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Abstract

Multi-person event recognition is a challenging task, of-

ten with many people active in the scene but only a small

subset contributing to an actual event. In this paper, we

propose a model which learns to detect events in such videos

while automatically “attending” to the people responsible

for the event. Our model does not use explicit annotations

regarding who or where those people are during training

and testing. In particular, we track people in videos and

use a recurrent neural network (RNN) to represent the track

features. We learn time-varying attention weights to com-

bine these features at each time-instant. The attended fea-

tures are then processed using another RNN for event de-

tection/classification. Since most video datasets with mul-

tiple people are restricted to a small number of videos, we

also collected a new basketball dataset comprising 257 bas-

ketball games with 14K event annotations corresponding to

11 event classes. Our model outperforms state-of-the-art

methods for both event classification and detection on this

new dataset. Additionally, we show that the attention mech-

anism is able to consistently localize the relevant players.

1. Introduction

Event recognition and detection in videos has hugely

benefited from the introduction of recent large-scale

datasets [22, 55, 23, 41, 14] and models. However, this

is mainly confined to the domain of single-person actions

where the videos contain one actor performing a primary ac-

tivity. Another equally important problem is event recogni-

tion in videos with multiple people. In our work, we present

a new model and dataset for this specific setting.

Videos captured in sports arenas, market places or other

∗This work was done while Vignesh Ramanathan was an intern at

Google

Looking at the wrong people is uninformative

Our ŵodel atteŶds  to the ͞key͟ people at each tiŵe-step

Figure 1. Looking at the wrong people in a multi-person event can

be very uninformative as seen in the basketball video in the first

row. However, by observing the correct people in the same video,

we can easily identify the event as a “2-pointer success” based on

the shooter and the player throwing the ball into play. We use the

same intuition to recognize the key players for event recognition.

outdoor areas typically contain multiple people interacting

with each other. Most people are doing “something”, but

not all of them are involved in the main event. The main

event is dominated by a smaller subset of people. For in-

stance, a “shot” in basketball is determined by one or two

people (see Figure 1). In addition to recognizing the event,

it is also important to isolate these key actors. This is a sig-

nificant challenge which differentiates multi-person videos

from single-person videos.

Identifying the people responsible for an event is thus an

interesting task in its own right. However acquiring such

annotations is expensive and it is therefore desirable to use

models that do not require annotations for identifying these

key actors during training. This can also be viewed as a

problem of weakly supervised key person identification. In

this paper, we propose a method to classify events by using
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a model that is able to “attend” to this subset of key actors.

We do this without ever explicitly telling the model who or

where the key actors are.

Recently, several papers have proposed to use “attention”

models for aligning elements from a fixed input to a fixed

output. For example, [3] translate sentences in one language

to another language, attending to different words in the in-

put; [70] generate an image-caption, attending to different

regions in the image; and [72] generate a video-caption, at-

tending to different frames within the video.

In our work, we use attention to decide which of several

people is most relevant to the action being performed; this

attention mask can change over time. Thus we are com-

bining spatial and temporal attention. Note that while the

person detections vary from one frame to another, they can

be associated across frames through tracking. We show how

to use a recurrent neural network (RNN) to represent infor-

mation from each track; the attention model is tasked with

selecting the most relevant track in each frame. In addition

to being able to isolate the key actors, we show that our

attention model results in better event recognition.

In order to evaluate our method, we need a large num-

ber of videos illustrating events involving multiple peo-

ple. Most prior activity and event recognition datasets fo-

cus on actions involving just one or two people. Multi-

person datasets like [47, 39, 7] are usually restricted to

fewer videos. Therefore we collected our own dataset. In

particular we propose a new dataset of basketball events

with time-stamp annotations for all occurrences of 11 differ-

ent events across 257 videos each 1.5 hours long in length.

This dataset is comparable to the THUMOS [22] detec-

tion dataset in terms of number of annotations, but contains

longer videos in a multi-person setting.

