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Abstract

Current people detectors operate either by scanning an

image in a sliding window fashion or by classifying a dis-

crete set of proposals. We propose a model that is based

on decoding an image into a set of people detections. Our

system takes an image as input and directly outputs a set of

distinct detection hypotheses. Because we generate predic-

tions jointly, common post-processing steps such as non-

maximum suppression are unnecessary. We use a recur-

rent LSTM layer for sequence generation and train our

model end-to-end with a new loss function that operates

on sets of detections. We demonstrate the effectiveness of

our approach on the challenging task of detecting people in

crowded scenes1.

1. Introduction

In this paper we propose a new architecture for detecting

objects in images. We strive for an end-to-end approach that

accepts images as input and directly generates a set of object

bounding boxes as output. This task is challenging because

it demands both distinguishing objects from the background

and correctly estimating the number of distinct objects and

their locations. Such an end-to-end approach capable of di-

rectly outputting predictions would be advantageous over

methods that first generate a set of bounding boxes, evalu-

ate them with a classifier, and then perform some form of

merging or non-maximum suppression on an overcomplete

set of detections.

Sequentially generating a set of detections has an im-

portant advantage in that multiple detections on the same

object can be avoided by remembering the previously gen-

erated output. To control this generation process, we use

a recurrent neural network with LSTM units. To produce

intermediate representations, we use expressive image fea-

1The implementation is publicly available at https://github.

com/Russell91/ReInspect.

tures from GoogLeNet that are further fine-tuned as part of

our system. Our architecture can thus be seen as a “decod-

ing” process that converts an intermediate representation of

an image into a set of predicted objects. The LSTM can be

seen as a “controller” that propagates information between

decoding steps and controls the location of the next out-

put (see Fig. 2 for an overview). Importantly, our trainable

end-to-end system allows joint tuning of all components via

back-propagation.

One of the key limitations of merging and non-maximum

suppression utilized in [6, 17] is that these methods typ-

ically don’t have access to image information, and in-

stead must perform inference solely based on properties of

bounding boxes (e.g. distance and overlap). This usually

works for isolated objects, but often fails when object in-

stances overlap. In the case of overlapping instances, im-

age information is necessary to decide where to place boxes

and how many of them to output. As a workaround, several

approaches proposed specialized solutions that specifically

address pre-defined constellations of objects (e.g. pairs of

pedestrians) [5, 23]. Here, we propose a generic architec-

ture that does not require a specialized definition of object

constellations, is not limited to pairs of objects, and is fully

trainable.

We specifically focus on the task of people detection as

an important example of this problem. In crowded scenes

such as the one shown in Fig. 1, multiple people often oc-

cur in close proximity, making it particularly challenging to

distinguish between nearby individuals.

The key contribution of this paper is a trainable, end-to-

end approach that jointly predicts the objects in an image.

This lies in contrast to existing methods that treat predic-

tion or classification of each bonding box as an indepen-

dent problem and require post-processing on the set of de-

tections. We demonstrate that our approach is superior to

existing architectures on a challenging dataset of crowded

scenes with large numbers of people. A technical contribu-

tion of this paper is a novel loss function for sets of objects

that combines elements of localization and detection. An-
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(a) OverFeat output

(b) OverFeat final predictions

(c) Our predictions

Figure 1: Initial over-complete set of detections of Over-

Feat (a) and output of post-processing (b). Note the failure

to detect the third person in the center. Detection results

obtained with our method (c).

other technical contribution is to show that a chain of LSTM

units can be successfully utilized to decode image content

into a coherent real-valued output of variable length. We en-

vision this technique to be valuable in other structured com-

puter vision prediction tasks such as multi-person tracking

and articulated pose estimation of multiple people.

1.1. Related work

Detection of multiple objects in the presence of occlu-

sions has been a notorious problem in computer vision.

Early work employed a codebook of local features and

Hough voting [13, 2], but still required complex tuning and

multi-stage pipelines. Importantly, these models utilized

weak representations based on local features that are out-

performed by modern deep representations.

To overcome the difficulties of predicting multiple ob-

jects in close proximity, several attempts have been made

to jointly predict constellations of objects [5, 23, 15]. Our

work is more general, as we do not explicitly define these

groups, and instead let the model learn any features that are

necessary for finding occluded instances.

