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Abstract

In this paper we present a tracker, which is radically

different from state-of-the-art trackers: we apply no model

updating, no occlusion detection, no combination of track-

ers, no geometric matching, and still deliver state-of-the-

art tracking performance, as demonstrated on the popular

online tracking benchmark (OTB) and six very challeng-

ing YouTube videos. The presented tracker simply matches

the initial patch of the target in the first frame with can-

didates in a new frame and returns the most similar patch

by a learned matching function. The strength of the match-

ing function comes from being extensively trained generi-

cally, i.e., without any data of the target, using a Siamese

deep neural network, which we design for tracking. Once

learned, the matching function is used as is, without any

adapting, to track previously unseen targets. It turns out

that the learned matching function is so powerful that a sim-

ple tracker built upon it, coined Siamese INstance search

Tracker, SINT, which only uses the original observation of

the target from the first frame, suffices to reach state-of-the-

art performance. Further, we show the proposed tracker

even allows for target re-identification after the target was

absent for a complete video shot.

1. Introduction

At the core of many tracking algorithms is the function

by which the image of the target is matched to the incom-

ing frames. The matching function for tracking ideally pro-

vides good matching even if the target in the video is oc-

cluded, changes its scale, rotates in and out-of-plane or, un-

dergoes uneven illumination, camera motion and other dis-

turbing factors [41, 52]. One way to proceed is to model

each of these distortions explicitly in the matching by in-

troducing affine transformations [29], probabilistic match-

ing [6], eigen images [38], illumination invariants [32], oc-

clusion detection [33]. While one explicit matching mech-

anism may be well-fitted to solve one distortion, it is likely

to disturb another.

In this work, rather than explicitly modeling the match-

Figure 1: The tracker simply finds the patch that matches

best to the original patch of the target in the first frame,

using a learned matching function. The matching function

is learned once on a rich video dataset. Once it has been

learned, it is applied as is, without any adapting, to new

videos of previously unseen target objects. We do not apply

offline target learning and the target is not included in the

training video dataset.

ing for particular distortions, we propose to learn the match-

ing mechanism. More specifically, we suggest that we learn

from external videos that contain various disturbing factors

the invariances without, however, explicitly modeling these

invariances. If the set of external videos is sufficiently large,

the goal is to learn a generically applicable matching func-

tion a priori. We take extra care that there is absolutely

no overlap between the videos we use for training and any

of the tracking videos for evaluation. Namely, we do not

aim to do any offline learning of the tracking targets, since

in that case we would essentially learn an object detector.

Instead, in the learning we focus on the generic set of ob-

ject appearance variations in videos. In this way, we opti-

mize the matching function between an arbitrary target and

patches from subsequent frames. Once the matching func-

tion has been learnt on the external data we do not adapt it

anymore and, we apply it as is to new tracking videos of

previously unseen target objects.

We focus on learning the matching function suited for
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application in trackers. Hence, our aim is not to build a fully

fledged tracker which might need explicit occlusion detec-

tion [34], model updating [56, 16, 14], tracker combina-

tion [56], forget mechanisms [32, 14] and other. We rather

focus on the matching function alone, similar to the simplic-

ity of the normalized cross-correlation (NCC) tracker [7, 2].

In this paper, we simply match the initial target in the first

frame with the candidates in a new frame and return the

most similar one by the learnt matching function, without

updating the target, tracker combination, occlusion detec-

tion and alike. Figure 1 illustrates the tracking algorithm.

This approach to tracking bears some similarity to in-

stance search [43, 44, 36, 46], where the target specified in

the query image is searched for in a pile of images. Intro-

ducing matching learning [44] allows for accurate instance

search of generic objects even when the relevant images in

the search set show drastically different views of the tar-

get object from the query image. Here we intend to learn a

generic matching function to cope with all sorts of appear-

ance variations from tracking examples. After learning, the

matching function is capable of comparing patches recorded

under very different conditions for new objects, or, even for

new object types that the function has not seen before.

