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Abstract

Can we learn about object classes in images by looking

at a collection of relevant 3D models? Or if we want to

learn about human (inter-)actions in images, can we bene-

fit from videos or abstract illustrations that show these ac-

tions? A common aspect of these settings is the availabil-

ity of additional or privileged data that can be exploited at

training time and that will not be available and not of inter-

est at test time. We seek to generalize the learning with priv-

ileged information (LUPI) framework, which requires addi-

tional information to be defined per image, to the setting

where additional information is a data collection about the

task of interest. Our framework minimizes the distribution

mismatch between errors made in images and in privileged

data. The proposed method is tested on four publicly avail-

able datasets: Image+ClipArt, Image+3Dobject, and Im-

age+Video. Experimental results reveal that our new LUPI

paradigm naturally addresses the cross-dataset learning.

1. Introduction

Vapnik et al. [35, 24, 34] introduced learning with

privileged information (LUPI) as a learning with teacher

paradigm, where at the training stage, a teacher gives some

additional explanation x
⋆
i about an example xi. LUPI has

been shown useful in a variety of learning scenarios such as

ranking [28], categorization [37], structured prediction [9],

data clustering [8], metric learning [10], face/gesture recog-

nition [38], glaucoma detection [7], and recently learning

with annotation disagreements [27]. Most LUPI methods

(e.g. [35, 28, 20, 14]) follow the assumption that the ex-

tra information is useful to discriminate between easy and

difficult examples. This knowledge is then used to deter-

mine the influence of each instance in the training process.

Specifically, one puts less emphasis or even ignores diffi-

cult instances during training in hope that this will improve

performance. Reflecting on how per-instance privileged in-

formation can be used to identify whether this instance is
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Figure 1: In this work, we propose a framework to solve vi-

sion tasks in images by acquiring knowledge from the mis-

takes committed by other data collections (videos, clip arts,

and 3D models) when learning the same concepts.

an easy or a difficult one, we ask the following question: is

it possible to transfer easiness and hardness in a class sense

instead of per-instance?

This paper seeks to advice the learner to acquire knowl-

edge from the mistakes committed by others when learn-

ing the same concept. One will learn that making errors on

an example-by-example basis is unavoidable, but one will

make the right decisions at a larger scale by minimizing di-

vergence between own mistakes and others’. We will ex-

plore a distribution matching over the mistakes in original

and privileged representations as a principled approach to

achieve the class-level information transfer. We will use the

regularized risk functional framework and replace the em-

pirical risk with an (empirical) divergence term character-

izing the mismatch between error distributions on the priv-

ileged and original spaces. This approach is innovative in

two senses: (1) Prior knowledge is normally encoded in

the regularization term, instead we introduce bias into the

risk (loss) term. (2) Almost all distribution matching meth-

ods match input features and/or function outputs, instead we

match error distributions.

3967



2. Related work

In the literature, distribution matching has been proposed

for, among others, transduction learning (e.g. [25]) and do-

main adaptation (e.g. [21, 40]). Quadrianto et al. [25]

matched the distribution between function outputs on the

training data f(X) := {f(x1), . . . , f(xN )} and outputs

on the test data f(X ′) := {f(x′
1), . . . , f(x

′
N ′)} to devise

a general transduction algorithm for classification, regres-

sion, and structured prediction settings, whereas we pro-

pose to match error distributions on privileged and origi-

nal domains. The empirical Maximum Mean Discrepancy

(MMD) [12] is employed as the nonparametric metric of

difference between two distributions. In the domain adapta-

tion setting, Pan et al. [23] used the MMD metric to project

data from a target domain X := {x1, . . . ,xN} and a re-

lated source domain X ′ := {x′
1, . . . ,x

′
N ′} into a common

subspace such that the difference between the distributions

of source and target domains is reduced. Recently, Zhang

et al. [40] proposed to also use the MMD metric to project

data X and X ′ as well as function outputs f(X) and f(X ′)
in the framework of deep neural networks.

In general, finding projection matrices involves either

transformation of the data from source and target into a

common subspace (two projection matrices) or transforma-

tion of the data from source to target (one projection ma-

trix). The projection methods can be expensive in both

computational complexity and memory requirement (if the

data dimensionality is high). Our method offers a refreshing

look on domain adaptation problems that sidestep the pro-

cess of finding projection matrices. The cross-dataset sce-

nario in this paper overlaps with the work of, for example,

[32], which aims to overcome dataset bias across multiple

image datasets in the domain adaptation scenario. In con-

trast, we explore cross-modal transfer in the cross-dataset

learning. Complementary to us, [13] recently use a distilla-

tion framework for cross-modal representation learning.

Model distillation or compression [15, 2] has attracted

attention in the domain adaptation setting with deep archi-

tectures (e.g. [33, 13]). The aim is to learn representations

for an unlabeled or sparsely labeled target domain by using

a large labeled source domain as a supervisory signal. The

framework uses output probability predictions on source

domain as training labels for target domain and shows that

this training is more accurate than using the original tar-

get labels. Instead we propose to match error distributions

across domains as knowledge distillation in a LUPI frame-

work. This is also supported by a work of [22] that connects

distillation and LUPI with one-to-one correspondences. In

Section 3, we will describe related work on LUPI, followed

by our proposed generalization of the LUPI paradigm in

Section 4. We choose to motivate our work in terms of LUPI

as it offers a unified framework for learning with additional

information that is only available at training time.

