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Abstract

This paper tackles the problem of spatio-temporal ac-

tion localization in a video, without assuming the availabil-

ity of multiple videos or any prior annotations. Action is

localized by employing images downloaded from internet

using action name. Given web images, we first dampen im-

age noise using random walk and evade distracting back-

grounds within images using image action proposals. Then,

given a video, we generate multiple spatio-temporal action

proposals. We suppress camera and background generated

proposals by exploiting optical flow gradients within pro-

posals. To obtain the most action representative proposals,

we propose to reconstruct action proposals in the video by

leveraging the action proposals in images. Moreover, we

preserve the temporal smoothness of the video and recon-

struct all proposal bounding boxes jointly using the con-

straints that push the coefficients for each bounding box to-

ward a common consensus, thus enforcing the coefficient

similarity across multiple frames. We solve this optimiza-

tion problem using variant of two-metric projection algo-

rithm. Finally, the video proposal that has the lowest re-

construction cost and is motion salient is used to local-

ize the action. Our method is not only applicable to the

trimmed videos, but it can also be used for action local-

ization in untrimmed videos, which is a very challenging

problem. We present extensive experiments on trimmed as

well as untrimmed datasets to validate the effectiveness of

the proposed approach.

1. Introduction

Bounding box annotations have played a crucial role in

development of several computer vision applications, such

as: object/action recognition, detection, tracking and seg-

mentation [36, 33, 6]. However, these annotations are cum-

bersome to obtain, require hundreds of hours and are subject

to human biases.

To mitigate this annotation challenge, several weakly-
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Figure 1: This figure illustrates our key idea of action local-

ization in a video using images. We first download images

of an action of interest from internet. After removing noisy

images, we co-localize all the images jointly to obtain ac-

tion proposals in each of the image. Then, given the candi-

date action locations in a video, we leverage image propos-

als to discover the most action representative proposal in a

video.

supervised approaches have been introduced recently [22,

5, 21, 29, 3, 9], particularly in the object domain. In general,

all these approaches assume presence of dominant centered

objects in multiple images. For instance, the method pro-

posed in [9] annotate objects from previously annotated im-

ages, [21] obtain bounding boxes by involving human eye

tracking, and [29, 3] achieve object annotation using multi-

ple images, where most of these images contain the object

of interest.

As compared to object annotation, spatio-temporal ac-

tion annotations in videos are far more challenging and,

therefore, it is not surprising that most of recent action
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datasets [28, 14] contain only a few or no spatio-temporal

annotations. The straightforward approach to obtain spatio-

temporal action annotations in a video would be to ex-

tend any of the previously mentioned methods from im-

age domain to video domain. However, temporal extension

has many challenges due to large search space and critical

differences between spatial and temporal dimensions [33].

More importantly, what if we do not have available multiple

videos of the same action?

To tackle the challenge of action localization in a single

video, we propose to leverage images downloaded from the

internet using text-based queries. In contrast to previous

works in object annotations, we neither assume availability

of bounding box annotations nor the presence of multiple

videos of the same class. Furthermore, we do not assume

the availability of clean images either.

Images are usually taken to capture key poses, descrip-

tive viewpoints and important instances of an action or event

[16, 17]. Our key idea is to exploit this useful informa-

tion to obtain precise spatio-temporal action localization in

videos. To operationalize our intuition (see Fig. 1) , we

first download several images of the action of interest using

the action label as a query from Google. These images con-

tain human performing actions in different locations (not

necessarily at the center), backgrounds and include many

irrelevant and noisy images. To circumvent these issues, we

remove irrelevant noisy images using random walk. To han-

dle the challenge of variable locations and backgrounds, we

co-localize the action in multiple images using a recently

proposed unsupervised localization method [3]. The out-

put of these steps is the candidate action localization in the

images.

Our ultimate goal is to obtain spatio-temporal annota-

tions in a video. Therefore, given a video clip, we first ob-

tain action proposals [20]. These proposals represent candi-

date spatio-temporal action locations in the video. However,

not all proposals are truly action representative as many are

due to camera motion and cluttered backgrounds. There-

fore, we remove highly overlapping action proposals using

non-maximal suppression by exploiting optical flow gradi-

ent within the proposals. To obtain the most action rep-

resentative proposal, we propose to reconstruct action pro-

posals in the video by leveraging the action proposals in im-

ages. Furthermore, we preserve the temporal smoothness of

the video by introducing consensus regularization. Consen-

sus regularization enforces consistency among coefficients

vectors of multiple frames within the proposal. The pro-

posal with the lowest reconstruction error and a high motion

saliency is selected as a final action localization.

