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Abstract

Imagine we show an image to a person and ask her/him

to decide whether the scene in the image is warm or not

warm, and whether it is easy or not to spot a squirrel in the

image. For exactly the same image, the answers to those

questions are likely to differ from person to person. This

is because the task is inherently ambiguous. Such an am-

biguous, therefore challenging, task is pushing the bound-

ary of computer vision in showing what can and can not be

learned from visual data. Crowdsourcing has been invalu-

able for collecting annotations. This is particularly so for a

task that goes beyond a clear-cut dichotomy as multiple hu-

man judgments per image are needed to reach a consensus.

This paper makes conceptual and technical contributions.

On the conceptual side, we define disagreements among an-

notators as privileged information about the data instance.

On the technical side, we propose a framework to incorpo-

rate annotation disagreements into the classifiers. The pro-

posed framework is simple, relatively fast, and outperforms

classifiers that do not take into account the disagreements,

especially if tested on high confidence annotations.

1. Introduction

There exists an anecdote in the computer vision com-

munity that every graduate student has to annotate at least

one dataset during the graduate school life. With a rise

of crowdsourcing platforms, such as Amazon Mechani-

cal Turk (MTurk), Microworkers, and CrowdFlower, it be-

comes possible instead to crowdsource annotations from

people everywhere in the world. One might expect that

the graduate life becomes more of an easy and manageable

ride. However, the ambitions and visions in the community

evolve together with the possibility afforded by the crowd-

sourcing platforms. With MTurk, now it becomes possible

to collect annotations for large datasets such as ImageNet

[26], TinyImages [31], COCO [14], and Places [38]. More-

over, it becomes prevalent to collect task-specific datasets,

for example for studying the attributes and their strength

[20] and for determining the easiness or hardness of a par-

ticular classification task [22]. Those task-specific datasets

often require annotations that are more ambiguous than typ-

ical object annotations ‘present’ or ‘not present’.

Working with a crowdsourcing platform has its own pos-

itive and negative aspects. On the positive side, we could

mass collect annotations within a short period of time. The

annotations come from people with a diverse background,

therefore to some degree it reflects on an unbiased process

of data collection. On the other hand, this process requires

a tight control over the quality of annotations. It is common

that we get noisy or even random annotations by the inexpe-

rienced and distrusted MTurk annotators. Escaping from a

task to annotate a dataset ourselves, we are confronted with

a task to master a whole collection of tricks on the quality

control in a crowdsourcing scenario [30, 10, 1].

This paper focuses on: a) the case that the quality con-

trol has been successfully applied and the annotations are

collected from those highly reputed annotators, and b) the

annotation task goes beyond a clear-cut dichotomy such as,

for example, a squirrel is ‘present’ or ‘not present’ in the

given image. In the ambiguous task, such as determining

‘how easy’ it is to spot a squirrel in an image, or deciding

whether the scene is ‘warm’ or ‘not warm’ from the im-

age, the necessity of obtaining multiple human judgments

for each image data grows. A confidence in the label anno-

tations, ranging from a simple percentage agreement to the

kappa statistic, is then computed from the multiple annota-

tions at each data point. For sufficiently high confidence an-

notations, a majority voting scheme is then widely adopted

as the ground-truth label [31, 14, 38, 20, 22, 26].

It is now worth highlighting the following two observa-

tions regarding disagreements in multiple annotations. The

first is that the removal of disputed cases results in a reduced

size of datasets; those datasets are typically already moder-

ate in size. The second is that the notion of a true ground-

truth label might not be available, at least for a subset of the
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data, given that the task is ambiguous and the annotations

are all human judgments. We propose to incorporate anno-

tation disagreements into the learning process of a classifier.

Our method will utilize all data points with varying degree

of confidence and will follow the commonly used rules to

define a ground-truth label, for example, using maximum

voting. We propose a classifier which uses the confidence

in the label annotations to determine the level of influence

of each data point in the training process. Data points with

high level of disagreements will have less influence during

training hopefully improving the performance. We instanti-

ate this classifier in the form of Support Vector Classifier as

well as Gaussian Process Classifier.

2. Related Work

The problem of learning a classifier from data points an-

notated with multiple noisy labels per instance dates back

to at least the work of [29] in 1990s. The work adopts the

latent variable modeling of [3]. Fast forward to 2008 and

beyond, the needs for learning with multiple noisy annota-

tions are further exemplified by the advent of crowdsourc-

ing platforms [30, 24, 37, 1, 2, 15]. Prior work ranges from

a simple majority voting where all annotators are weighted

equally [20, 26] to a weighted voting by quantifying the

expertise of the annotators [8]. Work that actively selects

both the informative instances and the high-quality anno-

tators also exists [25, 15]. However, the expertise of the

annotators is not readily quantifiable and the notion of true

label might not exist. In this paper, we focus on data an-

notated by highly reputed annotators, therefore they should

have an equal weight, and we will not attempt to infer a true

ground-truth label. Moreover, we are not in the active set-

ting where we can control what and how much labeled data

to be generated by annotators. Related to this, we are not

trying to redefine a new task that aims to disambiguate the

ambiguous task (e.g. [19, 11]). Instead, we are in a pas-

sive mode where we are given data sources consisting of

data instances, their associated labels, and an additional in-

formation per data instance capturing the level of label dis-

agreement, for example, in the forms of average annotator

response for that label. This additional information could

be readily available in most vision datasets.

There are two general perspectives in addressing the

learning model of classification: probabilistic and non-

probabilistic. We will focus on models that use the max-

margin principle (SVM-based) as a representative of non-

probabilistic approach and models that exploit Gaussian

Process framework (GP-based) as a prototypical exam-

ple of probabilistic method. Probabilistic methods output

a probability distribution over labels, in contrast to non-

probabilistic methods that only output the most likely label

for a particular data point. Consequently, we would expect

that the GP method will be better in capturing the model

uncertainty over labels and can inherently steer this model

uncertainty based on the confidence in label annotations. In

the next sections, we will first continue our description of

related work discussing how to incorporate disagreements

in label annotations into the SVM-based models and then

we will describe our proposed GP-based approach.