We summarize the contributions of the work as follows.

First, we propose to learn a generic matching function for

tracking, from external video data, to robustly handle the

common appearance variations an object can undergo in

video sequences. The learnt function can be applied as

is, without any adapting, to new tracking videos of pre-

viously unseen target objects. Second, on the basis of

the learnt generic matching function, we present a tracker,

which reaches state-of-the-art tracking performance. The

presented tracker is radically different from state-of-the-art

trackers. We apply no model updating, no occlusion de-

tection, no combination of trackers, no geometric matching

and alike. In each frame, the tracker simply finds the candi-

date patch that matches best to the initial patch of the target

in the first frame by the learned matching function. Third, to

learn the matching function, we use a two-stream Siamese

network [3], which we design specifically for tracking. Fur-

ther, in the absence of any drifting that one would expect by

on-the-fly model updating, the proposed tracker allows for

successful target object re-identification after the target was

absent for a long period of time, e.g., a complete shot.

2. Related Work

Matching functions in tracking One of the most ba-

sic concept of tracking is the direct matching between the

intensity values of the target patch and the patches taken

from the incoming image. The oldest tracking algorithm

does just that by normalized cross-correlation [7, 2]. Its

simplicity is also its strength, still being in use as part of

the TLD-tracker [23]. Subsequent trackers have reconsid-

ered the matching function by focusing on the various dis-

tortions to the target image faced in tracking. The Lucas

and Kanade tracker [29] adds an affine transformation to the

matching function. MST [6] relies on probabilistic match-

ing. FRT [1] uses the earth mover’s distance matching.

And IVT [38] matches by the metric of eigen images ob-

tained during tracking. L1T [30] is successful with L1-

metric matching on graphs of fragments. SPT [50] uses

super-pixels for matching, HBT [12] uses HOG-features in

a probabilistic approach, and FBT [32] uses color invari-

ants for robustness against illumination variations. Differ-

ent from all methods above, which pursue explicit model-

ing of the matching function, this paper aims to learn the

matching function from example videos annotated with the

correct boxes.

Recent tracking methods In recognition of the hard-

ness of the task, composite trackers have been intro-

duced. TLD [23] integrates the NCC matching for recovery

with a differential tracker and a complex updating model.

Struck [14] is based on structural SVM with the displace-

ment as the continuous output, with a cautious update mech-

anism. More recently, MEEM [56] successfully learns and

updates a discriminative tracker, keeping a set of historical

snapshots as experts who derive the per frame prediction

based on an entropy regularized optimization. Alien [34] is

a successful long-term tracker relying on oversampling of

local features and RANSAC-based geometric matching. In

the very recent MUSTer [18] one component stores short-

term memories of the target for short-term tracking using in-

tegrated correlation filters, where the long-term memory is

based on RANSAC matching again. Finally, the AND-OR

tracker [51] proposes a discriminative learning of hierarchi-

cal, compositional and-or graphs that account for the ap-

pearance and structural variations of the object. In this pa-

per, we focus on simple tracking inference scheme, namely

finding the patch that matches best to the initial target in the

first frame. The complexity, instead, is incorporated exter-

nally, where the matching function is trained to be robust

against appearance variations. Hence, rather than learn-

ing on-the-fly, we learn what can be encountered in general

without requiring target-specific learning. Once learned, the

matching function can be built in the successful, aforemen-

tioned composite trackers to enhance their performance.

Deep learning in tracking [49] uses a stacked denois-

ing autoencoder to learn tracking features. The features

are performing poorly, however. [25] learns a target clas-

sifier online, which is fundamentally hampered by a lack of

data. [17] focuses on learning target-specific saliency map

using pre-trained ImageNet network. [47] pre-trains a con-

volutional neural network for measuring generic objectness

on ImageNet 2014 detection set and adapts the network

online to predict the target-specific objectness. Compared

to previous works, this work focuses on a different part
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of a tracker. We employ deep neural networks to learn a

generic matching function from rich external data to com-

pare patches for use in tracking.

