

(extended in Section 4) and its analysis in the Discrete Co-

sine Transform (DCT) space. An overview of the presented

transformation is shown in Fig. 2.

3.1. Mean subtraction and normalization

Mean subtraction is an inexpensive process widely

adopted in SR applications, as it is specially beneficial since

the mean presents no variations across scales. Bevilaqua et

I

-I

g0 g1 g2 g3 g4 g5 g6 g7

Figure 3: D4 dihedral transforms applied to a 20x20 patch

and its corresponding antipodal versions denoted with −I.

al. [3] concluded in their feature analysis that the centered

luminance patches are the best suited for their non-negative

neighbor embedding SR. Within the manifold structure,

mean subtraction collapses all the possible patches to lie

on the hyperplane 1⊺x = 0, as shown in Fig. 2b.

Patch normalization is also a simple yet effective process

very present in low-level vision, often interpreted as an il-

lumination normalization. Patch normalization removes the

undesired variability derived from scalar multiplication: All

positive scalar variations are represented by a single unitary

vector (i.e. a certain patch structure). In terms of manifold

transformation, normalization enforces the patches to lie in

the unitary hypersphere, as we show in Fig. 2c. The combi-

nation of both mean subtraction and normalization limits

the span of the manifold to the intersection of the mean

hyperplane and the unitary hypersphere, a ring in the 3-

dimensional example of Fig. 2d.

3.2. Antipodality

Antipodal points (i.e. points that are diametrically op-

posed in the unitary sphere: xA = −x) cannot be properly

collapsed by patch normalization as norms are strictly pos-

itive, so any two normalized antipodal points are located at

the furthest away Euclidean distance (the diameter of the

hypersphere) while actually the structure of the patch is ex-

actly the same (see Fig. 3). In our previous work we already

introduced antipodal invariance for SR [16, 15]. It is pos-

sible to collapse antipodal variability together with dihedral

transformations as described in Section 4 and illustrated in

Fig. 2e-2f.
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3.3. Transformation models

Within the space of patches, numerous 2D geometric

transformations have been proposed in order to model phys-

ical displacements in the 3D world, improve invariance to

those transforms (e.g. rotation for object detection) or ex-

pand the search space both in testing and training. A general

model for such transformations is the projective transforma-

tion model, also referred as homography or collinearity.

The projective transformation properly describes the

possible transformations of a pinhole camera when moving

to an arbitrary viewpoint. Homographies are widely used

in several applications involving multiple cameras or cam-

era motion [8, 11], and they have been also used recently in

SR [12] in order to increase the number of relevant patches

in the NN search.

Homographies show two main drawbacks when applied

to SR. Firstly, as small patches present a very scarcely sam-

pled grid, transforming its geometry requires interpolating

values, which leads to a high-frequency loss. Secondly, the

homography transform has 8 degrees of freedom, therefore

being computationally expensive to explore and estimate

(e.g. Huang et al. [12] use an affine transform enriched with

some perspective deformation limited to a discrete set of

detected planes).

In this paper, we propose the usage of the dihedral group
D4 (for polygons of 4 sides, e.g. patches) [23], which is a
subset of affine transformations that only includes rotations

and reflections. This finite group G = {gj}
7

j=0
contains 8

structure-preserving transforms which just re-distribute the
elements within a patch and therefore do not require any
interpolation. We can obtain the set of 8 dihedral transforms
G via a combination of the following matrices in the 2D
space:

gx =

(

−1 0

0 1

)

, gy =

(

1 0

0 −1

)

, g⊺ =

(

0 1

1 0

)

, (4)

where gx and gy denote the reflections along the x and y

axis respectively, and g⊺ denotes the transpose operation.

All the transforms forming the dihedral group are linear and

scale invariant, and a straightforward inverse function ex-

ists. In Fig. 3 we show the behavior of the dihedral group

of transforms and how they affect a given patch.

3.4. Dihedral group in the DCT space

In this section we analyze the effect of the dihedral group

G in the domain of the DCT, as there are some useful prop-

erties that lay the groundwork for our proposed method.

The DCT b of a patch x of size M×N reads:

b(k, l) =

M−1
∑

m=0

N−1
∑

n=0

x(m,n) cos
π(m+ 1

2
)k

M
cos

π(n+ 1

2
)l

N
.

