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Abstract

Object skeleton is a useful cue for object detection, com-

plementary to the object contour, as it provides a structural

representation to describe the relationship among object

parts. While object skeleton extraction in natural images

is a very challenging problem, as it requires the extractor

to be able to capture both local and global image contex-

t to determine the intrinsic scale of each skeleton pixel.

Existing methods rely on per-pixel based multi-scale fea-

ture computation, which results in difficult modeling and

high time consumption. In this paper, we present a fully

convolutional network with multiple scale-associated side

outputs to address this problem. By observing the rela-

tionship between the receptive field sizes of the sequential

stages in the network and the skeleton scales they can cap-

ture, we introduce a scale-associated side output to each

stage. We impose supervision to different stages by guiding

the scale-associated side outputs toward groundtruth skele-

tons of different scales. The responses of the multiple scale-

associated side outputs are then fused in a scale-specific

way to localize skeleton pixels with multiple scales effec-

tively. Our method achieves promising results on two skele-

ton extraction datasets, and significantly outperforms other

competitors.

1. Introduction

In this paper, we investigate an interesting and nontriv-

ial problem in computer vision, object skeleton extraction

from natural images (Fig. 1). Here, the concept of “objec-

t” means a standalone thing with a well-defined boundary

and center [2], such as an animal, a human, and a plane,

as opposed to amorphous background stuff, such as sky,

grass, and mountain. Skeleton, also called symmetry ax-

is, is a useful structure-based object descriptor. Extracting
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object skeletons directly from natural images is of broad in-

terests to many real applications including object recogni-

tion/detection [4, 28], text recognition [34], road detection

and blood vessel detection [27].

Figure 1. Object skeleton extraction in natural images. The skele-

tons are in yellow.

Skeleton extraction from pre-segmented images [21]

used to be a hot topic, which has been well studied and suc-

cessfully applied to shape-based object matching and recog-

nition [25, 22, 9]. However, such methods have severe lim-

itations when being applied to natural images, as segmenta-

tion from natural images is still an unsolved problem.

Skeleton extraction from natural images is a much more

challenging problem. The main difficulties stem from three

aspects: (1) Complexity of natural scenes: Natural scenes

can be very cluttered. Amorphous background elements,

such as fences, bricks and even the shadows of objects, ex-

hibit somewhat self-symmetry, and thus are prone to cause

distractions. (2) Diversity of objects: Objects in natural im-

ages may exhibit entirely different colors, textures, shapes

and sizes. (3) Specificity of skeletons: local skeleton seg-

ments have a variety of patterns, such as straight lines, T-

junctions and Y-junctions. In addition, a local skeleton seg-

ment naturally associates with a certain scale, determined

by the thickness of its corresponding object part. However,

it is unknown in natural images. We term this problem as

unknown-scale problem in skeleton extraction.

A number of works have been proposed to study this

problem in the past decade. Broadly speaking, they can

be categorized into two groups: (1) Traditional image pro-

cessing methods [32, 12, 16, 33], which compute skeletons

from a gradient intensity map according to some geometric
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constraints between edges and skeletons. Due to the lack

of object prior, these methods can not handle the images

with complex scenes; (2) Recent learning based method-

s [29, 15, 14, 27, 30], which learn a per-pixel classifica-

tion or segment-linking model based on elaborately hand-

designed features computed at multi-scales for skeleton ex-

traction. Limited by the ability of traditional learning mod-

els and hand-designed features, these methods fail to extract

the skeletons of objects with complex structures and clut-

tered interior textures. In addition, such per-pixel/segment

models are usually quite time consuming for prediction.

Consequently, there still remains obvious gap between these

skeleton extraction methods and human perception, in both

performance and speed. Skeleton extraction has its unique

aspect by looking into both local and global image context,

which requires much more powerful models in both multi-

scale feature learning and classifier learning, since the vi-

sual complexity increases exponentially with the size of the

context field.

To tackle the obstacles mentioned above, we develop a

holistically-nested network with multiple scale-associated

side outputs for skeleton extraction. The holistically-nested

network [31] is a deep fully convolutional network (FC-

N) [18], which enables holistic image training and predic-

tion for per-pixel tasks. Here, we connect a scale-associated

side output to each convolutional layer in the holistically-

nested network to address the unknown-scale problem in

skeleton extraction.