Currently, the best performing object detectors operate

either by densely scanning the image in a sliding window

fashion [17, 6, 27, 16], or by using a proposal mechanism

such as [24, 21], and leveraging CNNs to classify a sparsi-

fied set of proposals [6]. Both approaches yield bounding

boxes describing image regions that contain an object. Each

method then prunes the network outputs by merging heav-

ily overlapping instances. This works well for images with

few object instances that do not overlap, but often fails in

the presence of strong occlusions.

For example, Faster R-CNN [16] learns class indepen-

dent proposals that are subsequently classified with a CNN.

Like Faster R-CNN, we propose a set of bounding boxes

from images, but these proposals directly correspond to

object instances and do not require post-processing. The

Faster R-CNN outputs are necessarily sparse, whereas our

system is able to generate predictions in arbitrarily close

proximity.

Our approach is related to the OverFeat model [17]. We

rely on a regression module to generate boxes from a CNN

encoding. However, in our case distinct boxes are generated

as part of an integrated process, and not independently as in

OverFeat. As a result, each output box corresponds directly

to an object detected in the image, and we do not require

merging or non maximum suppression. Another important

advantage of our approach is that it outputs a confidence

corresponding to each output that is trained end-to-end. In

the case of OverFeat, an end-to-end trained confidence pre-

diction is not available, as the output is the result of a heuris-

tic merging procedure.

Our work is related to [25] in that the training objective

in our model jointly considers detections on multiple ob-

ject instances. The main difference is that while the model

in [25] is trained to optimize post non-maximum suppres-

sion (NMS) accuracy, it still performs standard detection

and NMS at test time, and is thus susceptible to the same

difficulties as other models (e.g. suppressing detections on

two object instances close to each other). In constrast, our

model jointly generates output bounding boxes at test time,

allowing it to correctly detect even strongly occluded ob-

jects.

Our work uses tools from recent neural network models

for predicting sequences [11, 19]. As in [19], we rely on

an LSTM to predict variable length outputs. Unlike in lan-

guage generation, detection requires that a system generate

over a 2D output space, which lacks a natural linear order-

ing. MultiBox addressed this challenge by introducing a

loss function that allows unordered predictions to be per-

muted to match ground-truth instances during training [21].

Faster R-CNN addressed this challenge by partitioning ob-
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Figure 2: Our system first encodes an image into a block of high level features. An LSTM then acts as a controller, decoding

this information into a set of detections.

jects into 9 categories with 3 scales and 3 aspect ratios, al-

lowing the net to directly produce multiple overlapping ob-

jects provided that they are of different sizes [16].

We build on these contributions by leveraging the ca-

pacity of our recurrent decoder to make joint predictions

in sequence. In addition to computing an optimal match-

ing of predictions to ground-truth, our loss function encour-

ages the model to make predictions in order of descending

confidence. Suitable loss functions have previously been

proposed in structured speech recognition and natural lan-

guage processing [7]. Here we propose such a loss function

for object detection.

2. Model

2.1. Overview

Deep convolutional architectures such as [12, 20] con-

struct image representations that are effective for a variety

of tasks. These architectures have been leveraged for detec-

tion, albeit primarily by adapting them into a classification

or regression framework. Deep representations have suf-

ficient power to jointly encode the appearance of multiple

instances, but one must augment them with a component

for multiple instance prediction to realize this potential. In

this paper, we consider recurrent neural networks (RNN),

and in particular LSTM units [8] as a candidate for such

a component. The key properties that make the combina-

tion of deep CNN’s with RNN-based decoders appealing

are (1) the ability to directly tap into powerful deep convo-

lutional representations and (2) the ability to generate co-

herent sets of predictions of variable length. These prop-

erties have been leveraged successfully in [11] to generate

image captions, and in [19] for machine translation. The

ability to generate coherent sets is particularly important in

our case because our system needs to remember previously

generated predictions and avoid multiple predictions of the

same target.

We construct a model that first encodes an image

into high level descriptors via a convolutional architecture

(e.g. [20]), and then decodes that representation into a set

of bounding boxes. As a core machinery for predicting

variable length output, we build on a recurring network of

LSTM units. An overview of our model is shown on Fig. 2.

We transform each image into a grid of 1024 dimensional

feature descriptors at strided regions throughout the image.

The 1024 dimensional vector summarizes the contents of

the region and carries rich information regarding the posi-

tions of objects. The LSTM draws from this information

source and acts as a controller in the decoding of a region.