(5)

As the DCT is linear, applying the transpose operator

(i.e. g⊺ in the 2D space) results in a transpose in the trans-

formed space, i.e. b⊺ = fDCT (x
⊺). As for the reflection

operators (i.e. gx and gy in the 2D space), they result in a

change of sign in some of its components:

bgx(k, l) = b(k, l) · (−1)l

bgy (k, l) = b(k, l) · (−1)k
. (6)

The behavior of the proposed dihedral transforms in the

DCT space is therefore reduced to transpositions and sign

changes in a defined set of coefficients. Fig. 5 left shows

which components of the DCT are expected to change

whenever there is a reflection or transposing operator. This

simple and predictable behavior in the DCT space facilitates

the observation of mirror symmetries.

4. Manifold symmetries

The transform group G presented in Section 3.3 defines 8
points in the M×N -dimensional manifold of natural patches

for a given patch primitive x (see Fig. 5 right). This is a di-

hedral symmetric shape within the manifold surface, since

a symmetric structure is defined if there exists a non-trivial

group of action that defines an isomorphism. Our goal is to

exploit the symmetries defined by G together with antipo-

dality in order to efficiently collapse redundant variability

of our manifold span.

Our proposed Symmetry-Collapsing Transform (SCT)

builds on the work of Zabrodsky et al. [28], where they pro-

posed a continuous Symmetry Distance (SD) which mea-

sures how symmetric a given structure is. This metric δ

is defined in the shape space Ω, where each shape is rep-

resented by a sequence of r points {Pi}
r−1

i=0
. The metric

reads:

δ(P,Q) =
1

r

r−1
∑

i=0

‖Pi −Qi‖
2
, (7)

which is an averaged point to point Euclidean distance. In

order to achieve invariance to symmetry, a Symmetry Trans-

form (ST) of a shape P is defined as the symmetric shape

closest to P in terms of Equation (7), and thus SD is defined

as SD = δ(P, ST (P )). The metric is therefore the point

to point Euclidean distance of a given shape to its closest

symmetric shape.

Zabrodsky et al. [28] present different ST depending

on the type of symmetry to be accounted (e.g. rotational,

mirror-symmetry). For the specific case of the mirror-ST,

with a known mirror symmetry axis, the procedure for ev-

ery pair of points {P0, P1} is:

Fold by reflecting the point across the mirror symmetry

axis obtaining
{

P̊0, P̊1

}

(i.e. P0 ≡ P̊0).

Average both points to obtain a new average point A0.

Unfold the average point A0 in order to obtain A1.
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We show an overview of the original mirror-ST in Fig. 4

(steps 1 and 2a). In the original algorithm, the ST aims to

obtain a regular polygon which can be thereafter compared

to the input shape in order to estimate its point to point dis-

tance. Our goal is to obtain a transform that reduces vari-

ability while respecting the SD.

To achieve this reduction, we present a modified ST,

which we denote as SCT, that moves all the possible sym-

metric points to a reference side of the mirror axis, thus

reducing redundant variability. For that purpose, assuming

a single mirror axis, all the points are fold into the reference

side where P0 lies, and the element of the applied symmetry

group (i.e. gj) is saved. This is similar to a mean subtrac-

tion , where all possible different means of a given patch are

collapsed to a single 0-mean patch and the mean is saved in

order to differentiate among them. We show an overview

of our proposed SCT in Fig. 4 (steps 1 and 2b), where we

highlight that the resulting distances are conserved with re-

spect to the original algorithm. Although folding the points

back to their original position is not necessary for the dis-

tance calculation in our SCT, we can do it at any point as

the inverse SCT.

The initial ST and SD extend to any finite point-

symmetry group G in any dimension, where the folding and

unfolding are performed by applying the group elements

[28]. However, when extending to more than 3D, finding

the symmetry axes that minimize SD is non-trivial.

In order to (a) keep the transform under a reasonable

complexity, (b) easily and analytically find the mirror axes

of G and (c) benefit from behavior of G in the DCT do-

main, we propose a representation based on the first verti-

cal and horizontal harmonics b(1, 0) and b(0, 1). Each of

these coefficients is affected only by one reflection and the

transpose is plainly mapped to a coefficient switch. Seman-

tically, b(1, 0) and b(0, 1) are the coefficients statistically

containing more energy that represent the response to ver-

tical and horizontal variations, resembling the original ver-

tical and horizontal 2D space of Zabrodsky et al. [28]. The

three resulting mirror planes are straightforwardly obtained

as b(1, 0) = 0, b(0, 1) = 0 and |b(1, 0)| − |b(0, 1)| = 0, as

shown in Fig. 5 right. At this stage, there is still ambigu-

ity within this projected space as an antipodal point can be

confused by a patch affected by vertical and horizontal re-

flections (as both vertical and horizontal coefficients have a

sign change). In order to disambiguate, we include another

dimension and a fourth mirror plane in b(3, 3) = 0 which

is not affected by transpose, nor vertical or horizontal re-

flection (as it is a DCT base with inner dihedral symmetry).