3. LUPI with one-to-one correspondence

We formalize the LUPI setup for the task of supervised

binary classification with a single source of privileged infor-

mation. Assume that we are given a set of N training exam-

ples, represented by feature vectors X = {x1, . . . ,xN} ⊂
X = Rd, their label annotations, Y = {y1, . . . , yN} ∈ Y =
{+1,−1}, and additional information, also in the form of

feature vectors, X⋆ = {x⋆
1, . . . ,x

⋆
N} ⊂ X

⋆ = Rd⋆

, where

x
⋆
i encodes the additional information we have about sam-

ple xi. This additional information is only available at train-

ing time, thus is referred as the privileged information. We

now have X as the original data space and X ⋆ as the privi-

leged data space. What we want is to learn a binary classi-

fication function f : X → Y from a large space of possible

functionsF that can then be used to infer the label ynew for a

new input instance xnew. The goal of LUPI is to exploit the

privileged information in the learning process of the latent

function f . This exploitation, however, should not involve

the usage of X⋆ information as a direct input to the function

f , because X⋆ is not available for yet to be seen instances.

For this, a common approach found in the literature is to

consider that the privileged information can be used to dis-

tinguish between easy and difficult instances [35, 28, 14].

This extra knowledge can be used to bias the learning pro-

cess towards finding a latent function f with better general-

ization properties.

Slack based methods. Vapnik and Vashist [35] intro-

duced an SVM+ method as a generalization of the SVM-

based framework to solve LUPI. SVM+ tries to upper bound

the mistake at i-th data point in the original space X based

on the privileged data X ⋆. Intuitively, we try to predict

the difficulty of each data point based on the additional

privileged data for that particular instance, thereby creat-

ing a data dependent upper bound ξi on the hinge loss. In

the context of binary classification with a linear classifier,

f(x;w) := 〈w,x〉+ b, the SVM+ optimization admits the

following form:

minimize
w,w⋆,b,b⋆

‖w‖2
︸ ︷︷ ︸

regularization

+C⋆ ‖w⋆‖2
︸ ︷︷ ︸

regularization

+ C

N∑

i=1

[〈w⋆,x⋆
i 〉+ b⋆]

︸ ︷︷ ︸

loss:=upper bound of
own mistakes

(1a)

subject to, for all i = 1, . . . , N ; 〈w⋆,x⋆
i 〉+ b⋆ ≥ 0,

1− yi[〈w,xi〉+ b]
︸ ︷︷ ︸

own mistake

≤ 〈w⋆,x⋆
i 〉+ b⋆.

︸ ︷︷ ︸

data dependent upper bound

(1b)

SVM+ parameterizes the slack value for each sample

ξi = 〈w⋆,x⋆
i 〉 + b⋆ with unknown w

⋆ and b⋆ parameters.

These slack variables indicate which instances are easy and

which are difficult to classify based on privileged informa-

tion. Specifically, a difficult instance x
⋆
i has a large slack
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variable ξi, which makes the corresponding constraint in

(1b) have little impact or none at all in the estimation of

w. If an instance is easy, its slack variable is close to zero,

and the optimization task would concentrate on satisfying

the corresponding constraint in (1b).

Remark In a variant of SVM+, called dSVM+ [35],

Vapnik and Vashist first train a standard SVM parameter-

ized by ŵ and b̂ on X⋆, Y and then compute deviation

values d⋆i of each training instance. These are defined as

d⋆i = 1 − yi[〈ŵ,x⋆
i 〉 + b̂]. Finally, an SVM+ is trained us-

ing X , X⋆ and Y , where X⋆ is a column vector with i-th

element that corresponds to the deviation value of i-th train-

ing instance, d⋆i . This means the constraint in Eq. (1b) for a

data point xi is now upper bounded by a scaled and shifted

version of other’s mistake:

1− yi[〈w,xi〉+ b]
︸ ︷︷ ︸

own mistake

≤ 〈w⋆, (1− yi[〈ŵ,x⋆
i 〉+ b̂])

︸ ︷︷ ︸

other’s mistake

〉+ b⋆.

The idea is that if it is difficult to classify the instance in

the privileged domain X⋆, which is often assumed to have

better quality instances [35, 28], then it is going to be even

more difficult in the original X domain.

Non-slack based methods. In an ensemble approach,

Chen et al. [4] described an Adaboost algorithm that uses

privileged information. The method proposed considers de-

cision stumps as weak classifiers, which are trained on the

union of X and X⋆ at each step. In the context of Gaus-

sian process classification, Hernández-Lobato et al. [14]

proposed a heteroscedastic Gaussian process classification

model to address classification tasks with privileged infor-

mation. Wang et al. [36] proposed to solve a joint regular-

ized risk functional over f and f⋆ with an extra regulariza-

tion term that couples the optimization problem in the form

of
∑N

i=1(f(xi)−f
⋆(x⋆

i ))
2. This extra term is similar to the

squared difference term in the co-regularization based multi

view semi-supervised learning approaches (e.g. [3, 29]).

The crucial difference is while co-regularization methods

aim to improve the average performance of all single view

classifiers, LUPI method is only interested in improving the

performance of the classifier in the original space.