Referring to Fig. 2, imagine that we are using multiple

filters with different sizes (such as the convolutional ker-

nels in convolutional networks) to detect a skeleton pix-

el with a certain scale; then only the filters with the sizes

larger than the scale will have responses on it, and other-

s will not. Note that the sequential convolutional layers

in a holistically-nested network can be treated as the fil-

ters with increasing sizes (the receptive field sizes on the

original image of each convolutional layer are increasing

from shallow to deep). So each convolutional layer is on-

ly able to capture the features of the skeleton pixels with

scales less than its receptive field size. The sequential in-

creasing receptive field sizes provide a principle to quan-

tize the skeleton scale space. With these observations, we

propose to impose supervision to each side output, optimiz-

ing it towards a scale-associated groundtruth skeleton map.

More specifically, each skeleton pixel in it is labeled by a

quantized scale value and only the skeleton pixels whose

scales are smaller than the receptive filed size of the side

output are reserved. Thus, each side output is associated

with some certain scales and able to give a certain number

of scale-specific skeleton score maps (the score map for one

specified quantized scale value) when predicting.

The final predicted skeleton map can be obtained by fus-

ing these scale-associated side outputs. A straightforward

Figure 2. Using filters (the green squares on images) of multiple

sizes for skeleton extraction. Only when the size of the filter is

larger than the scale of current skeleton part can the filter capture

enough context feature to detect it.

fusion method is to average them. However, a skeleton pix-

el with larger scale probably has a stronger response on a

deeper side output, and a weaker response on a shallower

side output; a skeleton pixel with smaller scale may have

strong responses on both of the two side outputs. By con-

sidering this phenomenon, for each quantized scale value,

we propose to use a scale-specific weight layer to fuse the

corresponding scale-specific skeleton score map provided

by each side output.

In summary, the core contribution of this paper is the

proposal of the scale-associated side output layer, which en-

ables both target learning and fusion in a scale-associated

way. Therefore, our holistically-nested network is able to

localize skeleton pixels with multiple scales.

To the best of our knowledge, there are only two datasets

related to our task. One is the SYMMAX300 dataset [29],

which is converted from the well-known Berkeley Segmen-

tation Benchmark (BSDS300) [19]. However, this dataset

is used for local reflection symmetry detection. Local re-

flection symmetry [17, 13] is a kind of low-level feature of

image, regardless of the concept of “object”. Some sam-

ples in this dataset are shown in Fig. 3(a). Note that, a large

number of symmetries occur in non-object parts. General-

ly, object skeleton is a subset of local reflection symmetry.

The other one is the WH-SYMMAX dataset [23], which

is converted from the Weizmann Horse dataset [7]. This

dataset is suitable to verify object skeleton extraction meth-

ods; however, as shown in Fig. 3(b) the limitation is that

only one object category, the horse, is contained in it. To

evaluate skeleton extraction methods, we construct a new

dataset, named SK5061. There are 506 natural images in

this dataset, which are selected from the recent published

MS COCO dataset [8]. The objects in these 506 images be-

long to a variety of categories, including humans, animals,

such as birds, dogs and giraffes, and artificialities, such as

planes and hydrants. We apply a skeletonization method [3]

to the provided human-annotated foreground segmentation

maps of the selected images to generate the groundtruth

skeleton maps. Some samples of the SK506 dataset are

shown in Fig. 3(c). We evaluate several skeleton extrac-

tion methods as well as symmetry detection methods on

both SK506 and WH-SYMMAX. The experimental results

1http://wei-shen.weebly.com/uploads/2/3/8/2/23825939/sk506.zip
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demonstrate that the proposed method significantly outper-

forms others.

Figure 3. Some samples from three datasets. (a) The SYM-

MAX300 dataset [29]. (b) The WH-SYMMAX dataset [23]. (c)

Our new dataset, the SK506 dataset. The groundtruths for skeleton

or local reflection symmetry are in yellow.

2. Related Works

Object skeleton extraction has been paid much attention

in previous decades. However, most works in the early

stage [21, 3] only focus on skeleton extraction from pre-

segmented images. As these works have a strict assumption

that object silhouettes are required to be available, they can-

not be applied in our task.