Our experimental results reveal that it is possible to au-

tomatically annotate an action in a video by employing web

images of the same action through mitigating the effect of

distracting backgrounds within images and by preserving

the temporal structure of video during reconstruction.

Most of the previous works demonstrate action localiza-

tion accuracy either on trimmed videos or carefully staged

clean untrimmed videos. However, these videos do not rep-

resent the real-world videos, which are long, have variable

scenes and backgrounds and contain multiple or no instance

of the action of interest. Since proposed approach does not

require multiple videos and prior annotations, it can easily

be applied to more realistic untrimmed videos. We have

evaluated our approach on trimmed [23, 13] as well as on

the part of untrimmed [14] datasets and have obtained en-

couraging results.

In summary, 1) We demonstrate the feasibility of us-

ing images to achieve spatio-temporal action localization in

videos, 2) By utilizing video proposal sparse reconstruction

error with motion saliency, we achieve impressive localiza-

tion results on popular trimmed action datasets, 3) We are

the first to report spatio-temporal action localization results

on (the part of) challenging untrimmed action dataset [14].

Furthermore, we will release spatio-temporal annotations of

35, 000 frames of [14] to facilitate further research in this

direction.

2. Related work

With the exponential increase in the size of object/action

datasets, obtaining annotations is becoming increasingly

daunting task. Moreover, it is subject to human biases in

terms of start and end of the activity and the sizes of the

exact spatial boxes around an actor.

One way to avoid these time consuming annotations al-

together is to use weakly supervised object/action detector

approaches such as [25]. This type of approaches only use

image/video level labels and learn the object/action detec-

tor without requiring bounding box annotations. Although

impressive, their accuracy is still far behind that of detec-

tors trained on hundreds of bounding box annotations. An-

other interesting area of research relates weakly supervised

annotations methods [30, 3, 15]. Tang et al. [30] intro-

duced co-localization method where the objective is to ob-

tain bounding boxes around common objects among multi-

ple images. Their joint image and box formulation can also

handle the presence of noisy images to some extent. Joulin

et al. [15] extended [30] to videos and co-localize objects

in several frames using multiple videos. Both methods re-

quire image or video level labels only. Recently, Cho et

al. [3] introduced part based matching approach to localize

common objects across multiple images, without requiring

images level labels. Given several images of different ob-

ject classes, this method efficiently localize objects which

are common in multiple images. Although encouraging re-

sults have been obtained, these methods require multiple

images of the object of interest and cannot localize the ob-

jects if multiple images containing the same object are not
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available.

Recently, [32] and [26] respectively introduced weakly

supervised methods to obtain object segmentation and

bounding box annotations in a single video. Similar to

our approach, these methods do not require multiple im-

ages of object/action of interest. However, in contrast to our

method, they rely on negative data (the videos that do not

contain the object of interest). These methods robustly seg-

ment and locate object/action in a single video. We compare

our approach with both of these methods and show superior

performance.

There is an increasing interest in leveraging images and

videos to improve the performance of either domain or both.

The method in [22] used YouTube videos to gather more ex-

amples for training object detectors. Chen et al. [2] used

unlabeled video to learn action detector for images. Kevin

et al. [31] proposed to adapt object detector from images

to video. The approach presented in [16, 27] use images to

produce effective video summarization. The authors in [17]

presented an efficient framework to produce a joint sum-

mary of a video and Flicker images. Recently, Jain et al.

[12] demonstrates that object classifiers can be used to im-

prove action recognition accuracy.

However, we are not aware of any previous work that

uses images to localize an action in a video. In what fol-

lows, we first describe our approach in detail for trimmed

videos and then present its extension to untrimmed videos

(Section 6).

3. Weakly Supervised Action localization in

Images

The first step of our approach is to obtain candidate ac-

tion proposals in downloaded images. For this purpose, we

download images from internet and obtain candidate action

locations in each image. The details of each step are given

below.