4. Correspondence-free LUPI

We seek to relax the one-to-one correspondence assump-

tion in the standard LUPI formulation. This is natural in the

setting where we learn to recognize, for example, activi-

ties in images while the same activities are also available in

videos as privileged information. We will of course not ex-

pect that there will be a one-to-one correspondence between

images and videos. Nevertheless, learning about activities

from videos could be informative about the action class and

applicable to the same task with images. Another example

is learning about interactions among people like dancing

from real images and from abstract illustrations. Albeit the

action does not appear the same way in abstract and real im-

ages, both representations are informative about the action

and can learn from one another [1].

We argue that the LUPI framework can be generalized to

such scenario by transferring the general class characteristic

from the privileged to the original data via the distribution

of the easy and hard samples. In the following we explain

the idea of matching the distribution of slack variables as a

model for the class-level information transfer.

4.1. Distribution matching

We assume a linear form of classifier in the privileged

and original spaces. Let pd⋆ denote a distribution over de-

viation values d⋆ (i.e. unthresholded slack variables but we

might refer them simply as slack variables if the context is

clear). The deviation values d⋆, as in the dSVM+ formu-

lation, are obtained by first training a linear SVM on X⋆,

Y ⋆ and then evaluating the slack variables using training

data. The N⋆ samples from this distribution are denoted

as D⋆ = {d⋆i | d
⋆
i = 1 − y⋆i 〈w

⋆,x⋆
i 〉, i = 1, . . . , N⋆}.

The shape of pd⋆ reflects the distribution over easy and hard

instances of the class in the privileged space. This distri-

bution is class specific and can be seen as error distribu-

tion of the classifier in the privileged space. We assume

that for a particular classification task like differentiating

human actions, this error distribution stays similar across

modalities. So that a distribution pd over deviation val-

ues in the original space X with N samples denoted as

D = {di | di = 1 − yi〈w,xi〉, i = 1, . . . , N}) and pd⋆

coincide. Therefore, our main assumption is that the error

distributions, pd⋆ and pd, could be matched even if f and f⋆

are learned from different modalities, images and videos,

respectively.

Our main objective for the class-level information trans-

fer is based on the regularized risk minimization frame-

work with a divergence term characterizing the mismatch

between the class error distributions in the privileged and

original spaces acting as a loss term:

minimize
w∈R

d

‖w‖2
︸ ︷︷ ︸

regularization

+ C KL(pd⋆ ||pd)
︸ ︷︷ ︸

loss := divergence between
own mistakes and others’ mistakes

(2)

where KL(pd⋆ ||pd) is the Kullback-Leibler divergence be-

tween distributions pd⋆ and pd and C is the trade-off hyper-

parameter that controls the relative influence of the diver-

gence (loss) component and the regularization. Note that

the KL divergence is asymmetric, the choice in expressing

the distribution distance measure as KL(pd⋆ ||pd) instead of

KL(pd||pd⋆) is deliberate. This will simplify our learning

algorithm as it will become clear below. Contrasting our

proposed method with SVM+, we notice that in SVM+,

Eq. (1), the training error is upper bounded per each in-
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(a) Training error distributions

(b) Test error distributions

Figure 2: Visualization of the error distributions of three

classifiers in the experiment with Image+Video dataset. For

a binary problem of differentiating a kayaking action from

others, we compare pd when training SVM on original

data space X , pd with KL(pd⋆ ||pd) when training our proposed

SVM MMD on data from X and X ⋆, and pd⋆ when training

SVM on privileged data space X ⋆. In this case, our pro-

posed method successfully utilizes privileged information:

the peak of train (2a: middle) and test (2b: middle) distri-

butions pd with KL(pd⋆ ||pd) are shifted to the left comparing to

pd. Train and test cases of pd⋆ are the same as we use all

available data in the other dataset as privileged information.

stance based on its privileged data (requires one-to-one cor-

respondence). Instead in Eq. (2), we match the distribution

of errors in privileged and original spaces (correspondence-

free setting). Our intuition is that making errors on an in-

stance basis is unavoidable, but we will make better deci-

sions at a large scale by comparing error distributions.

To compute the KL divergence, we require a paramet-

ric assumption on the distribution pd⋆ as well as pd. If we

assume that X⋆ is of much better quality than X as in for

example [35, 28], the distribution of the slack variables on

privileged space d⋆ will have a mean value in the negative

region (for a correct prediction with a high confidence, the

functional margin y⋆i 〈w
⋆,x⋆

i 〉 will be large and therefore

the slack variable will be negative). Whereas, the distri-

bution of the slack variables in the original space, pd, will

have a mean value around zero and tails that accounts for

correctly (left tail) classified samples at negative region and

incorrectly (right tail) classified samples at positive region.

Please, refer to our visualization of the distribution over the

deviation values in Figure 2.

In the simplest case, we could model the pd distribution

with the Gaussian exponential family, pd = N (d|µd, σ
2
d).

With this assumption, minimizing KL(pd⋆ ||pd) reduces to

matching the first and second moments of the two distribu-

tions, which are the mean and the variance.

4.2. Maximum Mean Discrepancy

We can go beyond the Gaussian assumption and match

skewness, kurtosis (third and fourth moments) or even

higher order moments. In a more general case, to avoid

a parametric assumption on the distance estimate between

distributions, we propose to use the Maximum Mean Dis-

crepancy (MMD) criterion [12], a non-parametric distance

estimate. Denote byH a Reproducing Kernel Hilbert Space

with kernel k defined on X . In this case one can show [12]

that whenever k is characteristic (or universal), the map

µ :p→ µ[p] := Ed∼pd
[k(d, ·)]

with associated distance

MMD(pd⋆ , pd) := ‖µ[pd⋆ ]− µ[pd]‖
2

(3)

characterizes a distribution uniquely. Examples of char-

acteristic kernels [31] are Gaussian RBF, Laplacian and

B2n+1-splines. With a this choice of kernel functions, the

MMD criterion matches infinitely many moments in the Re-

producing Kernel Hilbert Space (RKHS). The mean and

variance matching described in the previous section is a spe-

cial case when we use a polynomial kernel with degree 2.