Some pioneers try to extract skeletons from the gradient

intensity maps computed on natural images. The gradient

intensity map is generally obtained by applying direction-

al derivative operators to a gray-scale image smoothed by a

Gaussian kernel. For instance, in [16], the author provides

an automatic mechanism to determine the best size of the

Gaussian kernel used for gradient computation, and he pro-

pose to detect skeletons as the pixels for which the gradient

intensity assumes a local maximum (minimum) in the di-

rection of the main principal curvature. Jang and Hong [12]

extract the skeleton from the pseudo-distance map which is

obtained by iteratively minimizing an object function de-

fined on the gradient intensity map. Yu and Bajaj [32] pro-

pose to trace the ridges of the skeleton intensity map calcu-

lated from the diffused vector field of the gradient intensity

map, which can remove the undesirable biased skeletons.

Due to the lack of object prior, these methods are only able

to handle the images with simple scenes.

Recent learning based skeleton extraction methods are

more suitable to deal with the scene complexity problem in

natural images. One type of them formulates skeleton ex-

traction to be a per-pixel classification problem. Tsogkas

and Kokkinos [29] compute the hand-designed features of

multi-scale and multi-orientation at each pixel, and em-

ploy the multiple instance learning framework to determine

whether it is symmetry2 or not. Shen et al. [23] then im-

prove their method by training MIL models on automatical-

ly learned scale- and orientation-related subspaces. Sironi

et al. [27] transform the per-pixel classification problem to

a regression one to achieve accurate skeleton localization,

which learns the distance to the closest skeleton segment in

scale-space. Alternatively, another type of learning based

methods aim to learn the similarity between local skeleton

segments (represented by superpixel [15, 14] or spine mod-

el [30]), and link them by hierarchical clustering [15], dy-

namic programming [14] or particle filter [30]. Due to the

limited power of the hand-designed features and tradition-

al learning models, these methods are intractable to detect

the skeleton pixels with large scales, as much more context

information is needed to be handled.

Our method is inspired by [31], which develops a

holistically-nested network for edge detection (HED). Edge

detection does not face the unknown-scale problem. Us-

ing a local filter to detect an edge pixel, no matter what the

size of the filter is, will have responses, either stronger or

weaker. So summing up the multi-scale detection respons-

es, which is adopted in the fusion layer in HED, is able

to improve the performance of edge detection [20, 10, 24],

while bringing noises across the scales for skeleton extrac-

tion. There are two main differences between HED and

our method. 1. We supervise the side outputs of the net-

work with different scale-associated groundtruths, while the

groundtruths in HED are the same. 2. We use different

scale-specific weight layers to fuse the corresponding scale-

specific skeleton score maps provided by the side outputs,

while the side outputs are fused by a single weight layer in

HED. Such two changes utilize multi stages in a network to

explicitly detect the unknown scale, which HED is unable

to handle with. With the extra supervision added to each

layer, our method ais able to provide a more informative re-

sult, i.e., the predicted scale for each skeleton pixel, which

is useful for other potential applications, such as object pro-

posal detection (we will show this in Sec. 4.2.5). While the

result of HED cannot be applied to such applications.

3. Methodology

In this section, we describe our methods for object skele-

ton extraction. First, we introduce the architecture of our

holistically-nested network. Then, we discuss how to opti-

mize and fuse the multiple scale-associated side outputs in

the network for skeleton extraction.

2Although symmetry detection is not the same problem as skeleton ex-

traction, we also compare the methods for it with ours, as skeleton can be

considered a subset of symmetry.
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3.1. Network Architecture

The recent work [1] has demonstrated that fine-tuning

well pre-trained deep neural networks is an efficient way

to obtain a good performance on a new task. Therefore,

we basically adopt the network architecture used in [31],

which is converted from VGG 16-layer net [26] by adding

additional side output layers and replacing fully-connected

layers by fully-convolutional layers with 1 × 1 kernel size.