3. Instillation of Disagreements into Classifiers

We will now restrict our attention to the typical com-

puter vision dataset: images and their annotations includ-

ing the class labels based on, for example, the majority vot-

ing scheme over MTurk responses and the agreement scores

among annotators defined as confidence.

3.1. SVM­based methods: state­of­the­art overview

Perhaps, the most frequently used classification setup is

an SVM model trained on crowdsourced data with labels

defined by majority voting among annotators. This means

all data points are equally important without considering

the size of the majority. We can instead use this majority

size, i.e. the disagreement level in the label annotation, to

distinguish between easy and difficult data points. One ap-

proach will be to instill this additional information as an up-

per bound to the hinge loss function in the SVM, resulting

in a state-of-the-art method called SVM+ [34, 32]. First,

let us define the learning setup. We assume that there are

some image data in the form of a matrix X = (x1, . . . ,xn)
T

of observed features and a vector of associated class labels

y = (y1, . . . , yn)
T, yn ∈ {−1, 1}. However, besides X

and y, there is also another set of attributes associated with

each training data point. Namely, the crowdsourcing confi-

dence in label annotations Xconf = (xconf
1 , . . . ,xconf

n )T. The

goal of learning is to infer a classifier f that will output a

label ynew for an un-seen data point xnew, given the labeled

training data plus the crowdsourcing confidence level for

each data point. It is important to note that f cannot use

Xconf as the input argument because it will not be available

at test time. This label confidence is privileged information

[34, 33] (available during training but not at test time).

The method SVM+ tries to predict the slack variables

ξn of the data using Xconf. Intuitively, we try to predict the

difficulty of each data point based on the label disagreement

among annotators for that particular instance, thereby creat-

ing a data dependent upper bound on the hinge loss. SVM+

sets ξn =
〈

wconf,xconf
n

〉

+bconf in the SVM, where wconf and

bconf are some parameters. The SVM+ objective function is:

minimize
w,wconf

b,bconf

‖w‖2 +α
∥

∥wconf
∥

∥

2
+ β

N
∑

n=1

[

〈wconf,xconf
n 〉+ bconf

]

subject to, for all n = 1, . . . , N ; 〈wconf,xconf
n 〉+ bconf ≥ 0

1− yn[〈w,xn〉+ b] ≤ 〈wconf,xconf
n 〉+ bconf. (1)
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The scalar parameters α and β are the trade-off parameters.

The model in (1) assumes a linear functional form for f and

ξs. This can be relaxed via the kernel trick [34]. Gaussian

kernels are often used in the X and Xconf domains, but with

different bandwidths. Theoretically, SVM+ exploits that if

one had access to the optimal slack variables, the conver-

gence to the Bayes’ error would be faster than the standard

SVM, i.e., O(1/n) convergence versus O(1/
√
n) [34].

3.2. GP­based methods: Our proposed GPC with
annotation disagreements

In a probabilistic approach to binary classification, the

goal is to model probabilities of a data point xn belonging

to one of two classes. These probabilities must lie in the

interval [0, 1], however, a Gaussian process defines a proba-

bility over real-valued functions. GPC model turns the out-

put of a Gaussian process into a class probability using a

non-linear activation function.

GPC: Consider that the class label yn ∈ {−1, 1} of xn

is generated as yn = sign(f(xn)), where f(·) is a latent

function and sign(0) = 1. For GPC, a zero-mean Gaussian

process prior is assumed for f [23]. To model a noisy class

label generation process, the class membership probability

can be written as p(yn = 1|xn, ǫn, f) = Θ([f(xn) + ǫn])
with a zero-mean and σ2-variance Gaussian noise ǫn. We

have used Θ(·) to denote the Heaviside step function. In

this paper, we will use this explicit noise representation1.

Given N training data points, the latent function for those

training points can be written as f = (f(x1), . . . , f(xN ))T.

Invoking the Gaussian marginalization property, the prior

on f will then simply be an N -variate Gaussian distribution

i.e., p(f) = N (f |0,C), where N (·|µ,Σ) is a multivariate

Gaussian with mean µ and covariance matrix Σ. Each en-

try in C, Cnm, is k(xn,xm), with k(·, ·) being a covariance

function. A typical covariance function is the squared ex-

ponential k(xn,xm) = θ exp(−0.5||xn−xm||2/ℓ), where θ
controls the amplitude and ℓ controls the smoothness of f .

Assuming i.i.d. noise, the likelihood of the latent func-

tion f given N data points is2: p(y|X, f , ǫ1,...,N ) =

=

N
∏

n=1

p(yn|xn, ǫn, f) =

N
∏

n=1

Θ(ynf(xn)) . (2)

We have absorbed the noise term ǫn into the covariance

function of f and re-defined Cnm = k(xn,xm) + σ2δnm
where δnm = 1 if n = m and 0 otherwise and σ2 is the vari-

ance of the additive Gaussian noise around f . Bayes’ rule is

then used to compute p(f |X,y) = p(y|X, f)p(f)/p(y|X),
which can be used for prediction. Moreover, p(y|X) may

1By integrating out the noise ǫn, we end up at the familiar form of

probit classifiers where the class membership probability is simply p(yn =
1|xn, f) = Φ(0,σ2)(f(xn)) [23] with Φ(·) as the probit function.

2We will drop the conditional notation on ǫ to avoid clutter.

be maximized to estimate the parameters of k(·, ·) and the

noise variance σ2 [23]. Computing p(f |X,y) is intractable,

and several methods can be used for approximate inference

[12, 18] with expectation propagation (EP) as the preferred

method.