3.1. Web Image Collection

Using the action name such as tennis swing, golf swing

etc., as a text query we download images from Google Im-

age search engine. Although, Google image search quality

has been improved significantly over last few years, the re-

trieved images still contain outliers and irrelevant images

due to in-accurate query text and polysemy.

We perform random walk over these images to get rid

of image noise. The key benefit of using random walk is

that it can discover both small cluster of outliers as well as

the images far away from all other images (in feature space)

[19]. We define a fully connected graph Z(N,E), where

N is the set of all images and E represents set of edges

between them. The weight between any two nodes i and

j on the graph is measured by Euclidean distance between

Figure 2: Noisy golf swing images removed by random

walk. These images include cartoons, people in unusal

backgrounds and clipart. Last image (bottom right) rep-

resents the failure case, which random walk is unable to

remove (perhaps due to its similarity to golf swing in the

feature space).

their features φ(i) and φ(j), where φ represents deep learn-

ing features [35] computed over the whole image. Finally,

the transition probability between any two nodes i and j is

given by

p(i, j) =
e−γ‖φ(i)−φ(j)‖

2

∑k

m=1 e
−γ‖φ(i)−φ(m)‖

2

. (1)

The random walk over the graph is then formulated as:

rk(j) = β
∑

i

rk−1(i)pij + (1− β)vj , (2)

where rk(j) represents relevance score of the image j at kth

iteration, vj is its initial probabilistic score and β controls

the contribution of both terms to the final score. Due to the

absence of any prior knowledge about images, we assign the

same initial probabilistic score to all the images. The rele-

vance score rk(j) is iteratively updated for all nodes until

fixed number of iterations are achieved. The images with

low relevance score can be considered as outliers and sub-

sequently removed. In our experiments, we removed 30%

of the originally downloaded images. When removing im-

ages more than 30%, we start losing good quality images.

In experiments, we use β=0.99. Some of the typical images

removed by random walk are shown in Figure. 2.

3.2. Action Proposals in Images

Although images downloaded using the text query be-

long to the same overall concept; they are mostly captured

in different scenes and contain distracting backgrounds. Us-

ing these images naively is detrimental to video proposals

ranking (see Table 1). Therefore, to get rid of unnecessary

backgrounds, we propose to localize the action in images.

To localize the action in the downloaded images, we

use recently proposed state-of-art unsupervised localization

method [3]. We use this method because of its excellent

performance on many complex datasets [6].

Following [3], we extract hundreds of candidate action

proposals [18] from each image. The objective is to obtain
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Figure 3: Automatically generated action proposals in im-

ages. In bottom row, last two images (from right) show the

failure cases due to very small size of actor and cluttered

background.

the proposals which represent the most common concept

(the action in our case) across all the images. To achieve

this, we efficiently match action proposals across all the im-

ages using Probabilistic Hough Matching (PHM) [3]. The

PHM matching is performed on local regions within pro-

posals by carefully considering their scale and localization

variations. The score of a local region in proposal pm with

respect to p′m is given as:

ψ(p) = max
r′

c((r, r′)|(pm, p
′
m)), (3)

where c represents Hough matching confidence of local re-

gion r in pm with respect to p′m.

The high region score represents the highest matched

proposal across images. However, it does not provide the

explicit action localization as the background regions can

also have good matches. Therefore, we use both the stand-

out score [3] of each proposal and the PHM based region

matching to obtain the final action localization in images. In

our experiments, we use only top two action proposals from

each image. Selecting more than two proposals increases

the computational time of next steps, while not always help-

ing the performance. Figure 3 shows automatically gen-

erated images’ proposals for actions of THUMOS14. The

right most images in the second row show the failure cases,

where we are unable to localize the action of interest.

4. Action Proposals in videos

Our end goal is to obtain spatio-temporal action local-

ization in a video using image action proposals generated

in the previous section. Therefore, we first estimate action

locations in the video and try to remove the majority of cam-

era and background generated proposals.

In order to obtain spatio-temporal action localization in a

video, we first need to obtain candidate action locations in a

video. Traditional ways to achieve this is to use 3D (spatio-

temporal volume) sliding window approach. However, this

approach has two main limitations. Firstly, it produces ex-

tremely large number of candidate locations. Secondly, 3D

cuboids contain a large amount of background particularly

in case of dynamic actions. To circumvent these problems,

recently, action proposals have been presented [11, 20, 34].