We use a biased estimate of MMD as follows:

M̂MD =
1

N2

N∑

i

N∑

i′

k(di, di′)−
2

NN⋆

N∑

i

N⋆

∑

j

k(di, d
⋆
j )+

+
1

N⋆,2

N⋆

∑

j

N⋆

∑

j′

k(d⋆j , d
⋆
j′). (4)

The above quantity is then used as a plug-in estimator for

non-parametric KL(pd⋆ ||pd) in (2). Please refer to Alg. 1

for the summary of our proposed method.

Remark Using non universal kernels such as a polyno-

mial kernel will only give necessary but not sufficient con-

ditions for distribution matching. Hence we use RBF kernel
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Algorithm 1 Matching Error distributions on X ⋆ and X

Input original data (X,Y ), privileged data (X⋆, Y ⋆),
assume f(x) := 〈w,x〉 and f⋆(x⋆) := 〈w⋆,x⋆〉

w
⋆ ← solve ||w⋆||2 + hingeloss(w⋆|X⋆, Y ⋆)

D∗ = {1− y⋆i 〈w
⋆,x⋆

i 〉}
N⋆

i=1 (errors on X⋆)

w← solve ||w||2 + M̂MDloss (D⋆, D(w)|X,Y )

s.t. D(w) = {1− yi 〈w,xi〉}
N
i=1 (errors on X)

Return w

in the MMD criterion, while maintaining a linear classifier

form in the proposed method. Computing MMD criterion

in Eq. (4) costs O((N+N⋆)2) time [12], this is true for any

kernel. We plan to explore advancements in fast two-sample

test with cost that is linear in number of samples (e.g. [5]).

5. Experiments

We study the task of object as well as action recognition

in images with three possible types of privileged informa-

tion available at training time: clip art illustrations, videos,

and 3D models. The classification task is the same in both

modalities, so that the privileged data is informative about

the objects/actions that we are primarily interested to recog-

nize using the image modality.

Datasets. We use four publicly available datasets to

test the performance of our cross-modal/dataset scenario:

the INTERACT1 dataset [1] with clip art illustrations col-

lected in addition to images that capture the interaction be-

tween people, the UCF1012 action recognition dataset of

videos [30], and the CrossLink3 dataset [16] of 3DWare-

house4 models accompanied by the action and object im-

ages from the ImageNet dataset5 [26].

Methods. We compare our SVM MMD model (SVM

MMD) with a standard object classification baseline such

as SVM classifier trained on the image space X (SVM

Images). To put our method into perspective of do-

main adaptation and provided that the feature dimension-

ality is the same across modalities X and X ⋆, we com-

pare the proposed SVM MMD with the instance-transfer ap-

proach that shares the data samples between the two modal-

ities, i.e. SVM trained on union of image and privileged

data (SVM Combined); and the model-transfer method

that relies on parameter transfer from privileged (source)

to image (target) space, such as adaptive SVM [19, 39]

(SVM Adaptive). For a given solution of the source

task, w
source, and training data of the target task, SVM

Adaptive solves the following optimization problem:

1https://computing.ece.vt.edu/˜santol/projects/zsl_

via_visual_abstraction/interact/index.html
2http://crcv.ucf.edu/data/UCF101.php
3http://geometry.cs.ucl.ac.uk/projects/2015/crosslink
4https://3dwarehouse.sketchup.com/?hl=en
5http://www.image-net.org

minimize
w

‖w −w
source‖2 +

C

N

N∑

j=1

ξj (5)

s.t. 1− yj〈w,xj〉 ≤ ξj , ξj ≥ 0 for all 1 ≤ j ≤ N.

To train a classifier on image data, we solve (5) using as

w
source the weight vector obtained from training using the

privileged data. From the perspective of domain adaptation,

SVM Adaptive transfers the information by introducing

the bias into the regularization term of SVM, whereas the

proposed MMD model introduces the bias into the loss term

of the SVM. We also provide a reference comparison with

the SVM+ baseline (SVM+) [35] that relies on the one-to-

one correspondence between samples in the original and

privileged spaces if applicable (Section 5.1).

Model selection. We perform a cross-validation model

selection approach for choosing the regularization trade-

off parameter(s) for each of the methods. In all our ex-

periments, we select C over 5 hyper-parameter values

{100, 101 . . . , 104} using 5 × 3 fold cross-validation. We

set C⋆ to be 100 everywhere except in SVM+. We use a

Gaussian RBF kernel for the MMD term with a fixed kernel

width of 10.0. From what we observed, the SVM+ baseline

requires a broad range to infer its two hyper-parameters, C

and C⋆, so we perform 5×3 fold joint cross-validation over

the range {10−4, 10−3, . . . , 104}.
Evaluation metric. To evaluate the performance of the

methods, we use the classification accuracy. We repeat each

experiment 20 times using different random splits of the

data into train and test sets and report mean and standard

error across repeats.