GPCconf: To instill the confidence in the label annotation

into the GPC framework, there exists GPC+ model [7]. The

GPC+ is a heteroscedastic Gaussian process classification

model that considers additive Gaussian noise around f with

data-dependent variance given by exp(g(x⋆
n)), where g is

another Gaussian process evaluated on the privileged infor-

mation x⋆
n. Similarly to the SVM+, the GPC+ can also be

used to incorporate user agreement scores. The main draw-

back of the GPC+ model comes with an expensive inference

procedure. This motivates us to propose a fast and scalable

version of the GPC+ method. In the EP algorithm suggested

in [7], the updates have no closed form expression and they

must be approximated using numerical quadratures. Our

proposed model admits an inference technique via EP al-

gorithm which is quadrature-free (Section 4.2), therefore

much faster than [7] (see Table 3) with no sacrifice in the

predictive performance.

We follow the same intuition as in Section 3.1, but in-

stead of using the additional information to upper bound the

hinge loss, we will use it to modify the likelihood function.

For this, we consider, besides f , another function g evalu-

ated in the Xconf domain. The following properties of g are

assumed. Whenever g is negative, the data point is easy-to-

classify and the likelihood in (2) is considered. Whenever

g is positive, the data point is difficult-to-classify and the

influence of this data point towards the likelihood function

on f should be reduced. For the difficult instance, we will

consider a constant likelihood of 1/2 in f , i.e. the probabil-

ity that minimizes an impurity measure for a binary label.

During the EP inference, the difficult instance will have ei-

ther the constant likelihood (being ignored) or a mixture of

constant and step likelihood (reduced influence); refer to

Section 5.1-Analysis of the confidence in annotations.

Let g = (g(xconf
1 ), . . . , g(xconf

n ))T. Given y, X and

Xconf, the likelihood for f , g is now: p(y|X,Xconf, f ,g) =

=
∏N

n=1 p(yn|xn,x
conf
n , f ,g) =

=

N
∏

n=1

Θ
(

ynf(xn)
)1−Θ(g(xconf

n
))(1/2

)Θ(g(xconf
n

))
. (3)

A similar likelihood is used for multi-class classification in

[6]. However, the likelihood in [6] does not consider corre-

lations through the function g about the classification diffi-

culty of each data point.

We assume independence between f and g, p(f) =
N (f |0,Cf ) and p(g) = N (g|1mg,Cg), where each en-

try in Cf and Cg is equal to k(xn,xm) + σ2
fδnm and

k(xconf
n ,xconf

m ) + σ2
gδnm respectively. We denote the set of
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different parameters in k(·, ·) for f and g along with noise

variances as Ω = {θf , σ2
f , ℓf , θg, σ

2
g , ℓg}. The posterior for

f and g is:

p(f ,g|y,X,Xconf) =
p(y|X,Xconf, f ,g)p(f)p(g)

p(y|X,Xconf)
, (4)

where p(y|X,Xconf) can be maximized with respect to Ω

to find good hyper-parameter values [23]. The posterior is

used to compute a predictive distribution for the label ynew

of a new data point xnew: p(ynew|y,X,Xconf,xnew) =

=

∫

Θ(ynewfnew(xnew))p(fnew|f)p(f ,g|y,X,Xconf) dfdgdfnew,

(5)

where p(fnew|f) is a Gaussian conditional distribution. Note

that (5) is approximate because we do not consider the label

confidence xconf
new associated to xnew. However, if we are only

interested in the label being predicted, i.e., the one with the

largest probability, (5) may be treated as exact.

We refer to the model specification described above as

GPCconf. Nevertheless, the computation of (4) and (5) is not

feasible. These quantities must be approximated in the next

section using expectation propagation (EP) [16].

4. Optimization

In this section, we will review an optimization method

for the SVM+ problem in (1). Moreover, we will propose

a quadrature-free EP algorithm for computing the posterior

(4) and the predictive (5) distributions of GPCconf.

4.1. SVM+ optimization

The optimization problem in (1) can be written as a

quadratic programming problem and in [21] a sequential

minimal optimization (SMO) algorithm is derived to find

its solution. The SVM+ is more difficult to train than the

SVM since it has more hyper-parameters to adjust, i.e., the

bandwidths of the two kernels and trade-off parameters α
and β. These parameters are typically tuned using a grid

search guided by cross-validation, which is very expensive.

4.2. GPCconf approximate inference

We briefly describe here a quadrature-free EP algo-

rithm for GPCconf. Full details can be found in the sup-

plementary material. In EP each likelihood factor in

p(y|X,Xconf, f ,g)p(f)p(g), i.e., the numerator in the r.h.s.

of (4), is approximated by an un-normalized Gaussian

[16]. We note that p(f) and p(g) are a Gaussian dis-

tribution, therefore no approximation is needed for those

two terms. Let fn = f(xn) and gn = g(xconf
n ). Then,

we can approximate the n-th likelihood term as follows:

p(yn|xn,x
conf
n , f ,g) ≡ hn(fn, gn) ≈

≈ s̃n · N (fn|m̃n, ṽn) · N (gn|µ̃n, ν̃n) ≡ h̃n(fn, gn) ,

where s̃n, m̃n, ṽn, µ̃n and ν̃n are to be estimated by

EP, and we have assumed independence between f and

g. The EP approximation of the numerator in the r.h.s.

of (4) is q̃(f ,g) = p(f)p(g)
∏N

n=1 h̃n(f(xn), g(x
conf
n )),

where each hn has been replaced by the correspond-

ing h̃n. After normalization, q̃ becomes the EP poste-

rior approximation. Namely, q(f ,g) = q̃(f ,g)Z−1
q =

N (f |µf ,Σf )N (g|µg,Σg), which is a product of two mul-

tivariate Gaussians since the Gaussian distribution is closed

under the product operation [27]. Furthermore, the normal-

ization constant Zq can be readily computed. Moreover, Zq

is used to approximate the denominator in the r.h.s. of (4).