Each fully-convolutional layer is then connected to an up-

sampling layer to ensure that the outputs of all the stages

are with the same size. Here, we make several modifica-

tions for our task skeleton extraction: (a) we connect the

proposed scale-associated side output layer to the last con-

volutional layer in each stage except for the first one, re-

spectively conv2 2, conv3 3, conv4 3, conv5 3. The recep-

tive field sizes of the scale-associated side output layers are

14, 40, 92, 196, respectively. The reason why we omit the

first stage is that the receptive field size of the last convolu-

tional layer in it is too small (only 5) to capture any skeleton

features. There are few skeleton pixels with scales less than

such a small receptive field size. (b) Each scale-associated

side output layer provides a certain number of scale-specific

skeleton score maps. Each scale-associated side output lay-

er is connected to a slice layer to obtain the skeleton score

map for each scale. Then from all the scale-associated side

output layers, we use a scale-specific weight layer to fuse

the skeleton score maps for this scale. Such a scale-specific

weight layer can be achieved by a fully-convolutional layer

with 1× 1 kernel size. In this way, the skeleton score map-

s for different scales are fused by different weight layers.

The fused skeleton score maps for each scale are concate-

nated together to form the final predicted skeleton map. To

sum up, our holistically-nested network architecture has 4

stages with additional scale-associated side output layers,

with strides 2, 4, 8 and 16, respectively, and with different

receptive field sizes; it also has 5 additional weight layer-

s to fuse the side outputs. An illustration for the network

architecture is shown in Fig. 4.

3.2. Skeleton Extraction by Fusing Scale­associated
Side Outputs

Skeleton extraction can be formulated as a per-pixel

classification problem. Given a raw input image X =
{xj , j = 1, . . . , |X|}, our goal is to predict its skeleton

map Ŷ = {ŷj , j = 1, . . . , |X|}, where ŷj ∈ {0, 1} denotes

the predicted label for each pixel xj , i.e., if xj is predict-

ed as a skeleton pixel, ŷj = 1; otherwise, ŷj = 0. Next,

we describe how to learn and fuse the scale-associated side

outputs in the training phase as well as how to utilize the

learned network in the testing phase, respectively.

Figure 4. The proposed network architecture for skeleton extrac-

tion, which is converted from VGG 16-layer net [26]. It has 4

stages with additional scale-associated side output layers connect-

ed to the convolutional layers. Each scale-associated side output is

guided by a scale-associated groundtruth skeleton map (The skele-

ton pixels with different quantized scales are in different colors.).

Each scale-associated side output layer provides a certain number

of scale-specific skeleton score maps (identified by stage number-

quantized scale value pairs). The score maps of the same scales

from different stages will be sliced and concatenated. Five scale-

specific weighted-fusion layers are added to automatically fuse

outputs from multiple stages.

3.2.1 Training Phase

We are given a training dataset denoted by S =

{(X(n), Y (n)), n = 1, . . . , N}, where X(n) = {x
(n)
j , j =

1, . . . , |X(n)|} is a raw input image and Y (n) = {y
(n)
j , j =

1, . . . , |X(n)|} (y
(n)
j ∈ {0, 1}) is its corresponding

groundtruth skeleton map. First, we describe how to com-

pute a quantized skeleton scale map for each training image,

which will be used for guiding the network training.

Skeleton scale quantization. According to the definition

of skeleton [6], we define the scale of each skeleton pixel

as the diameter of the maximal disk centered at it, which

can be obtained when computing the groundtruth skeleton

map from the pre-segmented image. By defining the scale

of each non-skeleton pixel to be zero, we build a scale map

S(n) = {s
(n)
j , j = 1, . . . , |X(n)|} for each Y (n) and we

have y
(n)
j = 1(s

(n)
j > 0), where 1(·) is an indicator func-

tion. As we consider each image holistically, we drop the

superscript n in our notation. We aim to learn a holistically-

nested network with multiple stages of a convolutional lay-

er linked with a scale-associated side output layer. Assume

that there are M such stages in our network, in which the

receptive field sizes of the convolutional layers increase se-

quentially. Let (ri; i = 1, . . . ,M) be the sequence of the

receptive field sizes. Recall that only when the receptive

field size is larger than the scale of a skeleton pixel can the

convolutional layer capture the features of it. Thus, the s-
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cale of a skeleton pixel can be quantized into a discrete val-

ue, to indicate which stages in the network are able to detect

this skeleton pixel. (Here, we assume that rM is sufficiently

large for capturing the features of the skeleton pixels with

the maximum scale). The quantized value z of a scale s is

computed by

z =

{

arg min
i=1,...,M

i, s.t. ri > λs if s > 0

0 if s = 0
, (1)

where λ > 1 is a factor to ensure that the receptive field

sizes are sufficiently large for feature computation. (We

set λ = 1.2 in our experiments.) Now, for an image X ,

we can build a quantized scale value map Z = {zj , j =
1, . . . , |X|}}(zj ∈ {0, 1, . . . ,M}).