5.1. Learning from the mistakes in abstract images

The INTERACT dataset contains 60 fine-grained classes

that capture a variety of interactions between a pair of peo-

ple, e.g., running after, running to, arguing with. Each of

the interaction is represented as a set of real images and

a set of clip art illustrations (on average, 50 images and

50 illustrations per class). The dataset has two settings:

category-level, in which images and illustrations are col-

lected independently given the category class, and instance-

level where 2-3 illustrations are collected for a given image.

Here, we detail the experimental results of the category-

level setting, and the supplementary material contains the

full table of results of the instance-level setting.

For each interaction class, we train a binary classifier to

distinguish this interaction (positive class) against the re-

maining 59 interactions (negative class). To train a classi-

fier, we randomly sample 25 positive vs 25 negative images,

and for testing we use the remaining positive images bal-

anced with the negative samples. For those methods that

use privileged data (for training only), we take 50 clip art

illustrations as positive samples (all available per class) and

balance them with the clip art images from the negative
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(a) Image + Clip art

(b) Image + 3D model

(c) Image+Video

(spatial+motion)

(d) Image+Video

(spatial)

(e) Image+Video

(motion)

Figure 3: Learning image classifiers from the mistakes of

classifiers trained on other datasets: clip arts (3a), 3D mod-

els (3b), and videos (3c–3e) datasets. Pairwise comparison

of the proposed SVM MMD and the baseline method (SVM

trained on images). The height of the bar corresponds to the

relative accuracy improvement over the baselines for each

of the 60 one-versus-rest (Image + Clip art), 36 one-versus-

one (Image + 3D model), and 15 one-versus-rest (Image +

Video) problems. The full accuracy results are presented in

Tables 1, 2, and in the supplementary material.

●

2 3 4

SVM MMD

SVM+

SVM Adaptive

SVM Combined

SVM

Critical Distance

(a) Image + Clip art

●

2 3 4

SVM MMD

SVM

SVM Adaptive

SVM Combined

Critical Distance

(b) Image + 3D model

●

1 2 3 4 5 6 7

SVM MMD
(motion)

SVM MMD
(spatial)

SVM MMD
(spatial+motion)

SVM
(images)

SVM Adaptive
(motion)

SVM Combined
(motion)

SVM Adaptive
(spatial)

SVM Combined
(spatial)

(c) Image + Video

Figure 4: Statistical summary of results based on

Demšar [6]. Average rank of the methods (x axis) is com-

puted based on accuracy (the higher the better). A critical

distance measures significant differences between methods

based on their ranks. We link two methods with a solid line

if they are not statistically different (p-value > 5%).

classes. In this experiment, to train SVM+, we randomly

pair images and illustrations of the same class label to define

the constraints in Eq. (1b). In the instance-level setting (in

the supplementary), we use one corresponding illustration

per image. We noticed that within an action category, the

variability of clip art illustrations is moderate, and SVM+

performs similarly in category and instance-level settings.

In this dataset, real images and clip art illustrations are

represented using 765 dimensional features that capture hu-

man poses, expressions, relation and appearance and are

provided with the dataset. We use the features computed

for Person A, who is performing the action with respect to

Person B. In this case the privileged modality and the real

images are expressed using the same feature representation,

which makes it a perfect testbed to compare our proposed

model with all baselines.

Results. The full result of this experiment is presented

in Table 1 and the summary in terms of a pairwise com-

parison between the proposed SVM MMD and the standard

SVM is in Figure 3a. We analyzed our experimental re-

sults on the INTERACT dataset using the multiple dataset

statistical comparison method of [6] in Figure 4a. There is

statistical evidence that SVM MMD performs best among

the five methods. SVM+ performs better than SVM and

SVM Combined in terms of ranking, however there is not

enough evidence to support that the differences are signifi-

cant. This conclusion holds true also for the instance-level

setting (summarized in Figure 5). Advantageous perfor-

mance of SVM MMD shows that learning from the mis-

takes of clip art classifiers help. We credit the significant

improvement of SVM MMD over other methods to the prin-

cipled idea of making the right decision at a larger scale by

comparing error distributions rather than focusing on error

in example-by-example basis. From the average rank per-

spective, SVM Combined and SVM Adaptive do not lead

to an improved performance w.r.t. SVM Images. Look-

ing closer at Table 1, there are cases when SVM Combined

improves significantly (sitting with) and SVM Adaptive im-

proves by a large margin (elbowing) but they are followed

by large performance dips in cases such as looking away

from (SVM Combined) and talking with (SVM Adaptive).

In contrast, the drop in SVM MMD is only moderate at

worst (action waving at).

5.2. Learning from the mistakes in videos

In this experiment, we cross video data from the UCF101

dataset with image data from the ImageNet dataset to ad-

dress the task of action recognition in images. Both datasets

intersect at sport activities, so we focus on the following 15
actions: archery, basketball, biking, bowling, cricket shot,

golf swing, horse riding, kayaking, pole vault, rafting, row-

ing, skateboard, skiing, surfing and tennis swing. We col-

lect images from the most relevant synsets in the ImageNet
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SVM SVM SVM [39] SVM+ [35] SVM (ours)