EP updates until converge each factor h̃n. We will de-

note h̃old
n as the value of this approximate factor at current

iteration. The updated value at next iteration will be denoted

as h̃new
n . First, we remove the n-th approximate factor from

the q approximate posterior, that is q−n ∝ qold
/h̃old

n
. The term

q−n is a Gaussian because both q and h̃n are. Next, an up-

dated posterior distribution qnew is obtained by minimizing

the Kullback-Leibler divergence between hnq
−n and qnew,

i.e. KL(hnq
−n

/Zhn
||qnew) with the normalization constant

Zhn
. Minimizing the KL term involves moment matching

between hnq
−n and qnew. The moments of hnq

−n can be

obtained from the derivatives of logZhn
with respect to the

(natural) parameters of q−n [27]. Let m−n, v−n, µ−n and

ν−n be the mean and variance under q−n for fn and gn,

respectively. Then, Zhn
has a closed-form3, i.e., Zhn

=
= Φ(m

−n

/
√
v−n)Φ(−µ−n

/
√
ν−n) + Φ(µ

−n

/
√
ν−n)/2, where

Φ(·) is the c.d.f. of a standard Gaussian distribution. The

updated n-th approximate factor is now h̃new
n = Zhn

qnew
/q−n.

4.3. FITC approximation for scalable GPCconf

EP requires the inverses of Cf and Cg , i.e., the covari-

ance matrices of p(f) and p(g). This scales like O(N3),
which can be expensive if number of data points N is large.

To reduce this cost, we employ the full independent train-

ing conditional (FITC) approximation [5, 17]. Under the

FITC, the covariance matrix C is replaced by an approxi-

mation Q given by the sum of a low-rank matrix and a diag-

onal matrix. Q is parameterized by M ≤ N pseudo-inputs

X = (x1, . . . ,xM )T. That is, Q = diag(C−K)+K, with

K = CxxC
−1
xx

CT
xx

, where diag(C−K) is a diagonal ma-

trix with the diagonal entries of C−K and Cxx is a N×M
matrix whose entries are given by k(xi,xj), with k(·, ·) the

covariance function. Similarly, for Cxx. The cost of com-

puting Q−1 is O(NM2), if M ≪ N . We approximate

both Cf and Cg using the FITC approximation. For this,

we use M pseudo-inputs, X and X
conf

, with the locations

optimized by maximizing Zq .

3Please, refer to the Eq. (11) in the supplementary material.
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5. Experiments

In the first experiment, we address the task of recogniz-

ing various scene attributes whether they are ‘present’ or

‘not present’ in the images. We use a publicly available

SUN Attribute dataset (SUNAttribute)4 [20] that comes with

the averaged score over MTurk annotations of attribute be-

ing present in the image. In the second experiment, we fo-

cus on differentiating between ‘easy’ and ‘hard’ images of

animal classes. We use a subset of Animals with Attributes

dataset (AwA)5 [13] for which the annotation of easy-hard

scores is available6 [22]. For each class the annotation spec-

ifies ranking scores of its images from easiest to hardest.

Methods. We compare the performance of the pro-

posed method GPCconf with baselines including the stan-

dard GPC (with the likelihood in (2)), the heteroscedastic

model GPC+ [7], and the SVM-based methods, SVM and

SVM+. GPCconf, GPC+, and SVM+ methods utilize user

agreement scores for each image label, whereas GPC and

SVM do not. In GPC, for f , and in GPCconf and GPC+,

for both f and g, we use a squared exponential covariance

function. All hyper-parameters, i.e., Ω = {θ, σ2, ℓ} are

found by optimizing the marginal likelihood p(y|X,Xconf);
this is called type-II maximum likelihood. All GPC-based

methods use the FITC approximation and the number of

pseudo-inputs M is set to 100, which is smaller than the

total number of training instances, 400 and 520 on average.

The pseudo-inputs are initially chosen randomly from X,

in the case of the f function, and from Xconf, in the case

of the g function. Then, they are also optimized via type-II

maximum likelihood. Finally, in SVM and SVM+ we use

Gaussian RBF kernels, and a grid search coupled with 5
fold cross-validation to find all hyper-parameters. SVM has

2 hyper-parameters (kernel bandwidth and regularization)

and SVM+ has 4 hyper-parameters (2 kernel bandwidths

and 2 regularization parameters) to be tuned. The R code

of all the methods is available at the authors’ homepage.

Evaluation metric. We use the classification accuracy

as the performance measure. We repeat each experiment 10
times using random train/test splits of the data and report

mean and standard error across repeats. At each split, we

take 80% of the data to train and 20% to test the models.

Additionally we also provide the results using average pre-

cision as the performance metric (in the supplementary).

5.1. Ambiguity in recognizing semantic attributes

We focus on the Amazon MTurk study carried out on

the SUNAttribute dataset. This dataset consists of 14, 340
scene images taken from the SUN dataset [36] annotated

with 102 scene attributes such as sunny, natural, man-made

4https://cs.brown.edu/˜gen/sunattributes.html
5http://attributes.kyb.tuebingen.mpg.de/
6http://smileclinic.alwaysdata.net/lupi/AwA_

easyhardscore.zip

among others. The main task of this MTurk study is to an-

notate whether an attribute is ‘present’ or ‘not present’ in the

image. The difficulty of this annotation task is multifaceted:

(i) some attributes are rare e.g. smoke, scary, and others are

rather common, e.g. natural, man-made; (ii) some attributes

are visually obvious, e.g. ice, fire, and others are not, e.g.

natural light, warm, cold; and (iii) images typically have

only few attributes that are present.