In summary, the contributions of our paper are as fol-

lows. First, we introduce a new large-scale basketball event

dataset with 14K dense temporal annotations for long video

sequences. Second, we show that our method outperforms

state-of-the-art methods for the standard tasks of classify-

ing isolated clips and of temporally localizing events within

longer, untrimmed videos. Third, we show that our method

learns to attend to the relevant players, despite never being

told which players are relevant in the training set.

2. Related Work

Action recognition in videos Traditionally, well engi-

neered features have proved quite effective for video clas-

sification and retrieval tasks [8, 18, 21, 30, 37, 38, 31, 40,

42, 49, 50, 65, 66]. The improved dense trajectory (IDT)

features [66] achieve competitive results on standard video

datasets. In the last few years, end-to-end trained deep net-

work models [20, 23, 54, 53, 62] were shown to be com-

parable and at times better than these features for vari-

ous video tasks. Other works like [68, 71, 74] explore

methods for pooling such features for better performance.

Recent works using RNN(s) have achieved state-of-the-art

results for both event recognition and caption-generation

tasks [9, 36, 56, 72]. We follow this line of work with the

addition of attention to attend to the event participants.

Another related line of work jointly identifies the re-

gion of interest in a video while recognizing the action.

Gkioxari et al. [11] and Raptis et al. [45] automatically

localize a spatio-temporal tube in a video. Jain et al. [19]

merge super-voxels for action localization. Other works like

[4, 44] learn to localize actors based on weak annotations

from partially aligned movie scripts. While these methods

perform weakly-supervised action localization, they target

single actor videos in short clips where the action is cen-

tered around the actor. Methods like [28, 43, 60, 67] require

annotations during training to localize the action.

Multi-person video analysis Activity recognition models

for events with well defined group structures such as pa-

rades have been presented in [63, 15, 34, 24]. These models

utilize the structured layout of participants to identify group

events. More recently, [29, 7, 25] use context as a cue for

recognizing interaction-based group activities. However,

these methods are restricted to smaller datasets [48, 7, 29].

Attention models Itti et al. [17] explored the idea of

saliency-based attention in images, with other works like

[51] using eye-gaze data as a means for learning attention.

Mnih et al. [33] attend to image regions of varying reso-

lutions through an RNN. Attention has also been used for

image classification [6, 13, 69] and detection [2, 5, 73].

Bahdanau et al. [3] showed that attention-based RNN

models can effectively align input words to output words for

machine translation. Following this, Xu et al. [70] and Yao

et al. [72] used attention for image-captioning and video-

captioning respectively. In all these methods, attention

aligns a sequence of input features with words of an output

sentence. However, we use attention to identify the most

relevant person during different phases of the event.

Action recognition datasets Action recognition in videos

has evolved with the introduction of more sophisticated

datasets starting from smaller KTH [50], HMDB [27] to

larger , UCF101 [55], TRECVID-MED [41] and Sports-

1M [23] datasets. More recently, THUMOS [22] and Ac-

tivityNet [14] also provide a detection setting with tempo-

ral annotations for actions in untrimmed videos. There are

also fine-grained datasets in specific domains such as MPII

cooking [46] and breakfast [26]. However, most of these

datasets focus on single-person activities with hardly any

need for recognizing the people responsible for the event.

On the other hand, publicly available multi-person activity

datasets like [48, 7, 39] are restricted to a very small num-

ber of videos. One of the contributions of our work is a

multi-player basketball dataset with dense temporal event

annotations in long videos.
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3-pointer failure layup success
time

Figure 2. We densely annotate every instance of 11 different basketball events in long basketball videos. As shown here, we collected both

event time-stamps and event labels through an AMT task.

Person detection and tracking. There is a very large lit-

erature on person detection and tracking. There are also

specific methods for tracking players in sports videos [52].

Here we just mention a few key methods. For person detec-

tion, we use the CNN-based multibox detector from [59].