Scale-associated side output learning. The groundtruth

skeleton map Y can be trivially converted from Z: Y =
1(Z > 0), but not vice versa. So we would like to

guild the network training by Z instead of Y , as more

supervision can be included. This actually convert a bi-

nary classification problem to a multi-class classification,

where each class corresponds a quantized scale. Toward-

s this end, each side output layer in our network is as-

sociated with a softmax regression classifier. While ac-

cording to the above discussions, one stage in our net-

work is only able to detect the skeleton pixels with scales

less than its corresponding receptive field size. Therefore,

the side output is scale-associated. For the i-th side out-

put, we guild it to a scale-associated groundtruth skeleton

map: Z(i) = Z ◦ 1(Z ≤ i), where ◦ is an element-wise

product operator. Let K(i) denote the maximum value in

Z(i), i.e., K(i) = i, then we have Z(i) = {z
(i)
j , j =

1, . . . , |X|}, z
(i)
j ∈ {0, 1, . . . ,K(i)}. Let ℓ

(i)
s (W,Φ(i)) de-

note the loss function for this scale-associated side output,

where W and Φ
(i) are the layer parameters of the network

and the parameters of the classifier of this stage. As our

network enables holistic image training, the loss function is

computed over all pixels in the training image X and the

scale-associated groundtruth skeleton map Z(i). Generally,

the distribution of skeleton pixels with different scales and

non-skeleton pixels is biased in an image. Therefore, we

define a weighted softmax loss function to balance the loss

between these multiple classes:

ℓ(i)s (W,Φ(i)) =

−
1

|X|

|X|
∑

j=1

K(i)
∑

k=0

β
(i)
k 1(z

(i)
j = k) log Pr(z

(i)
j = k|X;W,Φ(i)),

(2)

where β
(i)
k is the loss weight for the k-th class and Pr(z

(i)
j =

k|X;W,Φ(i)) ∈ [0, 1] is the predicted score given by the

classifier for how likely the quantized scale of xj is k. N (·)
denotes the number of non-zero elements in a set, then βk

can be computed by

β
(i)
k =

1
N (1(Zi==k))

∑K(i)

k=0
1

N (1(Zi==k))

. (3)

Let a
(i)
jk be the activation of the i-th side output associated

with the quantized scale k for the input xj , then we use the

softmax function [5] σ(·) to compute

Pr(z
(i)
j = k|X;W,Φ(i)) = σ(a

(i)
jk ) =

exp(a
(i)
jk )

∑K(i)

k=0 exp(a
(i)
jk )

.

(4)

One can show that the partial derivation of ℓ
(i)
s (W,Φ(i))

w.r.t. a
(i)
jl (l ∈ {0, 1, . . . ,K(i)}) can be obtained by

∂ℓ
(i)
s (W,Φ(i))

∂a
(i)
jl

= −
1

m

(

β
(i)
l 1(z

(i)
j = l)−

K(i)
∑

k=0

β
(i)
k 1(z

(i)
j = k)Pr(z

(i)
j = l|X;W,Φ(i))

)

.

(5)

Φ = (Φ(i); i = 1, . . . ,M) denotes the parameters of the

classifiers in all the stages, then the loss function for all the

side outputs is simply obtained by

Ls(W,Φ) =
M
∑

i=1

ℓ(i)s (W,Φ(i)). (6)

Multiple scale-associated side outputs fusion. For an in-

put pixel xj , each scale-associated side output provides a

predicted score Pr(z
(i)
j = k|X;W,Φ(i)) (if k≤K(i)) for

representing how likely its quantized scale is k. We can

obtain a fused score fjk by simply summing them with

weights ak = (a
(i)
k ; i = max(k, 1), . . . ,M):

fjk =

M
∑

i=max(k,1)

a
(i)
k Pr(z

(i)
j = k|X;W,Φ(i)),

s.t.