At each step, the LSTM outputs a new bounding box and a

corresponding confidence that a previously undetected per-

son will be found at that location. Boxes are encouraged

to be produced in order of descending confidence. When

the LSTM is unable to find another box in the region with

a confidence above a prespecified threshold, a stop symbol

is produced. The sequence of outputs is collected and pre-

sented as a final description of all object instances in the

region.

The main computational pipeline in our approach in-

volves feed-forward processing only, which allows for fast

implementation. On a modern GPU the approach runs at 6
frames per second on 640x480 images.

2.2. Loss function

The architecture introduced in Sec. 2.1 predicts a set of

candidate bounding boxes along with a confidence score

corresponding to each box. Hypotheses are generated in

sequence and later predictions depend on previous ones via

the memory states of the LSTM. At each recurrence, the

LSTM outputs an object bounding box b = {bpos, bc},

where bpos = (bx, by, bw, bh) ∈ R
4 is a relative position,

width and height of the bounding box, and bc ∈ [0, 1] is

a real-valued confidence. Confidence values lower than a

pre-specified threshold (e.g. 0.5) will be interpreted as a

stop symbol at test time. Higher values of the bounding box

confidence bc should indicate that the box is more likely to
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correspond to a true positive. We denote the correspond-

ing set of ground truth bounding boxes as G = {bi|i =
1, . . . ,M}, and the set of candidate bounding boxes gen-

erated by the model as C = {b̃j |j = 1, . . . , N}. In the

following we introduce a loss function suitable for guiding

the learning process towards the desired output.

Consider the example in Fig. 3, which schematically

shows a detector with four generated hypotheses, each num-

bered by its prediction step, which we denote as rank.

Note the typical detection mistakes such as false positives

(hypothesis 3), imprecise localizations (hypothesis 1), and

multiple predictions of the same ground-truth instance (hy-

potheses 1 and 2). Different mistakes require different kinds

of feedback. In the case of hypothesis 1, the box location

must be fine-tuned. Conversely, hypothesis 3 is a false pos-

itive, and the model should instead abandon the prediction

by assigning a low confidence score. Hypothesis 2 is a sec-

ond prediction on the target already reported by hypothesis

1, and should be abandoned as well. To capture these rela-

tionships, we introduce a matching algorithm that assigns a

unique candidate hypothesis to each ground-truth. The al-

gorithm returns an injective function f : G → C , i.e. f(i) is

the index of candidate hypothesis assigned to ground-truth

hypothesis i.

Given f , we define a loss function on pairs of sets G and

C as

L(G,C, f) = α

|G|∑

i=1

lpos(b
i
pos, b̃

f(i)
pos ) +

|C|∑

j=1

lc(b̃
j
c, yj)

(1)

where lpos = ‖bi
pos − b̃

f(i)
pos ‖1 is a displacement between

the position of ground-truth and candidate hypotheses, and

lc is a cross-entropy loss on a candidate’s confidence that

it would be matched to a ground-truth. The label for this

cross-entropy loss is provided by yj . It is defined from the

matching function as yj = ✶{f−1(j) 6= ∅}. α is a term

trading off between confidence errors and localization er-

rors. We set α = 0.03 with cross validation. Note that for

a fixed matching, we can update the network by backprop-

agating the gradient of this loss function.

As an naı̈ve baseline, we consider a simple matching

strategy based on the fixed ordering of the ground-truth

bounding boxes. We sort ground-truth boxes by image po-

sition from top to bottom and from left to right. This fixed

order matching sequentially assigns candidates to the sorted

ground-truth. We refer to this matching function as “fixed

order” matching, denoting it as ffix, and the corresponding

loss function as Lfix.

Hungarian loss: The limitation of the fixed order match-

ing is that it might incorrectly assign candidate hypotheses
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Figure 3: Illustration of the matching of ground-truth in-

stances (black) to accepted (green) and rejected (red) can-

didates. Matching should respect both precedence (1 vs 2)

and localization (4 vs 3).

to ground-truth instances when the decoding process pro-

duces false positives or false negatives. This issue persists

for any specific ordering chosen by ffix. We thus explore

loss functions that consider all possible one-to-one assign-

ments between elements in C and G.