Images Combined Adaptive MMD

carrying 97.21± 0.33 94.50± 0.55 96.36± 0.46 97.64± 0.39 97.43± 0.46
catching 83.75± 1.15 84.20± 1.15 83.41± 1.18 84.20± 1.10 85.11± 1.10

pushing 80.08± 1.14 82.74± 0.90 81.37± 1.17 80.89± 0.93 80.24± 1.15
pulling 63.79± 0.89 67.18± 1.55 64.60± 1.42 62.82± 1.11 63.79± 1.30
reaching for 66.42± 0.86 68.58± 1.02 67.17± 1.18 66.50± 1.36 68.50± 1.04
jumping over 90.10± 0.95 93.17± 0.55 93.46± 0.84 90.77± 0.88 89.81± 0.86
hitting 83.89± 1.39 83.70± 1.28 84.07± 1.24 83.43± 1.29 84.26± 1.11

kicking 89.67± 1.05 92.17± 0.68 91.08± 0.81 90.75± 0.91 90.75± 0.79
elbowing 82.39± 1.00 84.43± 1.19 86.82± 0.87 83.86± 1.15 83.86± 0.95
tripping 86.36± 0.79 84.39± 0.96 85.23± 1.05 86.82± 0.61 87.88± 0.74

waving at 71.20± 1.29 67.72± 1.50 68.04± 1.43 70.33± 1.05 69.67± 1.11
pointing at 77.33± 1.34 74.22± 1.47 73.79± 1.62 77.16± 1.38 78.79± 1.23

point. aw. fr. 66.50± 1.67 66.00± 1.74 63.62± 1.76 67.00± 1.39 67.88± 1.72

looking at 67.42± 1.37 68.95± 1.75 66.13± 1.28 67.50± 1.71 66.69± 1.49
looking aw. fr. 73.91± 1.61 67.66± 0.91 70.55± 1.25 73.12± 1.22 75.23± 1.29

laughing at 72.34± 0.98 74.22± 1.28 71.95± 1.05 73.20± 0.95 74.14± 1.16
laughing with 82.29± 0.90 81.88± 1.10 79.90± 1.32 80.21± 1.12 80.83± 1.05
hugging 87.89± 0.96 87.66± 1.16 88.36± 0.96 88.44± 0.75 87.42± 0.91
wrestling with 88.75± 0.87 85.80± 0.98 87.39± 0.81 89.66± 0.87 90.11± 0.95

dancing with 84.34± 0.82 81.10± 1.32 82.72± 1.09 83.82± 1.04 84.56± 0.82

hold. hands w. 85.48± 0.75 83.87± 0.99 84.60± 0.79 86.13± 0.71 86.05± 0.71
shak. hands w. 94.74± 0.84 91.12± 0.69 92.76± 0.69 95.69± 0.51 94.91± 0.67
talking with 82.06± 0.94 79.49± 1.39 76.54± 1.06 81.62± 1.40 82.21± 1.17

arguing with 83.62± 1.02 83.97± 0.80 85.17± 0.88 83.88± 1.13 83.28± 0.85
walking with 91.93± 0.63 90.00± 0.89 89.43± 1.06 93.30± 0.57 93.41± 0.58

running with 89.67± 0.89 87.67± 1.22 89.58± 1.00 89.67± 0.88 89.33± 0.97
crawling with 79.76± 1.47 82.38± 0.85 80.12± 1.23 81.19± 1.46 82.02± 1.24
jumping with 82.88± 0.96 83.46± 1.61 81.73± 1.56 81.92± 1.12 83.08± 0.83
walking to 78.75± 1.26 79.73± 0.81 77.68± 1.15 79.64± 1.04 79.20± 1.16
running to 78.12± 1.10 77.81± 0.79 77.42± 0.97 77.81± 1.14 78.05± 1.20

SVM SVM SVM [39] SVM+ [35] SVM (ours)

Images Combined Adaptive MMD

crawling to 82.14± 0.79 79.02± 1.16 79.55± 1.19 83.39± 0.78 83.12± 0.76
jumping to 78.88± 1.15 80.95± 0.98 79.14± 1.06 80.00± 1.09 80.26± 1.26
walking aw. fr. 78.87± 1.12 78.15± 0.80 76.69± 1.24 78.47± 0.86 79.03± 0.95

running aw. fr. 84.29± 1.36 83.04± 0.77 84.64± 0.91 83.12± 1.21 84.11± 1.06
crawling aw. fr. 78.64± 1.48 80.23± 1.36 76.59± 1.84 77.73± 1.44 81.82± 1.60

jumping aw. fr. 83.98± 0.94 83.59± 0.87 82.66± 1.04 83.44± 1.00 83.75± 0.79
walking after 84.20± 0.98 81.40± 0.98 82.80± 0.88 85.50± 1.11 87.10± 0.78

running after 82.95± 1.03 81.44± 1.02 84.17± 0.98 83.79± 0.96 83.86± 0.71
crawling after 86.67± 0.91 84.88± 1.01 83.57± 1.04 86.19± 1.06 86.67± 1.04

jumping after 81.42± 0.74 80.83± 0.78 79.00± 0.90 81.08± 0.85 82.17± 0.85

walking past 80.15± 1.01 80.74± 0.81 78.53± 1.43 80.51± 0.91 81.76± 0.75

running past 76.09± 1.40 77.27± 1.18 75.23± 1.41 77.58± 1.45 78.12± 1.10

crawling past 78.10± 1.79 78.45± 1.29 77.62± 1.17 77.26± 1.65 78.69± 1.58

jumping past 77.41± 1.31 73.15± 1.71 74.54± 1.70 76.67± 1.84 77.41± 1.45

stand. next to 84.35± 0.61 84.89± 0.71 81.63± 0.95 83.80± 0.78 83.70± 0.82
sitting next to 85.70± 1.03 84.69± 0.85 83.52± 0.83 84.77± 1.06 86.33± 0.90