For person tracking, we use the KLT tracker from [64].

There is also work on player identification (e.g., [32]), but

in this work, we do not attempt to distinguish players.

Event # Videos Train (Test) Avg. # people

3-point succ. 895 (188) 8.35

3-point fail. 1934 (401) 8.42

free-throw succ. 552 (94) 7.21

free-throw fail. 344 (41) 7.85

layup succ. 1212 (233) 6.89

layup fail. 1286 (254) 6.97

2-point succ. 1039 (148) 7.74

2-point fail. 2014 (421) 7.97

slam dunk succ. 286 (54) 6.59

slam dunk fail. 47 (5) 6.35

steal 1827 (417) 7.05

Table 1. The number of videos per event in our dataset along with

the average number of people per video corresponding to each of

the events. The number of people is higher than existing datasets

for multi-person event recognition.

3. NCAA Basketball Dataset

A natural choice for collecting multi-person action

videos is team sports. In this paper, we focus on basket-

ball games, although our techniques are general purpose. In

particular, we use a subset of the 296 NCAA games avail-

able from YouTube.1 These games are played in different

venues over different periods of time. We only consider

the most recent 257 games, since older games used slightly

different rules than modern basketball. The videos are typ-

ically 1.5 hours long. We manually identified 11 key event

types listed in Tab. 1. In particular, we considered 5 types

of shots, each of which could be successful or failed, plus a

steal event.

1https://www.youtube.com/user/ncaaondemand

Next we launched an Amazon Mechanical Turk task,

where the annotators were asked to annotate the “end-point”

of these events if and when they occur in the videos; end-

points are usually well-defined (e.g., the ball leaves the

shooter’s hands and lands somewhere else, such as in the

basket). To determine the starting time, we assumed that

each event was 4 seconds long, since it is hard to get raters

to agree on when an event started. This gives us enough

temporal context to classify each event, while still being

fairly well localized in time.

The videos were randomly split into 212 training, 12 val-

idation and 33 test videos. We split each of these videos

into 4 second clips (using the annotation boundaries), and

subsampled these to 6fps. We filter out clips which are

not profile shots (such as those shown in Figure 3) using a

separately trained classifier; this excludes close-up shots of

players, as well as shots of the viewers and instant replays.

This resulted in a total of 11436 training, 856 validation and

2256 test clips, each of which has one of 11 labels. Note

that this is comparable in size to the THUMOS’15 detection

challenge (150 trimmed training instances for each of the

20 classes and 6553 untrimmed validation instances). The

distribution of annotations across all the different events is

shown in Tab. 1. To the best of our knowledge, this is the

first dataset with dense temporal annotations for such long

video sequences.

In addition to annotating the event label and start/end

time, we collected AMT annotations on 850 video clips in

the test set, where the annotators were asked to mark the

position of the ball on the frame where the shooter attempts

a shot.

We also used AMT to annotate the bounding boxes of

all the players in a subset of 9000 frames from the training

videos. We then trained a Multibox detector [58] with these

annotations, and ran the trained detector on all the videos in

our dataset. We retained all detections above a confidence

of 0.5 per frame; this resulted in 6–8 person detections per

clip, as listed in Tab. 1. The multibox model achieves an

average overlap of 0.7 at a recall of 0.8 with ground-truth

bounding boxes in the validation videos. The dataset is

available at: http://basketballattention.appspot.com/.
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Figure 3. Our model, where each player track is first processed by

the corresponding BLSTM network (shown in different colors).

Pi-BLSTM corresponds to the i’th player. The BLSTM hidden-

states are then used by an attention model to identify the “key”

player at each instant. The thickness of the BLSTM boxes shows

the attention weights, and the attended person can change with

time. The variables in the model are explained in Sec. 4. BLSTM

stands for “bidirectional long short term memory”.