Compared to sliding window, these techniques provide far

less number of high quality action proposals.

In this work, we employ supervoxel segmentation based

approach to generate action proposals [20]. However, our

method does not depend on specific action proposal meth-

ods and any action proposals method can be used [34, 11].

We compute fixed number of superpixels from each video

frame and estimate mean color, color histogram and optical

flow histogram within each superpixel. Given n number of

superpixels, we build a graph G(V,E), where V is a set of

superpixels and E represents a set of edges between them.

We use discontinuity preserving first and second order spa-

tial edge weights between superpixels m and n, where the

first order edge weight is given by:

enm,s = α1d1(n,m) + α2d2(n,m) + α3d3(n,m)

+α4d4(n,m) + α5d5(n,m), (4)

where d1 corresponds to distance between color means,

d2 and d3 represent distance between color and flow his-

tograms and d4 and d5 represent geodesic distance between

superpixel centroids computed through motion and color

boundaries.

In addition to spatial edges, we also build temporal edges

given as

enm,t = α7d1(n,m) + α8d2(n,m) + α9d3(n,m), (5)

where d1, d2 and d3 are the same as described before andm

and n represents temporal neighbors. Hierarchical cluster-

ing on this graph results into supervoxels segmentations. Fi-

nally, action proposals are built by merging supervoxels us-

ing randomized Prim’s maximum span tree algorithm [18],

extended to videos. During proposals generation, appear-

ance, motion and size similarities of superpixels are taken

in account. Typical examples of few action proposals for

UCF Sports videos are shown in Figure 4. Although, the

above method generates significantly less number of action

proposals (approx. 2000 in each video), their number is still

huge for our application, since we want to obtain only the

most action representative proposal in each video clip.

Human actions are mainly characterize by motion. We

use this important cue for two purposes. First, we use it

to discard camera and background generated proposal (as

they would have small optical flow gradients). Secondly, we

use it to facilitate action proposal ranking. To this end, we

use optical flow gradients within each video proposal. We

first compute Frobenius norm of optical flow within each

proposal, defined as:

‖UX‖F =

∥

∥

∥

∥

[

ux uy
vx vy

]
∥

∥

∥

∥

F

, (6)
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Figure 4: Video action proposals. Colors in the figures are

randomly assigned.

where U = (u, v) represents forward optical flow and ux,

vx, uy and vy are optical flow gradients.

The motion score, ηp, of each video proposal, pv , is then

defined as weighted summation of Frobenius norm, namely,

ηp = Gl(xc, yc)×Gs(h,w)×
∑

‖UX‖F , (7)

where xc, yc, h, w represent center coordinates, height and

width of the proposal respectively. Gaussians Gl and Gs

encourage proposals that are in the center of the video and

are in vertical shapes since humans in these action videos

are mostly in the center and are in upright position.

Assuming ηp, as a detection score, we perform Non-

Maximal Suppression (NMS) to obtain a few proposals,

which have high optical flow gradients and have small over-

lap with each other. In our experiments, we keep at most

fifty proposals from each video. This results in a huge de-

crease in computation for further steps. Finally, we normal-

ize motion score ηp of all proposal within a video between

zero and one. We use this normalize score to represent mo-

tion saliency of each proposal.

5. Ranking Video Action Proposals using Im-

age Action Proposals

In this section, we present our key idea of ranking video

action proposals, Pv, using image action proposals, Pm.

We propose to achieve this by reconstructing video action

proposals as a linear combination of image action propos-

als. The main idea is that video action proposals which can

easily be reconstructed using image action proposals (i.e.,

have low reconstruction error) can be considered to be cap-

turing the key poses and viewpoints of the specific action

and therefore represents the action of interest.

Suppose a video contains k number of video action pro-

posals, Pv = [p1v, p
2
v, . . . , p

k
v ]. Within each proposal, we ex-

tract visual features [35] from each of the key frame (bound-

ing box). Let Πf ∈ R
d×n represents the matrix obtained by

vertical concatenation of all key frames features within a

proposal, where d is the dimension of visual feature, and n

is the number key-frames within proposal.