Instance Search Instance search from one example,

also known as particular object retrieval, is related to ob-

ject tracking, especially when localized [22, 43]. The

most popular paradigm is based on matching local im-

age descriptors between the query and the candidate im-

age [40, 36, 20, 37, 45, 43] and is especially accurate

for buildings [36]. Recently, [44] proposed to learn a

robust representation for instance search of less textured,

more generic objects, showing good accuracy despite the

significant appearance changes between the query and the

database images. We derive some inspiration from [44]. We

propose to learn a robust matching function for matching ar-

bitrary, generic objects that may undergo all sorts of appear-

ance variations. We focus, however, on tracking. Instead

of focusing on a specific category e.g., shoes, and learning

from images with a white background [44], we learn in this

work a universal matching model suited for tracking that ap-

plies to all categories and all realistic imaging conditions.

Siamese architecture [3] proposes the two-stream

Siamese architecture for signature verification. Later, the

two-stream network architecture has been applied to face

verification [5, 42], ground-to-aerial image matching [27],

local patch descriptor learning [13, 53] and stereo match-

ing [54]. In this work, we design a Siamese network-

architecture to learn robust and generic representation for

object tracking, aiming to be invariant to all sorts of appear-

ance variations in practical tracking scenarios.

Fast localization Tracking also bears resemblance to the

object localization problem. Usually, it requires efficient

processing of multiple regions in one frame. [26] proposes

efficient region computation by reordering the encoding,

pooling and classification steps for the ‘shallow’ represen-

tations such as Fisher vector [35]. Recent work by Gir-

shick [10] proposes an efficient way of processing multiple

regions in one single pass through the deep neural network

for fast object detection. Inspired by [10], we incorporate

the region-of-interest pooling layer into our network for fast

processing of multiple regions in one frame for tracking.

3. Siamese Instance Search Tracker

In the following we describe the proposed method for

tracking, which is coined Siamese INstance search Tracker,

SINT for abbreviation. We first present the matching func-

tion, which is the core of the tracker. Then we describe the

simple online tracking inference.

3.1. Matching Function

To learn a matching function robust to all sorts of distor-

tions as described earlier, we need a model that operates on

pairs of data, (xj , xk). A network architecture that has been

Figure 2: The proposed Siamese invariance network to learn

the generic matching function for tracking. ‘conv’, ‘max-

pool’, ‘roipool’ and ‘fc’ stand for convolution, max pool-

ing, region-of-interest pooling and fully connected layers

respectively. Numbers in square brackets are kernel size,

number of outputs and stride. The fully connected layer has

4096 units. All conv layers are followed by rectified linear

units (ReLU) [31].

successfully shown to work well on pairs of data is the two-

stream Siamese architecture [3, 5]. A Siamese architecture

builds on top of convolutional networks. Next, we analyze

the different components of the proposed two-stream net-

work which we coin Siamese Invariance Network.

Network architecture We use a Siamese architecture com-

posed of two branches. The Siamese network processes the

two inputs separately, through individual networks that usu-

ally take the form of a convolutional neural network. For

individual branches, we design and compare two different

network architectures, a small one similar to AlexNet [24]

and a very deep one inspired by VGGNet [39] (Figure 2)1.

In the following we highlight the distinctive designs of the

networks as compared to the successful AlexNet and VG-

GNet.

Being largely a localization task the tracking problem is

naturally susceptive to rough discretizations. Aiming for

precise localization, we design our network with very few

maxing pooling layers, fewer than the networks in [24, 39].