Recall that one of the principled objectives of our model

is to output a coherent sequence of predictions on multi-

ple objects. We define the stopping criterion for the gen-

eration process to be when a prediction score falls below

a specified threshold. For such a score threshold to make

sense, we must encourage the model to generate correct hy-

potheses early in the sequence, and to avoid generating low-

confidence predictions before high-confidence ones. There-

fore, when two hypotheses both significantly overlap the

same ground-truth (e.g. hypotheses 1 and 2 in Fig. 3), we

prefer to match the hypothesis that appears earlier in the

predicted sequence.

To formalize this notion, we introduce the following

comparison function between hypotheses and ground-truth:

∆(bi, b̃j) = (oij , rj , dij) (2)

The function ∆ : G × C → N × N × R returns a tuple

where dij is the L1 distance between bounding box loca-

tions, rj is the rank or index of b̃j in the prediction sequence

output by the LSTM, and oij ∈ {0, 1} is a variable penal-

izing hypotheses that do not sufficiently overlap a ground-

truth instance. Here, the overlapping criterion requires that

a candidate’s center lie within the extent of the ground-truth

bounding box. The oij variable makes an explicit distinc-

tion between localization and detection errors. We define a

lexicographic ordering on tuples produced by ∆. That is,

when evaluating which of two hypotheses will be assigned

to a ground-truth, overlap is paramount, followed by rank

and then fine-grained localization.

Given the definition of the comparison function ∆ in

Eq.2, we find the minimal cost bipartite matching between

C and G in polynomial time via the Hungarian algorithm.

Note that the Hungarian algorithm is applicable to any

graph with edge weights that have well-defined addition and
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pairwise comparison operations. To that end, we define (+)
as element-wise addition and (<) as lexicographic compari-

son. For the example in Fig. 3, correctly matching hypothe-

ses 1 and 4 would cost (0, 5, 0.4), whereas matching 1 and

3 would cost (1, 4, 2.3), and matching 2 and 4 would cost

(0, 6, 0.2). Note how the first term, used for detecting over-

lap, properly handles the case where a hypothesis has low

rank, but is too far from the ground-truth to be a sensible

match (as is the case for hypothesis 3 in Fig. 3). We refer to

the corresponding loss for this matching as the Hungarian

loss and denote is as Lhung.

We also consider a simplified version of Lhung where

only the top k = |G| ranked predictions from C are consid-

ered for matching. Note that this is equivalent to removing

or zeroing out the pairwise matching terms oij in Eq. 2. We

denote this loss as Lfirstk. We experimentally compare Lfix,

Lfirstk, and Lhung in Sec. 4, showing that Lhung leads to the

best results.

Loss function analysis Our net is differentiable almost

everywhere (DAE), as it is a composition of DAE functions.

In neighborhoods where the matching is locally constant,

Lhung is DAE as well. Further, the matching will be con-

stant in the neighborhood of points for which the optimal

matching cost is ǫ-lower than any other matching and all

overlap terms hold strictly. In practice, this will occur for

every iteration of training, so we may be confident in using

gradient descent.

3. Implementation details

We constructed our model to encode an image into a

15x20 grid of 1024-dimensional top level GoogLeNet fea-

tures. Each cell in the grid has a receptive field of size

139x139, and is trained to produce the set of all bounding

boxes intersecting the central 64x64 region. The 64x64 size

was chosen to be large enough to capture challenging local

occlusion interactions. Larger regions may also be used, but

provide little additional on our scenes, where few occlusion

interactions span that scale. 300 distinct LSTM controllers

are run in parallel, one for each 1x1x1024 cell of the grid.

Our LSTM units have 250 memory states, no bias terms,

and no output nonlinearities. At each step, we concate-

nate the GoogLeNet features with the output of the previous

LSTM unit, and feed the result into the next LSTM unit.

We have produced comparable results by only feeding the

image into the first LSTM unit, indicating that multiple pre-

sentations of the image may not be necessary. Producing

each region of the full 480x640 image in parallel gives an

efficient batching of the decoding process.

Our model must learn to regress on bounding box lo-

cations through the LSTM decoder. During training, the

decoder outputs an overcomplete set of bounding boxes,

each with a corresponding confidence. For simplicity and

⇒

Figure 4: Example of stitching in a new region’s predictions

(red) with accepted predictions (green).

batching efficiency, the cardinality of the overcomplete set

is fixed, regardless of the number of ground-truth boxes.