In this dataset, presence of the attribute is measured as an

average score of three binary user responses. The score is

1.00, 0.66, 0.33, or 0.0 when three, two, one, or zero work-

ers accordingly decide that the attribute is ‘present’ in the

image. In the description of the dataset [20], an attribute

is considered ‘present’ if it receives at least two votes and

‘not present’ if it receives zero votes of three trusted work-

ers. The authors mentioned that a single positive vote (aver-

age score equals 0.33) happens in a transition state between

the attribute being present or not, so those images were ex-

cluded from the experiments. Our framework can automat-

ically take this transition state into account and therefore

does not discard any valuable annotations. The attribute la-

bel ‘present’(+1) or ‘not present’(-1) is defined via the max-

imum voting scheme (or in this case thresholding at 0.5) as

it is widely adopted in crowdsourcing studies. Finally, the

additional privileged data in terms of annotation confidence

is 1.0 if all three MTurk users agree, and 0.66 if two out of

three users agree on the label.

Setup. In [20], the authors consider two scenarios

to study the attribute learning performance. We follow

closely the first scenario, where the train and test sets are

half positive and half negative so that recognizing each at-

tribute is not influenced by the attribute popularity. We ran-

domly select 500 samples with different confidence values

to train/test the attribute classifiers. In total we train 83 bi-

nary attribute classifiers7. Additionally we study a balanced

case of images with confidence 1.00 and 0.66 for train-

ing/testing the attribute classifiers. The results of this set-

ting with 57 attributes in total8 can be found in the supple-

mentary material (entitled 57 attributes case). As our fea-

ture representation, we use 4096 dimensional deep CNNs

features extracted from the fc7 activation layer in Caf-

feNet [9] pretrained on the large scene recognition database

Places [38]. We normalize the features to have zero mean

and unit variance for each dimension.

Results. We report the results of this experiment in Ta-

ble 1. To ease the presentation of our results, we also visual-

ize the pairwise differences between the performance of our

proposed GPCconf method and four other methods, GPC,

GPC+, SVM and SVM+, in the form of bar plots located

7In [20], 87 attributes are learned with 350 samples for training/testing.

Since we use more samples, we account for 83 out of 87 of attributes.
8The number of attributes is restricted by the amount of positive sam-

ples available with confidence 1.00 and 0.66.
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GPC GPCconf GPC+ [7] SVM+ [34] SVM

image image+conf image+conf image+conf image

sailing 79.70± 0.79 80.70± 0.71 79.90± 0.85 80.00± 0.84 79.30± 0.88
driving 77.20± 1.78 78.70± 1.67 78.50± 1.63 77.90± 1.47 77.70± 1.61
biking 75.00± 1.39 76.80± 1.24 76.70± 1.29 75.60± 1.71 76.80± 1.19
transport 81.20± 0.58 80.60± 1.03 80.90± 1.09 81.10± 1.02 80.00± 1.13
vacation 76.50± 1.63 76.10± 1.67 75.70± 1.55 74.20± 1.41 75.10± 1.12
hiking 78.20± 2.11 80.10± 1.68 79.60± 1.74 78.70± 1.93 78.30± 1.56
climbing 82.20± 1.29 83.30± 1.18 82.90± 1.14 81.80± 1.21 81.70± 1.10
camping 75.10± 1.25 76.40± 1.33 76.10± 1.37 75.10± 1.42 76.10± 1.31
reading 78.40± 0.94 78.70± 1.13 78.30± 1.15 77.70± 0.99 78.10± 1.22
teaching 75.80± 0.95 76.10± 1.35 76.80± 1.26 76.20± 1.30 76.10± 1.58
diving 75.70± 1.32 75.60± 1.04 76.10± 0.98 76.60± 0.80 74.40± 0.74
swimming 76.20± 0.82 78.00± 1.00 78.40± 1.01 78.00± 0.65 78.20± 0.86
eating 79.40± 1.00 80.40± 0.78 80.10± 0.94 77.30± 1.42 80.60± 0.80
socializing 76.20± 1.00 76.70± 1.43 77.30± 1.23 78.10± 1.47 77.30± 1.50
congregat. 80.00± 1.17 81.20± 1.11 80.60± 1.13 77.80± 1.04 79.90± 1.19
queuing 71.30± 1.15 71.10± 1.20 71.20± 1.19 70.10± 1.07 71.60± 1.37
competing 78.30± 1.61 80.30± 1.40 80.00± 1.48 79.60± 1.63 80.90± 1.46
sports 80.90± 1.10 81.60± 0.84 81.50± 0.86 79.90± 1.27 81.40± 1.06
exercise 77.70± 1.48 80.40± 1.14 79.90± 1.43 79.00± 0.80 78.90± 1.10
playing 76.70± 0.88 77.00± 1.32 77.10± 1.29 76.60± 1.66 76.90± 1.55
spectating 81.90± 1.45 83.20± 0.90 83.20± 0.86 81.10± 1.20 82.20± 1.00
farming 79.00± 0.76 79.20± 1.08 79.20± 1.11 79.30± 0.94 77.80± 0.96
shopping 81.50± 0.74 81.20± 0.94 81.10± 0.98 80.20± 1.58 81.00± 1.07
working 76.90± 1.62 76.80± 1.59 77.00± 1.60 76.30± 1.50 75.70± 1.66
us.tools 75.20± 1.17 74.80± 1.26 75.30± 1.35 73.20± 1.16 75.10± 1.18
business 71.20± 1.48 71.50± 1.51 70.90± 1.63 68.60± 1.54 71.50± 1.58
praying 78.60± 0.60 78.70± 1.02 79.20± 1.08 78.40± 0.55 77.20± 1.21
fencing 69.40± 0.87 69.40± 0.99 69.80± 1.00 68.30± 1.71 69.30± 1.09
railing 65.70± 1.71 69.60± 1.12 69.70± 1.30 68.00± 1.26 68.20± 1.77
wire 70.80± 1.55 70.20± 1.85 70.50± 1.80 72.10± 1.24 71.00± 1.26
trees 76.20± 1.35 76.00± 1.22 76.00± 1.29 74.40± 1.18 75.20± 0.94
grass 77.90± 1.51 79.10± 1.14 79.00± 1.22 79.30± 1.67 77.70± 1.05
vegetation 78.30± 1.26 78.90± 1.47 78.50± 1.54 77.40± 1.23 76.70± 1.10
shrubbery 78.50± 1.68 79.50± 1.31 79.70± 1.43 77.10± 1.63 76.20± 1.69
foliage 76.20± 0.91 77.30± 0.96 77.10± 0.97 76.20± 0.69 76.80± 1.27
leaves 75.50± 1.55 76.60± 1.59 77.40± 1.46 76.80± 1.16 77.20± 1.08
asphalt 80.90± 1.25 81.30± 1.32 81.20± 1.60 80.30± 0.85 80.90± 1.16
pavement 73.70± 0.88 73.70± 1.10 73.90± 0.88 73.90± 1.10 74.30± 0.68
shingles 83.60± 0.89 83.50± 0.82 83.90± 0.98 82.90± 1.26 82.20± 1.33
carpet 74.60± 1.27 74.40± 1.10 74.90± 1.08 74.40± 0.98 73.20± 1.36
brick 79.10± 1.57 78.50± 1.46 78.30± 1.36 80.10± 1.27 78.70± 1.56
concrete 66.40± 1.45 65.70± 1.10 67.40± 1.34 65.80± 1.33 67.30± 1.15