This fourth axis, which we fold in the first place, represents

the negative unitary matrix −I (i.e. sign change) to be ap-

plied both patch-wise and within the DCT domain before

collapsing the rest of symmetries.

The final proposed transform c̊ = κ(c, ϕ(c)) produces

0
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Figure 4: Mirror-Symmetry Transform of a single pair of

points as proposed by Zabrodsky et al. [28] (1 and 2a) and

our proposed SCT (1 and 2b).
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o
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Figure 5: Left: Coefficients of a DCT that are affected by

gx, gy (resulting in a sign change, Eq. 6) and g⊺ (result-

ing in a transpose of coefficients). Right: Overview of

our κ(x, ϕ(x) with real patches, highlighting the symme-

try axes associated to each operator.

collapsed patches (denoted by the ring accent) using the

four defined axes, where gj = ϕ(c) retrieves the ele-

ment within the group G together with the disambigua-

tion of the sign (i.e. −I when b(3, 3) < 0 ). The inverse

c = κ−1(̊c, ϕ(c)) applies the same elements of the symme-

try group that were used in the collapse in a reverse order,

restoring the patch to its original appearance.

5. Application to SR

In this section we propose a novel SR algorithm that

makes use of our proposed c̊ = κ(c, ϕ(c)), which we name

PSyCo (Patch Symmetry Collapse). As briefly mentioned

in the related work, we build on the ANR [21] framework

of anchored regression. We denote 0-mean patches with the

line accent (e.g. c). The main idea is to train our regression

ensemble (both k anchor points in Dl and the associated re-

gressors {Ri}) with the ground truth and coarse collapsed

patches {x̊, c̊} so that during training time the system is op-

timized for the reduced span of the manifold which is to be

used. We obtain our coarsely approximated images C with

IBP as presented in [27, 15]. The k-SVD input is a matrix of

0-mean patches without symmetric redundancy which have

1841



(a) Dictionary size

16 32 64 128 256 512 1024 2048

P
S

N
R

 (
d

B
)

31.7

31.8

31.9

32

32.1

32.2

32.3

32.4

32.5

32.6

Proposed

No symmetry

Transpose sym.

Antipodal sym.

Hor. Refl. sym.

Ver. Refl. sym.

TVH sym.

(b) Neighborhood size

103 104

P
S

N
R

 (
d

B
)

32.15

32.2

32.25

32.3

32.35

32.4

32.45

32.5

32.55

32.6

32

128

256

1024

(c) Lambda

10-3 10-2 10-1

P
S

N
R

 (
d
B

)

32.15

32.2

32.25

32.3

32.35

32.4

32.45

32.5

32.55

32.6

32, N = 50000

128, N = 10000

256, N = 10000

1024, N = 2500

Figure 6: Different configurations of PSyCo. (a) Shows the PSNR performance for different mirror symmetries, (b) shows

the impact of the neighborhood size and (c) the impact of the regularization weighting term λ.

been stacked as columns, denoted by C̊. After that, a NN

search with the angular similarity

∣

∣

∣

˚
d
⊺

i c̊

∣

∣

∣
is performed for

each atom di in Dl to construct each neighborhood Ci as

a fixed-size subset of the whole training data C. Once the

anchor points and neighborhoods have been defined, each

regressor Ri is trained with the following closed-form ex-

pression:

Ri = (1 + λ)(X̊i − C̊i)C̊i
⊺(C̊i C̊i

⊺ + λI)−1. (8)

During inference time, the NN search and regression is

performed with
{

d̊, c̊
}

and after regression the symmetric

transformation needs to be reverted so that the patches re-

cover their original orientation. The regression stage reads:

x̃ = c+ κ−1(R∗ c̊, ϕ(c)), (9)

and the final image X̃ is obtained by an overlapping recon-

struction strategy, as it is common in SR [21, 26, 19].

5.1. Configuration

In this section we validate the contributions of our pro-

posed transform, assessing the impact of collapsing each

of the axes separately, and also the combination of those

exclusively corresponding to the dihedral group G and the

impact of the complete system, which also tackles antipodal

symmetries. Figure 6a shows PSyCo with several mirror-

axes configurations and dictionary sizes. First, we would

like to asses the benefits of our symmetric transform when

compared to untransformed patches. The quality is around

0.4 dB higher for small dictionary sizes (e.g. 16, 32) and

around 0.2 dB for 1024 atoms. We find remarkable the fact

that our symmetry transform performs always slightly bet-

ter than a ×16 times larger dictionary without any symme-

try accounted. This supports the idea that with our mani-

fold collapse we can effectively cover the 16 different ap-

pearances of a given primitive patch without increasing the

search space, plus an additional quality gain as the train-

ing of the regressors is better (i.e. due to more meaningful

patches in the neighborhoods).