M
∑

i=max(k,1)

a
(i)
k = 1.

(7)

We can understand the above fusion by this way: each scale-

associated side output provides a certain number of scale-

specific predicted skeleton score maps, and we utilize M+1
scale-specific weight layers: A = (ak; k = 0, . . . ,M) to

fuse them. Similarly, we can define a fusion loss function

5226



by

Lf (W,Φ,A) =

−
1

|X|

|X|
∑

j=1

M
∑

k=0

βk1(zj = k) log Pr(zj = k|X;W,Φ,ak),

(8)

where βk is defined by the same way in Eqn. 3 and Pr(zj =
k|X;W,Φ,wk) = σ(fjk).

Finally, we can obtain the optimal parameters by

(W,Φ,A)∗ = argmin(Ls(W,Φ) + Lf (W,Φ,A)).
(9)

3.2.2 Testing Phase

Given a testing image X = {xj , j = 1, . . . , |X|}, with the

learned network (W,Φ,A)∗, its predicted skeleton map

Ŷ = {ŷj , j = 1, . . . , |X|} is obtained by

ŷj = 1− Pr(zj = 0|X;W∗,Φ∗,a0∗). (10)

Recall that zj = 0 and zj > 0 mean that xj is a

non-skeleton/skeleton pixel, respectively. We refer to our

method as FSDS, for fusing scale-associated deep side out-

puts.

3.3. Understanding of the Proposed Method

To understand our method more deeply, we illustrate the

intermediate results of our method and compare with those

of HED in Fig. 5. The response of each scale-associated

side output can be obtained by the similar way of Eqn. 10.

We compare the response of each scale-associated side out-

put to the corresponding one in HED (The side output 1 in

HED is connected to conv1 2, while ours start from con-

v2 2.). With the extra scale-associated supervision, the re-

sponses of our side outputs are indeed related to scale. For

example, the first one fires on the structure with small s-

cales, such as the legs, the interior textures and the object

boundaries; while in the second one, the skeleton parts of

the head and neck are clear and meanwhile the noises on

small scale structure are suppressed. In addition, we perfor-

m scale-specific fusion, by which each fused scale-specific

skeleton score map indeed corresponds to one scale (See the

first three response maps corresponding to legs, neck and

torso respectively). The side outputs in HED are not able

to differentiate skeleton pixels with different scales. Con-

sequently, the first two respond on the whole body, which

bring noises to the final fusion one.

4. Experimental Results

In this section we discuss the implementation details and

compare the performance of our skeleton extraction meth-

ods with competitors.

Figure 5. The comparison between the intermediate results of FS-

DS and HED. We can observe that the former are able to differen-

tiate skeleton pixels with different scales, while the latter cannot.

4.1. Implementation Details

Our architecture is built on the public available imple-

mentation of FCN [18] and HED [31]. The whole network

is fine-tuned from an initialization with the pre-trained VG-

G 16-layer net [26].

Model parameters The hyper parameters of our network

include: mini-batch size(10), base learning rate (1× 10−6),

loss weight for each side-output (1), momentum (0.9), ini-

tialization of the nested filters(0), initialization of of the

scale-specific weighted fusion layer (1/n, where n is the

number of sliced scale-specific map), the learning rate of

the scale-specific weighted fusion layer (5× 10−6), weight

decay (2 × 10−4), maximum number of training iterations

(20, 000).

Data augmentation Data augmentation is a principal

way to generate sufficient training data for learning a

“good” deep network. We rotate the images to 4 different

angles (0◦, 90◦, 180◦, 270◦) and flip with different axis(up-

down,left-right,no flip), then resize images to 3 different s-

cales (0.8, 1.0, 1.2), totally leading to an augmentation fac-

tor of 36. Note that when resizing a groundtruth skeleton

map, the scales of the skeleton pixels in it should be multi-

plied by a resize factor accordingly.

4.2. Performance Comparison

We conduct our experiments by comparing our method

FSDS with many others, including a traditional im-

age processing method (Lindeberg’s method [16]), three

learning based segment linking methods ( Levinshtein’s

method [15], Lee’s method [14] and Particle Filter [30]),

three per-pixel classification/regression methods (Distance

Regression [27], MIL [29] and MISL [23]) and a deep

learning based method (HED [31]). For all theses meth-
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