This trains the LSTM to output high confidence scores and

correct localizations for boxes corresponding to the ground

truth, and low confidence scores elsewhere. Because early

outputs are preferred during matching, the model learns to

output high confidence, easy boxes first. In our dataset, few

regions have more than 4 instances, and we limit the over-

complete set to 5 predictions. Larger numbers of predic-

tions neither improved nor degraded performance.

Model training: We use the Caffe open source deep

learning framework [10] for training and evaluation. The

decoder portion of our model is a custom LSTM implemen-

tation. We train with learning rate ǫ = 0.2 and momentum

0.5. Gradients are clipped to have maximum 2-norm of 0.1

across the network. We decreased the learning rate by a

multiple of 0.8 every 100,000 iterations. Convergence is

reached at 800,000 iterations. We use dropout with proba-

bility 0.15 on LSTM outputs. Removing dropout reduced

average precision (AP) by 0.01
Training proceeds on all subregions of one image at each

iteration. Parallelism of the LSTM decoders across regions

mitigates efficiency gains for larger batch sizes. All weights

are tied between regions and LSTM steps. However, we

were surprised to find slight performance gains when us-

ing separate weights connecting LSTM outputs to predicted

candidates at each step. These weights remain tied across

regions. Tying these weights reduced AP from 0.85 to 0.82.
2

Initialization: GoogLeNet weights are initialized with

weights pretrained on Imagenet [3]. Fine-tuning of

GoogLeNet features to meet the new demands of the de-

coder is critical. Training without fine-tuning GoogLeNet

reduced AP by 0.29.

All weights in the decoder are initialized from a uniform

distribution in [-0.1, 0.1]. Typical LSTM input activations

differ significantly from our pretrained GoogLeNet, which

has activations in the range [-80, 80]. To compensate for

2All hyperparameter AP analysis is performed on the validation set of

the Brainwash scene described in Section 4.
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this mismatch, we use a scale layer to decrease GoogLeNet

activations by a factor of 100 before feeding them into the

LSTM. Likewise, the initial standard deviation of the fully

connected layers output is on the order of 0.3, but bounding

box pixel locations and sizes vary in [-64, 64]. Thus, we

scale up the regression predictions by a factor of 100 before

comparing them with ground-truth. Note that these modifi-

cations are the same as changing weight initializations only

if one also introduces proportional learning rate multipliers.

Stitching: Our algorithm is trained to predict multiple

bounding boxes within 64x64 pixel regions. To apply it to

a full 640x480 images at test time we generate predictions

from each region in a 15x20 grid of the image and then use

a stitching algorithm to recursively merge predictions from

successive cells on the grid.

The stitching process is illustrated in Fig. 4. At a given

iteration, let A denote the current set of all accepted bound-

ing box predictions. We process a new region, evaluating

the decoder until a stop symbol is produced and collect a

set C of newly proposed bounding boxes. Some of these

new bounding boxes may correspond to previous predic-

tions.To remove multiple predictions on the same object we

define a bipartite matching problem related to that in sec-

tion 2.2 with a pairwise loss term ∆′ : A × C → N × R

given as ∆′(bi, b̃j) = (mij , dij). Here, mij states whether

two boxes do not intersect, and dij is a local disambiguation

term given by the L1 distance between boxes. As before, we

leverage the Hungarian algorithm to find a minimum cost

matching in polynomial time. We examine each match pair,

(b, b̃), and add any candidate b̃ that does not overlap with

its match b to the set of accepted boxes. The important dif-

ferences between this process and non-maximum suppres-

sion is that (1) boxes from the same region do not suppress

each other and (2) each box can suppress at most one other

box. Jointly this allows to generate predictions on instances

even if they overlap significantly in the image.

4. Experimental results

Datasets and evaluation metrics: We evaluate our ap-

proach on two datasets. We conduct the primary develop-

ment and evaluation on a new large dataset of people im-

ages. The images were collected from a busy scene using

video footage available from a public webcam. We refer to

this dataset as Brainwash in the following. We found that

having an abundance of images available in Brainwash en-

abled us to focus on the method development without being

potentially limited by a small training set size. We then

validate our results on a publicly available TUD-Crossing

dataset [1]. We perform experiments on both datasets us-

ing the same network architecture and the same values of

hyperparameters.
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Figure 5: Example detection results on the TUD-Crossing

dataset. Middle and bottom rows visualize output of Faster

R-CNN and our detectors at the operating point with 90%

precision. Top row shows output of Faster R-CNN before

application of non-maximum suppression.
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Figure 6: Comparison of person detection approaches on

the TUD-Crossing dataset. We include results obtained us-

ing the original ground-truth from [1] that includes only

substantially visible subjects (a), and results using the full

ground-truth with all people labeled (b).