4. Our Method

All events in a team sport are performed in the same

scene by the same set of players. The only basis for dif-

ferentiating these events is the action performed by a small

subset of people at a given time. For instance, a “steal”

event in basketball is completely defined by the action of

the player attempting to pass the ball and the player stealing

from him. To understand such an event, it is sufficient to

observe only the players participating in the event.

This motivates us to build a model (overview in Fig. 3)

which can reason about an event by focusing on specific

people during the different phases of the event. In this sec-

tion, we describe our unified model for classifying events

and simultaneously identifying the key players.

4.1. Feature extraction

Each video-frame is represented by a 1024 dimensional

feature vector ft, which is the activation of the last fully

connected layer of the Inception7 network [16, 57]. In ad-

dition, we compute spatially localized features for each per-

son in the frame. In particular, we compute a 2805 dimen-

sional feature vector pti which contains both appearance

(1365 dimensional) and spatial information (1440 dimen-

sional) for the i’th player bounding box in frame t. Similar

to the RCNN object detector[10], the appearance features

were extracted by feeding the cropped and resized player

region from the frame through the Inception7 network and

spatially pooling the response from a lower layer. The spa-

tial feature corresponds to a 32×32 spatial histogram, com-

bined with a spatial pyramid, to indicate the bounding box

location at multiple scales. While we have only used static

CNN representations in our work, these features can also be

easily extended with flow information as suggested in [53].

4.2. Event classification

Given ft and pti for each frame t, our goal is to train the

model to classify the clip into one of 11 categories. As a

side effect of the way we construct our model, we will also

be able to identify the key player in each frame.

First we compute a global context feature for each frame,

h
f
t , derived from a bidirectional LSTM applied to the

frame-level feature as shown by the blue boxes in Fig. 3.

This is a concatenation of the hidden states from the for-

ward and reverse LSTM components of a BLSTM and can

be compactly represented as:

h
f
t = BLSTMframe(h

f
t−1, h

f
t+1, ft). (1)

Please refer to Graves et al. [12].

Next we use a unidirectional LSTM to represent the state

of the event at time t:

he
t = LSTM(he

t−1, h
f
t , at), (2)

where at is a feature vector derived from the players, as we

describe below. From this, we can predict the class label for

the clip using w
⊺

kh
e
t , where the weight vector corresponding

to class k is denoted by wk. We measure the squared-hinge

loss as follows:

L =
1

2

T
∑

t=1

K
∑

k=1

max(0, 1− ykw
⊺

kh
e
t )

2, (3)

where yk is 1 if the video belongs to class k, and is −1
otherwise.

4.3. Attention models

Unlike past attention models [3, 70, 72] we need to at-

tend to a different set of features at each time-step. There

are two key issues to address in this setting.

First, although we have different detections in each

frame, they can be connected across the frames through an

object tracking method. This could lead to better feature

representation of the players.

Second, player attention depends on the state of the event

and needs to evolve with the event. For instance, during the

start of a “free-throw” it is important to attend to the player

making the shot. However, towards the end of the event the

success or failure of the shot can be judged by observing the

person in possession of the ball.

3046



With these issues in mind, we first present our model

which uses player tracks and learns a BLSTM based rep-

resentation for each player track. We then also present a

simple tracking-free baseline model.

Attention model with tracking. We first associate the de-

tections belonging to the same player into tracks using a

standard method. We use a KLT tracker combined with bi-

partite graph matching [35] to perform the data association.

The player tracks can now be used to incorporate context

from adjacent frames while computing their representation.

We do this through a separate BLSTM which learns a la-

tent representation for each player at a given time-step. The

latent representation of player i in frame t is given by the

hidden state h
p
ti of the BLSTM across the player-track:

h
p
ti = BLSTMtrack(h

p
t−1,i, h

p
t+1,i, pti). (4)

At every time-step we want the most relevant player at

that instant to be chosen. We achieve this by computing at
as a convex combination of the player representations at that

time-step:

atrackt =

Nt
∑

i=1

γtrack
ti h

p
ti, (5)

γtrack
ti = softmax

(

φ
(

h
f
t , h

p
ti, h

e
t−1

)

; τ
)

,

where Nt is the number of detections in frame t, and φ() is a

multi layer perceptron, similar to [3]. τ is the softmax tem-

perature parameter. This attended player representation is

input to the unidirectional event recognition LSTM in Eq. 2.