lying next to 73.45± 1.32 73.88± 0.89 74.31± 1.16 73.36± 1.27 74.57± 1.10

crouch. next to 80.31± 1.56 80.16± 1.00 78.59± 1.37 80.78± 1.55 80.16± 1.37
stand. in fr. of 71.79± 1.46 67.14± 1.06 69.07± 1.28 72.07± 1.34 73.14± 1.18

sitting in fr. of 78.56± 0.95 79.70± 1.08 79.09± 0.96 78.48± 1.12 79.85± 1.02

lying in fr. of 81.98± 1.01 81.12± 0.92 83.10± 0.86 82.76± 0.98 81.47± 1.16
crouch. in fr. of 87.27± 0.91 87.05± 1.25 86.93± 1.20 86.70± 0.82 88.75± 0.78

standing behind 71.03± 1.30 70.52± 1.55 71.98± 1.28 68.79± 1.47 71.64± 1.39
sitting behind 87.98± 0.79 89.19± 0.62 88.39± 0.79 88.63± 0.84 88.95± 0.81
lying behind 80.68± 1.17 83.11± 1.09 82.27± 0.99 81.14± 1.08 82.42± 0.95
crouch. behind 76.30± 1.14 76.30± 1.11 75.09± 1.08 76.11± 0.84 76.94± 1.07

standing with 78.15± 1.39 78.79± 1.29 74.35± 1.48 79.03± 1.07 80.65± 0.96

sitting with 81.90± 1.21 85.83± 1.23 84.29± 1.17 82.50± 1.01 83.33± 1.06
lying with 70.50± 1.13 70.92± 1.22 68.25± 1.24 71.58± 1.02 71.33± 1.14
crouch. with 79.78± 1.34 81.09± 1.01 80.33± 0.95 80.00± 1.08 79.89± 1.12
avg. acc. 80.77 80.45 79.95 80.90 81.49

Table 1: Learning image classifiers with the mistakes of clip art classifiers (category-level setting). For instance-level setting,

please refer to the supplementary material. The best result is highlighted in boldface with an extra blue for our SVM MMD.

spatial+motion spatial motion

SVM SVM (ours) SVM SVM [39] SVM (ours) SVM SVM [39] SVM (ours)

Images MMD Combined Adaptive MMD Combined Adaptive MMD

Archery 83.87± 0.50 85.44± 0.30 83.48± 0.24 82.81± 0.36 85.69± 0.27 79.75± 0.70 73.47± 0.61 85.67± 0.28

Basketball 91.95± 0.33 91.89± 0.27 90.04± 0.35 87.60± 0.48 92.16± 0.26 89.82± 0.42 82.25± 0.49 92.30± 0.30

Biking 90.71± 0.24 91.26± 0.32 89.93± 0.33 88.49± 0.31 91.44± 0.20 86.87± 0.52 79.54± 0.54 91.45± 0.21

Bowling 94.66± 0.29 94.18± 0.38 93.24± 0.32 90.09± 0.47 94.27± 0.34 90.61± 0.59 85.72± 0.50 94.59± 0.34
CricketShot 84.96± 0.28 85.29± 0.66 83.77± 0.24 82.92± 0.33 85.90± 0.22 82.44± 0.43 78.97± 0.54 85.84± 0.22

GolfSwing 82.17± 0.49 83.06± 0.31 81.13± 0.41 80.03± 0.32 83.00± 0.30 80.51± 0.34 72.76± 0.53 83.23± 0.29

HorseRiding 90.39± 0.15 90.60± 0.18 90.18± 0.24 89.05± 0.32 90.63± 0.20 87.37± 0.55 79.56± 0.43 90.49± 0.25

Kayaking 83.14± 0.45 85.45± 0.19 82.27± 0.37 81.97± 0.46 85.35± 0.23 81.16± 0.47 75.28± 0.50 85.37± 0.26

PoleVault 87.86± 0.44 88.20± 0.41 84.41± 0.33 83.97± 0.37 88.11± 0.37 83.53± 0.66 77.34± 0.35 88.54± 0.39

Rafting 87.55± 0.29 87.97± 0.27 87.54± 0.27 86.35± 0.28 88.03± 0.16 85.40± 0.39 82.29± 0.38 88.33± 0.21

Rowing 87.80± 0.46 87.71± 0.36 89.49± 0.18 88.32± 0.23 87.84± 0.35 85.05± 0.52 80.13± 0.36 87.91± 0.31

SkateBoarding 81.13± 0.54 82.39± 0.42 81.46± 0.43 79.83± 0.48 82.37± 0.36 77.48± 0.67 72.32± 0.50 82.70± 0.40

Skiing 90.24± 0.45 90.61± 0.45 90.24± 0.24 88.49± 0.38 90.59± 0.31 86.93± 0.52 79.62± 0.39 91.18± 0.25

Surfing 88.52± 0.39 88.85± 0.28 88.64± 0.26 87.76± 0.32 88.65± 0.35 86.34± 0.26 82.87± 0.46 89.15± 0.21

TennisSwing 83.35± 0.47 83.59± 0.42 82.78± 0.32 81.62± 0.31 83.69± 0.36 79.49± 0.64 72.58± 0.67 83.82± 0.41

avg. acc. 87.22 87.77 86.57 85.29 87.85 84.18 78.31 88.04

Table 2: Learning image classifiers with the mistakes of video classifiers. Video data contain complementary information

from still frames (spatial) and motion between frames (motion). The best result, for each of the video information (spatial,

motion, and spatial+motion), is highlighted in boldface and an extra blue for our SVM MMD.