For the Brainwash dataset we collect 11917 images

with 91146 labeled people. We extract images from video

footage at a fixed interval of 100 seconds to ensure a large

variation in images. We allocate 1000 images for testing

and validation, and leave the remaining images for training.

No temporal overlaps exist between training and test splits.

The resulting training set contains 82906 instances. Test

and validation sets contain 4922 and 3318 people instances

respectively. Images were labeled using Amazon Mechani-

cal Turk by a handful of workers pre-selected through their
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our model, Lfirstk 0.63 0.75 0.74

our model, Lhung 0.78 0.81 0.76

Figure 7: Performance evaluation.

performance on an example task. We label each person’s

head to avoid ambiguity in bounding box locations. The

annotator labels any person she is able to recognize, even

if a substantial part of the person is not visible. Exam-

ples of collected images are shown in Fig. 8. Images in

the Brainwash dataset include challenges such as people at

small scales, strong partial occlusions, and a large variabil-

ity in clothing and appearance 3.

We conduct evaluation using the standard protocol de-

fined in [4]. A hypothesis is considered correct if its

intersection-over-union score with a ground-truth bounding

box is larger than 0.5. We plot recall-precision curves and

summarize results in each experiment with average preci-

sion (AP) and equal error rate (EER) in Fig. 7 and Fig. 6.

For the Brainwash we also analyze how well each model

predicts the total count of people in an image. As in [14], we

measure count error by computing the average absolute dif-

ference between the number of predicted and ground-truth

detections in test set images. For each model, an optimal

detection threshold is selected on the validation set, and we

report the results as COUNT in Fig. 7.

Baseline methods: We compare our approach with

Faster-RCNN [16] and OverFeat [17] models. The origi-

nal version of OverFeat provided by [9] relied on an image

representation trained with AlexNet [12]. We hence refer to

the original version as OverFeat-AlexNet. Since both Over-

Feat and our model are implemented in Caffe, we were able

to directly substitute the GoogLeNet architecture into the

OverFeat model. We denote the new model as OverFeat-

GoogLeNet. The comparison of the two OverFeat variants

on the Brainwash dataset is shown in Fig. 7. We observe

that Overfeat-GoogLeNet performs significantly better than

OverFeat-AlexNet.

Note that the image representations used in our model

3The dataset is available at d2.mpi-inf.mpg.de/datasets

O
v
er

F
ea

t-
G

o
o
g
L

eN
et

o
u
r

ap
p
ro

ac
h

Figure 8: Example detection results obtained with

OverFeat-GoogLeNet (top row) and our approach (bottom

row). We show each model’s output at 90% precision.

Figure 9: Example failure cases of our method.

and in OverFeat are exactly the same. Both are imple-

mented using the same code, parameters, filter dimensions,

and number of filters. This gives us the interesting possi-

bility of directly comparing the models’ distinct hypothesis

generating components. In the case of OverFeat [17], this

component corresponds to a bounding box regression from

each cell followed by a round of non-maximum suppres-

sion. In our model this component corresponds to decoding

with an LSTM layer that produces a variable length out-

put. The performance of our best model is shown Fig. 7 and

compared to both versions of OverFeat.

Performance evaluation: We first compare our approach

to OverFeat baseline on the Brainwash dataset. Our ap-

proach delivers a substantial improvement over OverFeat,

improving recall from 71% to 81%. We also achieve con-

siderable improvement in AP (0.78 for our model vs. 0.67
for OverFeat-GoogLeNet), and people counting error (0.76
vs. 1.05).

Fig. 8 shows several examples of detections obtained by

our model and OverFeat-GoogLeNet. The arrows highlight

cases where our model can detect people even in the pres-

ence of strong occlusions. Examples of a failure cases are

indicated by red arrows in Fig. 9.

We compare to prior work in the literature on the TUD-

Crossing dataset. This dataset includes images from a

crowded street scene and has been used for evaluation of an

occlusion specific detector in Tang et al. [22]. We train on
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the TUD-Brussels dataset [26] as the TUD-Crossing dataset

does not provide a corresponding training set 4. The original

ground-truth for the TUD-Crossing does not include labels

for strongly occluded people. To get further insights into

performance of different methods for the cases of strong

occlusions we extend the ground-truth to include all people

in the dataset. This increases the number of labeled people

from 1008 in the original version to 1530 in the full version.