This model is illustrated in Figure 3.

Attention model without tracking. Often, tracking people

in a crowded scene can be very difficult due to occlusions

and fast movements. In such settings, it is beneficial to have

a tracking-free model. This could also allow the model to

be more flexible in switching attention between players as

the event progresses. Motivated by this, we present a model

where the detections in each frame are considered to be in-

dependent from other frames.

We compute the (no track) attention based player feature

as shown below:

anotrackt =

Nt
∑

i=1

γnotrack
ti pti, (6)

γnotrack
ti = softmax

(

φ
(

h
f
t , pti, h

e
t−1

)

; τ
)

,

Note that this is similar to the tracking based attention

equations except for the direct use of the player detection

feature pti in place of the BLSTM representation h
p
ti.

5. Experimental evaluation

In this section, we present three sets of experiments on

the NCAA basketball dataset: 1. event classification, 2.

event detection and 3. evaluation of attention.

5.1. Implementation details

We used a hidden state dimension of 256 for all the

LSTM and BLSTM RNNs, an embedding layer with ReLU

non-linearity and 256 dimensions for embedding the player

features and frame features before feeding to the RNNs. We

used 32×32 bins with spatial pyramid pooling for the player

location feature. All the event video clips were four seconds

long and subsampled to 6fps. The τ value was set to 0.25
for the attention softmax weighting. We used a batch size

of 128, and a learning rate of 0.005 which was reduced by

a factor of 0.1 every 10000 iterations with RMSProp [61].

The models were trained on a cluster of 20 GPUs for 100k
iterations over one day. The hyperparameters were chosen

by cross-validating on the validation set.

5.2. Event classification

In this section, we compare the ability of methods to

classify isolated video clips into 11 classes. We do not use

any additional negatives from other parts of the basketball

videos. We compare our results against different control

settings and baseline models explained below:

• IDT[66]: We use the publicly available implementa-

tion of dense trajectories with Fisher encoding.

• IDT[66] player: We use IDT along with averaged fea-

tures extracted from the player bounding boxes.

• C3D [62]: We use the publicly available pre-trained

model for feature extraction with an SVM classifier.

• LRCN [9]: We use an LRCN model with frame-level

features. However, we use a BLSTM in place of an

LSTM. We found this to improve performance. Also,

we do not back-propagate into the CNN extracting the

frame-level features to be consistent with our model.

• MIL [1]: We use a multi-instance learning method to

learn bag (frame) labels from the set of player features.

• Only player: We only use our player features from

Sec. 4.1 in our model without frame-level features.

• Avg. player: We combine the player features by simple

averaging, without using attention.

• Attention no track: Our model without tracks (Eq. 6).

• Attention with track: Our model with tracking (Eq. 5).

The mean average precision (mAP) for each setting is

shown in Tab. 2. We see that the method that uses both

global information and local player information outper-

forms the model only using local player information (“Only

player”) and only using global information (“LRCN”). We

also show that combining the player information using a

weighted sum (i.e., an attention model) is better than uni-

form averaging (“Avg. player”), with the tracking based

version of attention slightly better than the track-free ver-

sion. Also, a standard weakly-supervised approach such as
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Event IDT[66] IDT[66] player C3D [62] MIL[1] LRCN [9] Only player Avg. player Our no track Our track