Similarly, Υf ∈ R
d×m, represents vertical concatena-

tion of visual features from all image proposals, where m

represents the total number of image proposals.

The straightforward approach would be to reconstruct

each of the video proposal bounding box independently us-

ing image proposals and aggregate the reconstruction error

for all the bounding boxes to obtain overall proposal action

score. Although appealing, it ignores the underlying tem-

poral structure of the video. Videos are not just the collec-

tion of frames but the sequence of frames and hence contain

temporal information. Therefore, we propose to reconstruct

all proposal bounding boxes jointly using the constraints

that push the coefficients for each bounding box towards a

common consensus, thus enforcing the coefficient similar-

ity across multiple frames. Moreover, we introduce sparsity

constraint to take care of noise in image data. Consensus

regularization has been introduced recently for different ap-

plications [4, 37].

To achieve above goal, we minimize following the ob-

jective function:

Z = min
C

∥

∥Π
f −Υ

f
C
∥

∥

2

F
+ λ1

∥

∥C− C̄
∥

∥

2

F
+ λ2 ‖C‖1 ,

(8)

where the first term minimizes reconstruction error and sec-

ond and third term enforce consistency (across columns)

and sparsity in coefficient matrix C, respectively. The con-

sensus matrix C̄ is obtained by columns-wise concatenation

of mean of coefficient matrix C.

We solve the optimization mentioned in Eq. 8 using vari-

ant of two-metric projection algorithm [7, 24]. We divide

the optimization variables ci into two sets: active set and

working set. Active set, A, contains the variables that have

positive partial derivative and are close to zero.

A = {i|ci < ǫ,∇iZ(C)} (9)

Similarly, variables that have negative partial derivative

or that are sufficiently non-zero belong to working set, W .

We compute a diagonally-scaled projected pseudo-gradient

step for active set variables and a projection of Newton step

along working set, namely,

CW ← P[CW − σH
−1

W ∇WZ(C)]

CA ← P[CA − σDA∇AZ(C)], (10)

where P is orthant projection and H is Hessian matrix.

Note that, given positive diagonal scaling matrix DA, com-

bined gradient direction is descent, unless C is optimal. We

iteratively solve the above equations until we obtain the op-

timal solution or the maximum number of iterations are met.

We optimize Eq. 8 for every proposal in the video clip

and estimate the reconstruction error. We normalize recon-

struction errors of all proposals within a video between zero

and one. The final action score Λp of each proposal, pv , is

simply given as:

Λp = (1−Rp) + ηp, (11)

whereRp and ηp represent reconstruction error and motion

saliency (calculated in Section 4) of proposal, pv .
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Note that we have experimented with several state-of-art

domain adaptation methods such as [8, 10], however either

they do not help at all or have diminishing effect on the

performance.

6. Action localization in Untrimmed videos

The proposed approach is generic in nature and can be

applied to any action dataset including recently introduced

extremely challenging untrimmed action datasets such as

THUMOS14 [14]. This dataset contains long YouTube

sports videos, mostly gathered from news and documen-

taries. The general trend in these videos is that they con-

tain: newscaster or reporter, clips showing the crowd and

stadium, people talking about the specific sport and finally

the actual action clips somewhere in between these irrele-

vant clips.

To use our approach on untrimmed videos, we first di-

vide long videos into shots [1]. We start with the assump-

tion that each shot contains an action. By considering each

shot as a trimmed video, we compute top ranked action

proposal from each video using exactly the same procedure

as described in Section 3, 4 and 5. After computing the most

representative action proposal in each shot (Section 5), we

compare the action score (Eq. 11) of these top ranked pro-

posals across the shots. Intuitively, the shots that contain

an action would have top ranked proposals with high action

score as compared to the shots that do not contain action.

We max-normalize the reconstruction error of shots across

the video. By sweeping the threshold of reconstruction er-

ror, we generate ROC curve as shown in Figure 7.

7. Experimental Results

The main goal of our experiments is to quantitatively

evaluate the performance of proposed approach, verify

that each component contributes to its final accuracy and

demonstrate the generality of our approach. To this end,

we performed extensive experiments on trimmed as well

untrimmed action datasets.