We compare our detector with results reported in Tang et al.

[22], and with results provided by the authors of Zhang et

al. [27], whose method represents the current the state of

the art for pedestrian detection.

The results using the original ground-truth are shown in

Fig. 6 (a). At 95% precision, our approach achieves recall of

86% compared with 79% reported in Tang et al. [22] (equal

error rate is 90% for our approach vs. 85% for [22]). Note

that [22] and similar approaches have been explicitly engi-

neered to address detection of multiple people and employ

hand-designed clustering of detection components, whereas

our method can be directly trained on the input data. Our

approach improves over our OverFeat-GoogLeNet baseline

as well as over the recent approach of Zhang et al. [27].

The results for the full ground-truth are shown in Fig. 6

(b). Note the substantial drop in overall performance, which

is due to a larger proportion of strongly occluded people in

the full ground-truth. The differences between our approach

and the approach of [27] are even more pronounced in this

setting. Our approach achieves EER of 80% compared to

70% for [27].

Comparison to Faster R-CNN: We trained and evalu-

ated Faster R-CNN detector [16] on the Brainwash and

TUD-Crossing using the implementation provided by the

authors5. The results are shown in Fig. 6 and Fig. 7. We

observe that for Faster R-CNN, the optimal level of non-

maximum suppression (NMS) is crucial for obtaining good

performance. We compare three levels of NMS controlled

by parameter τ ∈ [0, 1]. On TUD-Crossing our approach

improves over Faster-RCNN across all NMS levels. On

Brainwash it performs comparably to the best setting of

Faster-RCNN. Note that Brainwash is less crowded com-

pared to TUD-Crossing and contains lower ratio of overlap-

ping bounding boxes. Faster R-CNN with τ = 0.75 con-

sistently generates multiple predictions on the same person,

resulting in poor precision. Stricter NMS with τ = 0.25
mitigates this issue. On the TUD-Crossing dataset τ = 0.25
removes too many predicted boxes which results in poor

recall, setting τ = 0.75 preserves detections on people in

close proximity but introduces false positives on single peo-

ple. We show the qualitative comparison between our ap-

4TUD-Brussels contains several images from TUD-Crossing which we

exclude from our training set.
5https://github.com/rbgirshick/py-faster-rcnn

proach and Faster R-CNN in Fig. 5. Both approaches per-

form equally well in the case of fully visible people, but our

approach is able to better detect partially occluded people.

In Fig. 7 we also include a result obtained with our model

extended with an additional re-zooming layer that trans-

forms features into a scale-invariant represent prior to clas-

sification and leads to further improvement in performance.

We refer to [18] for the details on this extension.

Comparison of loss functions. We now evaluate the loss

functions introduced in Sec. 2.2. The model trained with

Lfix achieves only 0.60 AP. This suggests that allowing the

LSTM to output detections from easy to hard during train-

ing, rather than in some fixed spatial ordering, was essen-

tial for performance. To explore the importance of over-

lap terms in our loss function, we evaluate the Lfirstk loss,

which matches the k ground-truth instances in each region

to the first k output predictions. We observe that Lfirstk

outperforms Lfix at test time by allowing permutations of

LSTM outputs during training. However, we found that

Lfirstk struggled to attach confidences to specific box lo-

cations. With Lfirstk, early confidence predictions are often

too high, and late predictions too low. It appears that in-

stead of learning the probability that the corresponding box

is correct, the model learns on the ith recurrent step to pre-

dict the confidence that there are at least i people in a region.

These confidences are inappropriate for detection threshold-

ing, and underscore the importance of including the overlap

terms, oij , in our matching function. Precision recall curves

for each loss function are shown in Fig. 7.

5. Conclusion

In this paper, we introduced a new method for object

detection and demonstrated its performance on the TUD-

Crossing and Brainwash datasets. Our system addresses the

challenge of detecting multiple partially occluded instances

by decoding a variable number of outputs from rich inter-

mediate representations of an image. To teach our model

to produce coherent sets of predictions, we defined a loss

function suitable for training our system end to end. Our

approach runs at 15 frames per second on a modern GPU.

We envision that this approach may also prove effective in

other prediction tasks with structured outputs, such as peo-

ple tracking and articulated pose estimation.
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