3-point succ. 0.370 0.428 0.117 0.237 0.462 0.469 0.545 0.583 0.600

3-point fail. 0.501 0.481 0.282 0.335 0.564 0.614 0.702 0.668 0.738

fr-throw succ. 0.778 0.703 0.642 0.597 0.876 0.885 0.809 0.892 0.882

fr-throw fail. 0.365 0.623 0.319 0.318 0.584 0.700 0.641 0.671 0.516

layup succ. 0.283 0.300 0.195 0.257 0.463 0.416 0.472 0.489 0.500

layup fail. 0.278 0.311 0.185 0.247 0.386 0.305 0.388 0.426 0.445

2-point succ. 0.136 0.233 0.078 0.224 0.257 0.228 0.255 0.281 0.341

2-point fail. 0.303 0.285 0.254 0.299 0.378 0.391 0.473 0.442 0.471

sl. dunk succ. 0.197 0.171 0.047 0.112 0.285 0.107 0.186 0.210 0.291

sl. dunk fail. 0.004 0.010 0.004 0.005 0.027 0.006 0.010 0.006 0.004

steal 0.555 0.473 0.303 0.843 0.876 0.843 0.894 0.886 0.893

Mean 0.343 0.365 0.221 0.316 0.469 0.452 0.489 0.505 0.516

Table 2. Mean average precision for event classification given isolated clips.

Event IDT[66] IDT player[66] C3D [62] LRCN [9] Only player Avg. player Attn no track Attn track

3-point succ. 0.194 0.203 0.123 0.230 0.251 0.268 0.263 0.239

3-point fail. 0.393 0.376 0.311 0.505 0.526 0.521 0.556 0.600

free-throw succ. 0.585 0.621 0.542 0.741 0.777 0.811 0.788 0.810

free-throw fail. 0.231 0.277 0.458 0.434 0.470 0.444 0.468 0.405

layup succ. 0.258 0.290 0.175 0.492 0.402 0.489 0.494 0.512

layup fail. 0.141 0.200 0.151 0.187 0.142 0.139 0.207 0.208

2-point succ. 0.161 0.170 0.126 0.352 0.371 0.417 0.366 0.400

2-point fail. 0.358 0.339 0.226 0.544 0.578 0.684 0.619 0.674

slam dunk succ. 0.137 0.275 0.114 0.428 0.566 0.457 0.576 0.555

slam dunk fail. 0.007 0.006 0.003 0.122 0.059 0.009 0.005 0.045

steal 0.242 0.255 0.187 0.359 0.348 0.313 0.340 0.339

Mean 0.246 0.273 0.219 0.400 0.408 0.414 0.426 0.435

Table 3. Mean average precision for event detection given untrimmed videos.

MIL seems to be less effective than any of our modeling

variants.

The performance varies by class. In particular, perfor-

mance is much poorer (for all methods) for classes such as

“slam dunk fail” for which we have very little data. How-

ever, performance is better for shot-based events like “free-

throw”, “layups” and “3-pointers”where attending to the

shot making person or defenders can be useful.

5.3. Event detection

In this section, we evaluate the ability of methods to tem-

porally localize events in untrimmed videos. We use a slid-

ing window approach, where we slide a 4 second window

through all the basketball videos and try to classify the win-

dow into a negative class or one of the 11 event classes.

We use a stride length of 2 seconds. We treat all windows

which do not overlap more than 1 second with any of the 11
annotated events as negatives. We use the same setting for

training, test and validation. This leads to 90200 negative

examples across all the videos. We compare with the same

baselines as before. However, we were unable to train the

MIL model due to computational limitations.

The detection results are presented in Tab. 3. We see

that, as before, the attention models beat previous state-of-

the-art methods. Not surprisingly, all methods are slightly

worse at temporal localization than for classifying isolated

clips. We also note a significant difference in classification

and detection performance for “steal” in all methods. This

can be explained by the large number of negative instances

introduced in the detection setting. These negatives often

correspond to players passing the ball to each other. The

“steal” event is quite similar to a “pass” except that the ball

is passed to a player of the opposing team. This makes the

“steal” detection task considerably more challenging.