dataset to these action classes to form the image data modal-

ity. On average, each action class has 1000 images and 100
videos to train/test the models. Similarly to our previous

experiment, we form 15 one-vs-rest binary classification

tasks by randomly sampling 28 vs 28 images for training

and 1000 vs 1000 images to test the methods (or as much

as the class size allows). For those methods that use priv-

ileged data (for training only), we take all videos from the

positive class and balance them with the same amount ran-

domly sampled from the negative classes. As our image

representation, we use 4096 dimensional features extracted

from the fc7 activation layer in CaffeNet [17] fine-tuned on

ImageNet VOC2012 [26]. As our video representation, we

extract spatial and temporal representations from the Caffe

models fine-tuned on ImageNet VOC2012 (the same as im-

age data) and on optical flow of the UCF101 dataset as pro-

vided in [11]. This video representation allows us to study

the effects of three types of privileged data in this scenario:

the spatial signal alone (4096 dimensional), the motion sig-

nal alone (4096 dimensional), and the spatial+motion sig-

nals combined (8192 dimensional). The first two types, as

they are in the same dimension as the image space, can be
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Figure 5: Learning image classifiers with the mistakes of

clip art classifiers (instance-level setting). The full results

are in the supplementary material.

used by the two domain adaptation baselines (SVM Adap-

tive and SVM Combined), whereas the spatial+motion in-

formation can not be used unless projection matrices are

learned. Our SVM MMD does not depend on the dimen-

sionality of the privileged data space.

Results. The results of this experiment are presented in

Table 2, the summary in terms of a pairwise comparison

between the proposed SVM MMD and the standard SVM

is depicted in Figure 3c–3e, and statistical comparison of

all methods is reported in Figure 4c. Overall, SVM MMD

clearly improves over SVM Images in all settings of video

information: spatial, motion, and spatial+motion. Specif-

ically, in all cases but one, bowling, we can see positive

improvements when using video modality as privileged in-

formation. The largest improvement appears when SVM

MMD learns only from the mistakes of video classifiers

with motion features. This can be credited to the comple-

mentary view of motion features w.r.t. the original image

space and a good motion feature representation (deep fea-

tures fine-tuned on optical flow of the UCF101 dataset).

5.3. Learning from the mistakes in 3D models

In contrast to our main task of object/action recognition

in images, the CrossLink dataset was primarily designed to

improve the performance of the 3D retrieval by leveraging

images from the Bing search. We explore the setting where

3D models from the 3DWarehouse collection are used as

privileged data to the images from the more complex Im-

ageNet dataset. We collect 3D models by crawling the

3DWarehouse as described in [16], and manually checked

all the models. Each 3D model is retrieved as a collection

of 36 views of the object taken against no background. We

use ImageNet synsets as our main image data. We focus on

the following 9 classes: airplane, backpack, bicycle, boat,

car, chair, couch, helicopter, laptop. Each object class has

1300 images on average and 90 3D models, ranging from 15
to 153 instances per class. As our image representation, we

use 4096 dimensional deep features from the fc7 activation

layer in CaffeNet fine-tuned on ImageNet VOC2012. As

3D model representation, we extract the same 4096 dimen-

sional deep features from each of the views, and consider

them as 36 data samples in the privileged space. For each

pair of the 9 classes (36 in total) we train a one-vs-one bi-

nary classifier using 50 images (class balanced) for training

and 2000 images (class balanced) for testing the models.

For those methods that use privileged data, we balance 25
vs 25 instances of 3D models randomly sampled from the

positive and negative classes.

Results. The full result of this experiment is presented

in Table 1 of the supplementary material and the summary

in terms of a pairwise comparison between the proposed

SVM MMD and the standard SVM is in Figure 3b. Overall,

SVM MMD improves over SVM Images (also supported by

statistical summary in Figure 4b), but the actual improve-

ment is minor. We credit this to the fact, that this recogni-

tion problem is rather simple, and the SVM Images baseline

alone has achieved an average accuracy of 95.78%.

6. Conclusion and future work

A fool learns from his mistakes, but a truly

wise man learns from the mistakes of others.

Otto von Bismarck

Learning with privileged information (LUPI) aims to ex-

ploit extra information that is available for each instance at

training time. A typical assumption made is that these ex-

tra data are useful to discriminate between easy and difficult

instances. We generalize this idea by describing a model

that uses a divergence between distribution of our own er-

rors and of others’ errors as the loss function. Our approach

can handle setting with no strict one-to-one correspondence

between privileged and original data. We have shown the

usefulness of this correspondence-free LUPI in the setting

of cross-dataset learning of image classifiers. Our results

reveal that learning image classifiers with the mistakes of

clip art classifiers, or 3D classifiers, or video classifiers can

be more accurate than learning using images only.

We seek to generalize our findings on correspondence-

free LUPI for regression and multiple privileged informa-

tion settings. We also aim to unify the LUPI setting and

the setting where the extra attributes are available at test

time but not at training time [18] under our framework of

divergence minimization between the classifier errors in the

privileged and original spaces. Finally, in the direction of

deep model compression or distillation, we will assess the

benefits of error matching as an alternative to matching the

output class-probabilities commonly used in the literature.
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