When it comes to assess the incidence of each type of

transform separately, we find that all have similar impact,

being the antipodal symmetry slightly better-performing

than the reflection or the transpose. We also note that each

symmetry axis is roughly comparing equally to a ×2 − 4
times larger untransformed dictionary. The dihedral sym-

metries together surpass that of the antipodal, and we ob-

serve that its quality performance surpasses by a great mar-

gin that of the ×8 larger dictionary without any symmetry.

In Fig. 6b and 6c we show the behavior of the only two

parameters to be selected in our SR algorithm. The neigh-

borhood size has higher impact and its optimal value in-

creases for smaller dictionary sizes (as each neighborhood

covers more span within the manifold). The regularization

weighting term λ has a lesser impact and its optimal value

increases for big neighborhoods and small dictionaries. We

also note that λ = 0.2 is a good compromise across all pos-

sible configurations, and thus we recommend its usage for

a first approach when optimizing the neighborhood size.

6. Results

We perform several experiments comparing with current

SR state of the art. The experimental set-up is:

Datasets: We perform our SR benchmarking with

Set5, Set14, kodak and Urban100 ([12] used differ-

ent resolutions for each s, we set the resolution correspond-

ing to s = 4 for all s). Compared methods: We compare

against the current SRCNN deep learning method presented

by Dong et al. [7] with their recommended 9-5-5 network

(note the superior performance when compared to the 9-1-

5 network of their earlier publication [6]), the A+ anchored

regression algorithm of Timofte et al. [22], the recently pub-

lished SR forest with alternative training ASRF of Schul-

ter et al. [19] and the Transformed Self-Exemplars Single-

Image SR of Huang et al. [12]. Conditions: We present

two different configurations, with 32 and 1024 atoms. For

the first one, we set a neighborhood size of 42000 and

λ = 0.25; for the second one the neighborhood size is set to

2750 and λ = 0.18. We train A+, ASRF and PSyCo with
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Bicubic SRCNN [7] ASRF [19] A+ [22] PSyCo (1024) Ground Truth

Figure 7: Close-ups of the results for visual qualitative assessment of a ×4 magnification factor from the datasets in the

benchmark. Best-viewed zoomed in.
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Bicubic SRCNN [7] TSelfEx [12] ASRF [19] A+ [22] PSyCo (32) PSyCo (1024)

s PSNR IFC Time PSNR IFC Time PSNR IFC Time PSNR IFC Time PSNR IFC Time PSNR IFC Time PSNR IFC Time

S
et

5

2 33.66 6.083 0.002 36.66 8.036 4.722 36.50 7.811 42.521 36.69 8.556 1.278 36.55 8.477 0.684 36.57 8.504 0.038 36.88 8.642 0.185

3 30.39 3.580 0.002 32.75 4.658 5.226 36.62 4.748 31.008 32.57 4.926 1.026 32.59 4.923 0.401 32.63 4.961 0.049 32.93 5.083 0.456

4 28.42 2.329 0.002 30.48 2.991 9.962 30.33 3.166 26.728 30.20 3.191 1.071 30.28 3.248 0.226 30.32 3.275 0.055 30.62 3.379 0.210

S
et

1
4 2 30.23 6.105 0.002 32.45 7.784 8.204 32.23 7.591 98.645 32.36 8.175 2.134 32.28 8.140 1.421 32.32 8.173 0.068 32.55 8.280 0.346

3 27.54 3.473 0.002 29.29 4.338 8.098 29.16 4.371 70.176 29.12 4.531 1.674 29.13 4.338 0.828 29.13 4.557 0.097 29.36 4.660 0.350

4 26.00 2.237 0.002 27.50 2.751 8.305 27.40 2.893 63.873 27.31 2.919 1.386 27.32 2.751 0.614 27.30 2.981 0.106 27.57 3.055 0.334

k
o
d

a
k 2 30.85 5.711 0.003 32.81 7.149 14.367 32.65 6.782 195.70 32.76 7.387 3.360 32.71 7.380 2.489 32.65 7.419 0.151 32.89 7.481 0.559

3 28.43 3.214 0.003 29.65 3.895 15.026 29.52 3.806 135.243 29.63 4.025 2.555 29.57 4.053 1.4614 29.57 4.071 0.172 29.74 4.136 0.558