5.4. Analyzing attention

We have seen above that attention can improve the per-

formance of the model at tasks such as classification and de-

tection. Now, we evaluate how accurate the attention mod-

els are at identifying the key players. (Note that the models

were never explicitly trained to identify key players).

To evaluate the attention models, we labeled the player

who was closest (in image space) to the ball as the

“shooter”. (The ball location is annotated in 850 test clips.)
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3-pointer success slam dunk success free-throw failure

Figure 4. We highlight (in cyan) the “attended” player at the beginning of different events. The position of the ball in each frame is shown

in yellow. Each column shows a different event. In these videos, the model attends to the person making the shot at the start of the event.

We used these annotations to evaluate if our “attention”

scores were capable of classifying the “shooter” correctly.

Event Chance Attn. with track Attn. no track

3-point succ. 0.333 0.445 0.519

3-point fail. 0.334 0.391 0.545

free-throw succ. 0.376 0.416 0.772

free-throw fail. 0.346 0.387 0.685

layup succ. 0.386 0.605 0.627

layup fail. 0.382 0.508 0.605

2-point succ. 0.355 0.459 0.554

2-point fail. 0.346 0.475 0.542

slam dunk succ. 0.413 0.347 0.686

slam dunk fail. 0.499 0.349 0.645

Mean 0.377 0.438 0.618

Table 4. Mean average precision for attention evaluation.

The mean AP for this “shooter” classification is listed in

Tab. 4. The results show that the track-free attention model

is quite consistent in picking the shooter for several classes

like “free-throw succ./fail”, “layup succ./fail.” and “slam

dunk succ.”. This is a promising result which shows that

attention on player detections is capable of localizing the

player making the shot. This could be useful for providing

more detailed descriptions including the shooter identity.

We also visualize the attention masks visually for sam-

ple videos in Figure 4. In order to make results compara-

ble across frames, we annotated 5 points on the court and

aligned all the attended boxes for an event to one canonical

image. Fig. 5 shows the resulting heatmap of spatial dis-

tributions of the attended players with respect to the court.

It is interesting to note that our model consistently focuses

under the basket for a layup, at the free-throw line for free-

throws and outside the 3-point ring for 3-pointers.

Another interesting observation is that the attention for

the tracking based model is less selective in focusing on the

shooter. We observed that the tracking model is often re-

luctant to switch attention between frames and focuses on

a single player throughout the event. This biases it towards

players present throughout the video. For instance, in free-

throws (Fig. 6) it attends to the defender at a specific posi-

tion, who is visible throughout the event unlike the shooter.
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Shot beginning End of event

(a) free-throw success

(b) layup success

(c) 3-pointer success

Figure 5. We visualize the distribution of attention (from model without tracks) over different positions of a basketball court as the event

progresses. This is shown for 3 different events. These heatmaps were obtained by first transforming all videos to a canonical view of the

court (shown in the background of each heatmap). The top row shows the sample frames which contributed to the “free-throw” success

heatmaps. The model focuses on the location of the shooter at the beginning of an event and later the attention disperses to other locations.

Figure 6. The distribution of attention for our model with tracking,

at the beginning of “free-throw success”. Unlike Fig. 5, the atten-

tion is concentrated at a specific defender’s position. Free-throws

have a distinctive defense formation, and observing the defenders

can be helpful as shown in the sample images in the top row.

6. Conclusion

We have introduced a new attention based model for

event classification and detection in multi-person videos.

Apart from recognizing the event, our model can identify

the key people responsible for the event without being ex-

plicitly trained with such annotations. Our method can gen-

eralize to any multi-person setting. However, for the pur-

pose of this paper we introduced a new dataset of basketball

videos with dense event annotations and compared our per-

formance with state-of-the-art methods. We also evaluated

our model’s ability to recognize the “shooter” in the events

and visualized the spatial locations attended by our model.
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