For shot detection, we computed RGB histogram of

frames as a feature representation. For all other experi-

ments, we used CNN features [35], computed within im-

age/video proposals bounding boxes. We set the parameters

in Equation 8 as λ1=0.06 and λ2=0.16.

7.1. Experiments on Trimmed Action Dataset

For experiment on trimmed dataset, we have chosen

UCF-Sports [23] and THUMOS13 [13] because of their

complexity and that several recent works have used in their

experiments [34, 11, 33]. In these datasets, an action spans

the complete video clip. These broadcast videos contain

large camera motion, cluttered background, variable view-

points and occlusion. UCF-Sports dataset contains 150

videos and include 10 actions including: diving, golf swing,

kicking, lifting, horse riding, running, etc. THUMOS13 is a

subset of UCF101 [28] and contains 24 human actions that

have spatio-temporal annotations. These actions include:

cricket bowling, biking, salsa spin, etc. This dataset has

3207 videos. We used all videos of both datasets for evalu-

ation (except Walk-Front-005 in UCF-Sports since it is ac-

tually a running action).

To evaluate localization accuracy, we use the standard

intersection over union metric at 20% threshold [11, 33].

The localization accuracy of our complete method for UCF-

Sports is given in Table 2. We compare our method with two

strong baselines: CRANE [32] and Negative Mining [26].

Similar to the proposed approach, both of these techniques

are weakly supervised annotation methods, i.e., they only

assume video level labels. The comparison shown in Table

2 indicates the significantly improved localization accuracy

of our method. Note that we use the same features [35] for

all three methods.

In Figure. 5, we show qualitative examples of localiza-

tion. We show four frames for a video from each action.

It can be seen that our method performs quite well despite

large camera motion (diving, kicking), scale changes (walk-

ing), cluttered background (horse riding, skateboarding),

small actor size (running, golf swing) and abrupt motion

(swinging).

Our method contains several components. We evaluate

the contribution of each component towards final localiza-

tion accuracy in Table 1. First row indicates localization ac-

curacy, where we use all of the downloaded images (without

removing noisy ones) in our reconstruction framework. Re-

moving noisy images gives 3% improvement in localization

accuracy (second row). Reducing the effect of images back-

ground noise through proposal, we achieve further 15% im-

provement. By enforcing consistency and sparsity in coeffi-

cient vectors among multiple frames of the proposal, we ob-

tain 5% improvement. Finally, by adding motion score, we

achieve further 5% improvement. Our results demonstrate

that each component of our approach is necessary and con-

tributes towards final localization accuracy. Moreover, our

results reinforce that the web images do have the ability to

make a significant impact on action localization in videos.

Table 3 shows localization accuracy of top ranked pro-

posals in UCF-Sports and UCF-101 across different overlap

thresholds.

7.2. Experiments on Un­Trimmed Action Dataset

To demonstrate the effectiveness of the proposed ap-

proach, we have evaluated it on a part of recently released

un-trimmed action dataset [14]. This dataset was released in

2014 in THUMOS challenge workshop. In addition to hav-

ing cluttered background, severe occlusion and huge cam-

era motion, these extremely challenging real-world videos
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Method Diving Golf Swing Kicking Lifting Riding Horse Run Skateboarding Swing Bench Swing Sideangle Walk Avg

All Images w/o Noise removal 78.57 77.78 60.00 100 75.00 61.54 50.00 80.00 7.69 61.90 65.25

Images w/ Noise removal 78.57 83.33 65.00 100 75.00 61.54 50.00 85.00 30.77 52.38 68.16

ImageProp w/o constraints 85.71 83.33 80.00 100 100 69.23 66.67 100 61.57 90.48 83.70

Reconstruction model (Eq. 8) 92.86 100 85.00 100 91.67 92.31 88.33 95.00 69.23 76.19 88.56

Complete Method (Eq. 11) 100.00 94.44 85.00 100 100 84.62 83.33 100 84.62 95.24 92.72

Table 1: Quantitative results for UCF-Sports. Top row shows localization accuracy of reconstructing video proposals using

all images (including noisy ones). The second row shows the same after noise removal using random walk. The third

row shows localization accuracy of reconstructing video proposals from image proposals without enforcing sparsity and

consensus constraints. Localization accuracy of complete reconstruction model (Eq.8) is shown in fourth row. Finally, fifth

row shows accuracy of complete method. The results indicate that noise removal, image proposals, regularization and motion

saliency; all contribute to overall localization accuracy.