GPC GPCconf GPC+ [7] SVM+ [34] SVM

image image+conf image+conf image+conf image

metal 71.50± 1.57 72.00± 1.33 71.70± 1.51 71.90± 1.45 70.40± 0.70
paper 72.90± 1.33 74.00± 1.00 73.70± 0.85 72.80± 1.29 72.80± 1.00
wood 72.00± 1.15 72.30± 1.21 72.40± 1.25 71.90± 2.09 72.20± 1.55
vinyl 69.80± 1.70 69.10± 1.68 69.20± 1.64 67.30± 1.48 70.60± 1.34
rubber 77.40± 1.08 78.20± 1.16 77.80± 1.21 77.20± 1.42 77.80± 1.21
cloth 74.10± 1.53 75.70± 1.09 76.00± 1.10 74.30± 1.18 75.10± 1.11
sand 78.50± 1.39 77.80± 1.59 77.40± 1.46 77.70± 1.52 78.20± 1.36
rock 74.70± 1.31 75.50± 1.37 75.50± 1.53 74.20± 1.27 75.30± 1.69
dirt/soil 76.10± 1.34 77.70± 1.30 77.30± 1.38 75.50± 1.74 75.60± 1.31
glass 67.70± 1.10 68.20± 0.91 68.00± 1.17 65.80± 1.39 67.90± 1.03
ocean 81.00± 0.51 80.60± 0.71 80.90± 0.77 80.60± 0.78 79.60± 0.97
run.water 79.80± 1.33 80.20± 0.87 80.10± 0.99 80.80± 1.03 80.30± 1.41
stillwater 76.30± 1.51 76.00± 1.26 76.40± 1.31 75.40± 0.98 75.60± 1.11
snow 84.40± 0.89 85.50± 0.85 85.40± 0.78 85.00± 0.96 85.40± 0.99
clouds 71.80± 1.68 70.50± 1.50 71.90± 1.20 70.80± 1.41 69.40± 1.10
nat.light 78.80± 1.26 81.50± 1.00 81.60± 1.07 79.70± 1.18 81.30± 1.23
sunny 71.90± 1.20 72.20± 0.81 72.70± 1.04 69.30± 1.35 71.90± 1.36
el.lighting 73.20± 0.99 73.00± 1.17 73.20± 1.09 73.80± 1.12 72.10± 0.95
aged/worn 72.70± 1.18 73.50± 0.95 73.10± 1.10 72.70± 1.08 73.70± 0.93
glossy 74.40± 1.56 75.00± 1.81 74.10± 1.69 72.60± 1.52 72.40± 1.71
matte 69.40± 1.02 67.70± 0.99 67.90± 1.00 68.80± 1.04 69.80± 0.96
moist 73.80± 1.65 75.30± 1.62 74.20± 1.56 72.70± 1.64 75.70± 1.42
dry 75.80± 1.60 75.70± 1.50 76.20± 1.59 76.20± 0.90 76.20± 1.26
dirty 77.40± 1.09 76.70± 1.47 77.10± 1.40 75.70± 1.31 75.70± 1.20
rusty 69.60± 1.24 70.10± 1.14 70.30± 1.16 69.40± 1.10 69.50± 1.31
warm 71.50± 1.63 72.20± 2.08 71.90± 2.02 70.60± 1.46 70.20± 1.55
cold 86.90± 1.27 87.20± 1.19 87.10± 1.17 87.30± 0.83 87.00± 0.99
natural 82.80± 1.16 82.20± 1.10 82.40± 0.93 81.90± 1.40 81.70± 1.25
man-made 71.40± 1.14 71.80± 0.99 71.70± 1.15 71.70± 0.81 73.90± 1.14
open 78.00± 0.72 79.60± 1.10 79.50± 1.12 78.60± 0.74 79.30± 1.19
semi-encl. 76.90± 1.14 77.30± 1.01 77.60± 0.98 77.10± 1.86 77.80± 1.37
enclosed 80.60± 1.14 81.90± 1.34 82.10± 1.25 80.80± 1.08 82.10± 1.05
far-horizon 80.40± 1.52 81.00± 1.31 80.20± 1.35 79.90± 1.39 79.70± 1.24
nohorizon 79.10± 1.28 79.60± 1.43 79.60± 1.43 78.60± 1.43 78.60± 1.44
rugged 81.20± 0.87 81.30± 0.60 81.30± 0.57 80.80± 1.26 81.90± 0.83
vertical 72.50± 0.93 75.10± 1.53 74.40± 1.39 71.80± 1.38 73.60± 1.23
horizontal 72.40± 1.27 73.60± 0.94 73.60± 0.91 71.70± 1.47 70.90± 1.25
symmetr. 73.30± 1.24 73.10± 1.27 73.40± 1.23 70.60± 1.58 72.30± 1.66
cluttered 79.30± 1.18 78.90± 1.20 78.70± 1.18 78.20± 1.35 78.40± 0.98
soothing 71.90± 1.16 73.70± 1.14 73.20± 1.17 73.00± 1.32 73.10± 1.35
stressful 72.90± 1.58 73.70± 1.70 73.80± 1.72 72.80± 1.23 72.70± 1.64