4 27.23 2.026 0.003 28.17 2.423 14.069 28.14 2.462 115.652 28.17 2.530 2.204 28.10 2.594 1.081 28.07 2.603 0.201 28.28 2.663 0.571

U
rb

a
n

1
0
0

2 26.87 6.245 0.007 29.51 7.989 29.358 29.52 7.937 398.307 29.35 8.450 5.878 29.20 8.413 4.857 29.27 8.445 0.297 29.64 8.589 1.050

3 24.46 3.620 0.005 26.24 4.584 29.439 26.45 4.843 286.027 26.00 4.801 4.630 26.03 4.867 3.012 26.04 4.867 0.348 26.36 5.031 1.104

4 23.14 2.361 0.004 24.52 2.963 30.233 24.80 3.314 238.735 24.28 3.110 3.733 24.32 3.208 2.165 24.35 3.217 0.365 24.62 3.351 1.095

Table 1: Performance of ×2, ×3 and ×4 magnification in terms of averaged PSNR (dB), IFC and execution time (s) on

datasets Set5, Set14, Kodak and Urban100. Best results in bold and runner-up in blue.

the same 91 images provided by Yang et al. in their sparse

coding SR [27]. As for SRCNN, we use the network pro-

vided by their authors which has been trained with the Im-

ageNet dataset (in the order of hundred thousand images).

Implementation: For the compared methods we used the

code publicly available from the author’s website. Our code

is a MATLAB + MEX implementation. Experiments: We

upscale images by the magnification factors ×2,×3 and ×4
with the authors’ recommended configurations and measure

PSNR, time and Information Fidelity Criterion (IFC) [20],

which has the highest correlation with perceptual scores for

SR evaluation [24]. Additionally, for those methods which

depend on a dictionary, we test a ×2 upscaling factor on

Set14 for several dictionary sizes and measure PSNR and

times (see Fig. 1) to compare performances for equal dic-

tionary sizes. Evaluation: In Table 1 we show the averaged

PSNR, IFC and times of the benchmark. PSyCo with 1024

atoms obtains the best PSNR values, around 0.3dB higher

across all s and datasets when compared to the most related

algorithm A+. We also outperform the most competitive

methods (SRCNN and ASRF) in PSNR by up to 0.3dB. In

terms of time, both our configurations are the fastest of the

benchmark, specially our proposed (32), which is an or-

der of magnitude faster than any other method. We also

note that our methods are trained in less than two hours,

which contrasts with the SRCNN method trained with Ima-

geNet. The measured IFC values are consistently the high-

est among the benchmark, and we highlight the fact that for

most s, PSyCo with 32 atoms obtains the runner-up IFC,

confirming the good performance of our time- and memory-

effective configuration. In Fig. 7 we show some quantitative

results. We highlight the generally sharper edges and the

less proliferation of ringing and aliasing artifacts which re-

sults in better preserved structures (e.g. first row in Fig. 7).

7. Conclusions

In this paper we present a new method for regression-
based SR that builds around a novel manifold collapsing
transform κ. This transform eliminates the undesired vari-
ability of the manifold due to the dihedral group of sym-
metries (i.e. rotation, vertical and horizontal reflections)
and the antipodal symmetry (i.e. points that are diametri-
cally opposed in the unitary sphere). Our contributions are:
(1) We recommend the use of the dihedral transformation
group over more complex projective transformation mod-
els. The dihedral group is specially suitable for SR as it
is scale invariant and easily invertible. Furthermore, we
perform a frequency analysis of the dihedral group in the
DCT domain, where the group members are mapped as a
combination of transpose and sign changes. (2) We modify
the ST of Zabrodsky et al. [28] by skipping point averag-
ing and unfolding, so that the resulting transform collapses
the variability of the data while still preserving the original
SD. (3) We select a set of projections for which we define
symmetry axes corresponding to those of the dihedral and
antipodal symmetries. The complexity of our proposed κ
is inherently low, as it requires as little as 3 inner products
and a matrix re-ordering (i.e. gj). We exhaustively test our
transform applied to SR, and also compare it with other re-
cent state of the art. We consistently obtain ×16 − ×32
smaller dictionaries when aiming at a certain PSNR (see
Fig 1). For a fixed dictionary size, we greatly improve
in terms of quality both objectively and qualitatively. Our
method with 1024 atoms greatly surpasses the state of the
art in terms of PSNR and IFC, and with a 32 atoms dictio-
nary we achieve competitive quality while being an order of
magnitude faster.
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