Diving Golf Swing

Lifting Horse Riding

Skateboarding Swing

Run Kicking

Swing SideAngle Walk

Figure 5: Localization results (Top ranked proposal) from UCF-Sports. We show four frames of each action video. Red box

indicates ground truth and green box shows localization results.

contain several irrelevant frames such as non-action frames

and multiple instance of the same action.

THUMOS14 test-set contains 20 actions, where only

temporal annotations are provided without any spatial

annotations. To evaluate spatio-temporal localization ac-

curacy of our method on this dataset, we manually anno-

Method CRANE[32] NML [26] Ours

Localization 65.41 63.01 92.72

Table 2: A comparison of our approach with related weakly

supervised annotation methods on UCF-Sports

Threshold 0.1 0.2 0.3 0.4 0.5 0.6

UCF-Sports 93.9 92.7 82.1 61.0 40.7 18.5

UCF-101 78.0 62.7 47.8 28.8 13.8 4.6

Table 3: Localization accuracy of UCF-Sports and THU-

MOS13 (24 classes) at various thresholds.

tated four actions: baseball pitch, golf swing, tennis swing

and throw discus. Specifically, we annotated around 35, 000

video frames (these annotations will be made publicly avail-

able). Baseball pitch, golf swing, tennis swing and throw

discus contain 40, 141, 80, and 28 number of action in-

stances, respectively. Given a video, we first divide it into
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Baseball Pitch Golf Swing

Throw Discus Tennis Swing

Figure 6: Localization results (Top ranked proposal) from four actions of THUMOS14. We show four frames of each action

video. Red box indicates ground truth and green box shows localization results.
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Figure 7: Mean ROC curves for four actions of THU-

MOS14: Tennis swing, Golf swing, Throw Discus, and

Baseball pitch. The results are shown for Negative Mining

approach [26] (green), CRANE [32] (yellow) and Proposed

method (red).

shots or clips. We, then, compute video action proposals

within each clip by assuming that each clip contains the ac-

tion. We compute the action scores of all proposals within

the shot and obtain the most action representative proposal

in every shot. We consider the action score as a action de-

tection score and evaluate localization accuracy using in-

tersection over union metric at 10% threshold. The mean

ROC curve for all four actions is shown in Figure 7. Again,

we compare our results with weakly supervised annotation

methods [32, 26] and obtain better results. Improved results

as compared to strong baseline methods signify the effec-

tiveness of the proposed approach. We use lower thresh-

old criterion due to extreme difficulty of the dataset. Even

though the results of all three methods are lower as com-

pared to state-of-art results on similar actions in trimmed

datasets, we consider these results encouraging, due to the

complexity of dataset. The qualitative results for all four

actions are shown in Figure 6.

Figure. 8 shows some of typical failure cases on THU-

MOS14 dataset. The figure on the top-left shows a frame

from golf swing video. In this video of more than 5000

frames, the complete golf swing action happens only for

500 frames. In the rest of the video, the person is teach-

ing golf swing techniques and performing in-complete golf

swing action several times. Although, we achieve good lo-

calization over the actor, our method has problem in distin-

guishing complete action from the in-complete ones. Other

failures occurred due to actor’s occlusion and blurred video.

8. Conclusion

We present a new approach to spatio-temporally localize

an action in a single video. As compared to previous simi-

lar works, we don’t assume availability of multiple videos,

prior annotations or clean images. Our experimental results

show that impressive action localization can be achieved

by reconstructing candidate action locations by leveraging

freely available internet images. Our framework tackles

noisy images through random walk and sparse representa-

tion, removes background and camera generated video pro-

posals through optical flow gradients and preserves tempo-

ral smoothness of video by enforcing consistency of coeffi-

cient vectors across multiple frames. Our extensive exper-

iments on trimmed as well as un-trimmed action datasets

validate the effectiveness of proposed ideas and the frame-

work.

Acknowledgments: We thank Boqing Gang for valuation

discussions on this project.

Figure 8: Failure cases on THUMOS14 dataset
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