2.1 2.1

●

2 3 4

GPC+

GPC conf

SVM+

GPC image

SVM

Critical Distance

Table 1. Recognizing 83 scene attributes. Top: The numbers are mean and standard error of the accuracy over 10 runs of the 83 attribute

classifiers. GPCconf, GPC+ and SVM+ methods utilize user agreement scores for each image label, whereas GPC and SVM do not. The

best result is highlighted in boldface with an extra blue for GPCconf and GPC+. We consider GPCconf as a faster variant of GPC+ (please

refer to Table 3 for running time comparison). Bottom: To summarize the full results in the above table, we also provide a pairwise

comparison of the proposed GPCconf and four other methods in terms of difference in accuracies. The length of the bar corresponds to

relative improvement of the accuracy for each of the 83 attributes. Finally, we also include statistical summary of the results based on

Demšar [4] analysis (bottom right). Average rank of the methods (x axis) is computed based on accuracy over all repeats (the higher the

better). A critical distance measures significant differences between methods based on their ranks. We link two methods with a solid line

if they are not statistically different (p-value > 5%). Best viewed in color.
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at the bottom of the table. Additionally we also analyzed

our experimental results using the multiple dataset statisti-

cal comparison method of [4] (bottom right). A bird’s eye

view of Table 1 and its figures tells that it is certainly ben-

eficial to incorporate label confidence information into the

learning process. Overall, the GPC-based LUPI methods,

GPCconf and GPC+, outperform other baselines in the ma-

jority of cases. We counted 30 wins for GPCconf, 28 wins

for GPC+, 9 for GPC, 10 for SVM+, and 15 for SVM includ-

ing 9 draws. GPCconf is superior to the standard GPC in 56
out of 83 cases, whereas SVM+ performs on par with the

standard SVM baseline. Furthermore, GPCconf is able to

utilize the label confidence better than SVM+ in this exper-

iment. We suspect the SVM+ does not perform well due to

the difficulty in finding suitable values for the four hyper-

parameters. The statistical analysis based on Demšar test

[4] further supports these claims, as well as the fact that

there is no significant difference between the GPCconf and

GPC+ methods.

Analysis of the predictive performance. Additionally

we perform the analysis using a balanced case of images

with confidence 1.00 and 0.66 for training/testing the at-

tribute classifiers (the results are in the supplementary ma-

terial). We report the performance on test images with

both 1.0 and 0.66 agreement scores (test scenario A), and

when using test images with 1.0 agreement scores only (test

scenario B). GPCconf shows an advantage over other base-

lines, particularly in B, verifying its robustness against la-

bel noise. As a practical note, we can see that there is a

clear difference when testing the methods in A and B, i.e.

the overall performance of the methods in B is higher than

those in A. Hence, it is important to take into account the

information about MTurk users agreement when collecting

new datasets and designing the evaluation setup.

Analysis of the confidence in annotations. The main

principled advantage of the GPC-based over SVM-based

methods is that the label confidence is inherently encoded in

the probabilistic output of the GPC-based methods. Given

that we have confidence of the MTurk annotations during

training (Xconf), we analyze confidence in labels produced

by the GPCconf method in two ways. First, we visualize few

representative examples of the learned function g that acts

on MTurk confidence Xconf in Figure 1–right (thick blue

line, left y-axis shows function values). This function is

designed to reflect the value of the MTurk confidence: in-

stances with low confidence in annotations receive less em-

phasis in the training process (g is positive) and instances

with high confidence receive more emphasis (g is negative).

On this plot one can also see the probability p(g(xconf
n ) > 0)

as a function of MTurk confidence (thick red line, right y-

axis shows probability scores). For samples where MTurk

confidence was equal to 1, p(g(xconf
n ) > 0) is almost 0

(our design enforces instances with high confidence to have

Confidence in Xconf
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Figure 1. Label confidence analysis. Left: Scatter plot of MTurk

confidence versus marginal likelihood p(y|X,Xconf) at training

time. Right: Representative posterior mean of the g function and

1-standard-deviation confidence interval (solid blue curve) along-

side with the probability of g > 0 (solid red curve) for three dif-

ferent cases. Best viewed in color.

negative g). However, for samples with MTurk confidence

0.66, we have 3 scenarios9: a) p(g(xconf
n ) > 0) = 1.0

corresponds to low confidence data points being ignored

with likelihood contributions of 1/2 (Figure 1–middle), b)

p(g(xconf
n ) > 0) = 0.0 corresponds to low confidence

data points being as informative as any data point with

the step likelihood contributions (Figure 1–bottom), and c)

0.0 < p(g(xconf
n ) > 0) < 1.0 corresponds to influence of

low confidence data points being reduced with a mixture of

1/2 and the step likelihood contributions (Figure 1–top).

Second, we also show the scatter plots how label confi-

dence scores p(y|X,Xconf) produced by the classifier (in

the training split) reflect the MTurk agreement scores in

Figure 1–left. The scatter plot shows similar trends be-

tween the MTurk confidence and the classifier confidence

of GPCconf. When MTurk confidence is 1, the GPCconf clas-

sifier confidence tends to be high (in the top right corner),

and if MTurk score is 0.66, the classifier confidence stays

low (in the bottom left corner).

9For a particular instance xn, x
conf
n

, yn the associated term in the

likelihood function of f and g in Eq. 3 is: p(yn|xn,xconf
n

, f, g) =

1/2Θ(g(xconf
n

)) × Θ(ynf(xn))1−Θ(g(xconf
n

)). By marginalizing g, the

likelihood term of f given the instance is: p(g(xconf
n

) > 0) × 1
2
+ (1 −

p(g(xconf
n

) > 0))×Θ(ynf(xn)).
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GPC GPCconf (ours) SVM+ [34] SVM

image image+conf image+conf image

Chimp. 74.86± 0.8 74.93± 0.7 75.07± 0.7 73.71± 0.9
G.panda 80.64± 0.5 81.17± 0.6 81.33± 0.5 80.53± 0.6
Leo 81.67± 0.7 82.00± 0.7 80.58± 0.6 80.42± 0.8
Pers.cat 79.72± 0.4 80.14± 0.4 79.15± 0.7 78.17± 1.0
Hippo 72.85± 1.0 72.78± 1.1 73.33± 1.4 73.06± 1.1
Raccoon 78.57± 1.0 78.81± 0.8 76.98± 0.8 76.51± 0.6
Rat 84.33± 1.5 84.00± 1.5 83.50± 1.8 81.50± 1.8
Seal 48.00± 1.4 48.10± 1.2 48.50± 0.8 49.20± 0.8

Table 2. Distinguishing easy from hard images on AwA dataset.

The numbers are mean and standard error of the accuracy over 10
runs. To define confidence of image label, GPCconf and SVM+

methods utilize easy-hard score annotation available per image.

GPC GPCconf (ours) GPC+[7] SVM SVM+[34]

SUNAttribute 27m. 32m. 51m. 6m. 106m.

AwA 32m. 42m. 73m. 10m. 252m.

Table 3. Average training time in minutes for SUNAttribute with

≈ 400 tr. samples and AwA experiments with ≈ 520 tr. samples.

5.2. Ambiguity to distinguish easy from hard images

We focus on the Amazon MTurk study carried out on 8
classes of the AwA dataset: chimpanzee, giant panda, leop-

ard, persian cat, hippopotamus, raccoon, rat and seal. In

this study, a worker is shown a set of images of one class

and is asked to rank the images from the easiest to the hard-

est to spot the animal. Finally, each image gets an easy-hard

score in the range from 1 (hardest) to 16 (easiest) as the av-

erage score over all worker responses across multiple sets

of images.

Setup. This task mimics human learning to classify easy

and hard samples. For each class, we label half of the im-

ages as ‘easy’(+1) and half of the images as ‘hard’(-1) with

respect to the easy-hard scores, and solve a binary classifi-

cation problem. The important information about the easy-

hard score can be encoded in the label confidence. We it-

eratively assign the highest confidence, i.e., 1.0 to the top

10% of the easiest images and bottom 10% of the hardest

images. Next, we assign a less confident score equal to 0.9
to the 10% of the remaining data from the top and from the

bottom, and repeat. Images with an average score slightly

above/below the threshold get a confidence score of 0.6. We

use all available data per class to form the train/test splits,

ranging from 300 (rat) to 900 images (giant panda). As

our feature representation, we use 4096 dimensional deep

CNNs features extracted from the fc7 activation layer in

CaffeNet [9] pretrained on ImageNet (ILSVRC12) [26]. We

normalize the features to have zero mean and unit variance

for each dimension.

Results. We present the results of this experiment in

Table 2. First we would like to point out that in all cases

but seal the overall performance of the methods is better

than chance. This means that there is a difference between

easy and hard instances and we can learn a classifier to cap-

ture this difference. In case of seal, majority of the images

are indifferent, i.e. easy-hard score is homogeneously dis-

tributed in the middle range, so the image is as easy as it is

hard. Since there is no signal for classifier to learn we ex-

clude this class from further analysis. From the table with

the results we can conclude that it is certainly beneficial to

incorporate label confidence information into the learning

process. Overall, the methods that utilize confidence infor-

mation, GPCconf and SVM+, outperform their counterparts,

GPC and SVM, in all cases but rat, which has the least

amount of train/test data available. In this experiment, the

proposed GPCconf performs on par with the SVM+ method,

which shows the benefits of both GPC-based and SVM-

based frameworks for LUPI.

6. Discussion and Conclusion

All you need in this life is ignorance and con-

fidence, and then success is sure.

Mark Twain

We studied learning using privileged information (LUPI) as

a framework to incorporate annotation disagreements into

the classifiers. In this framework, there is extra informa-

tion (in our case confidence in annotations) for each data

sample that is only accessible at training time. We exploit

this extra information as the way to discriminate between

easy and difficult examples. We proposed a model based on

Gaussian Process framework in which the influence of dif-

ficult instances in the training process is reduced, retained,

or even ignored. The proposed method uses an efficient

quadrature-free expectation propagation algorithm for ap-

proximate inference therefore it is faster to train than ex-

isting LUPI methods: 42m for ours v. 1h13m for GPC+

and 4h12m for SVM+, the two baseline LUPI methods. We

showed that classifiers could benefit from incorporating an-

notation ambiguities into the learning process.

There are emerging research trends in coupling kernel

methods/Gaussian processes and deep CNNs models (see

for example: [28, 35]). The main idea is to learn the convo-

lutional layers as in deep CNNs and replace fully connected

layers with the nonparametric kernel functions. Coupling

our GPCconf model and the deep-er kernels concept is an at-

tractive future direction. To achieve this in practice, we will

need a large dataset with confidence annotations.
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