Indeed, as max pooling maintains only the strongest of the

activations from a local neighborhood to use as input for

the subsequent layers, the spatial resolution of the activa-

tions is aggressively reduced, at the very least by 50% only

1Due to the space limit, only the very deep network is shown here. We

put the illustration of the other AlexNet-like network in the supplementary

material.
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in the simple case of 2 × 2 local neighborhoods. An ad-

vantage of max pooling is it introduces invariance to local

deformations. However, this is more important for object

categorization, where the objects vary a lot in appearance.

In tracking even if the target object changes its appearance

over time, it still remains the same object in all frames.

Moreover, it is important to be able to follow the small ap-

pearance changes, such as local deformations, of the object

over time. Regarding the two architectures we propose, for

the AlexNet-like small net we do not include any max pool-

ing layer, while for the VGG-like large net, we only have

two max pooling at the very early stage (see Figure 2), as

the lower level layers learn filters of very small receptive

fields and their max pooling layers are important to main-

tain robustness to local noise.

In tracking one typically needs to evaluate hundreds of

candidate regions for the next frame. Although one can sim-

ply pass through the candidate regions independently, this

would lead to a severe computation overhead, especially

since there is a significant overlap between the candidate re-

gions. Therefore, we employ a region pooling layer [10] for

the fast processing of multiple overlapping regions. Each

branch of the Siamese architecture takes as input one im-

age and a set of bounding box regions. The network first

processes the entire image for a few layers, then the re-

gion pooling layer converts the feature map from a particu-

lar region into a fixed-length representation. Having a fixed

length representation, one can now proceed to the subse-

quent layers.

The layers in a deep network capture progressively more

abstract representations [55]. Typically, the filters of the

lower layers get activated the most on lower level visual pat-

terns, such as edges and angles, whereas higher layers get

activated the most on more complex patterns, such as faces

and wheels. Also, the deeper one layer is, the more invariant

it is to appearance changes but also less discriminative, es-

pecially for instance-level distinction. In tracking we do not

know the type of target object we want to track, whether it

is highly textured with rich low level patterns or not. We do

not know either the complexity of the background, whether

there are confusing objects in which case higher discrimi-

nation would probably be more helpful. For this reason we

propose to use the outputs from multiple layers as the inter-

mediate representation that is then fed to the loss function.

Similar observations have also been made in [28, 15] for

different tasks, semantic segmentation and fine-grained lo-

calization specifically. All activations are pooled using the

region pooling layers.

Given that modern convolutional neural networks use

rectified linear units that do not bound the output values,

the nonlinear activations can vary a lot in the range of val-

ues they produce. As such and without considerations, the

network output and the loss function will be heavily influ-

enced by the scale of the generated features and not their

representation quality. To avoid this we propose to add an

ℓ2 normalization layer before the loss layer. The normal-

ization layer is applied on each of the layer activations that

are fed to the loss layer and has the property of maintain-

ing the direction of the feature, while forcing features from

different scales to lie on the same unit sphere.

Compared to standard convolutional neural networks,

AlexNet and VGGNet [24, 39], our architecture has several

differences, highlighted above. However, we also explicitly

design our networks to be compatible to AlexNet and

VGGNet. In this way, we are able to initialize the weights

of our networks using the ImageNet-pretrained AlexNet

and VGGNet to avoid training from scratch, something that

would likely lead to overfitting. Last, note that we keep

the parameters of the two convolutional network branches

tied together, as there would be an increased danger of

overfitting otherwise.

Network input Our training data consist of videos of

objects, whose bounding box location is provided to us.

To emulate the instance search paradigm and to avoid

confusion, we coin the first stream of our network as query

stream, whereas the second stream of our network as search

stream. For the query stream we randomly pick one frame

from the video and use the annotated patch of the target.

Since we want to be robust to as many types of variations

that we might face when tracking novel objects as possible,

for the search stream we randomly pick another video

frame that does not need to be adjacent to the frame of

the query stream. From the frame of the search stream

we sample boxes and the ones that overlap more than ρ+
with the ground truth are deemed positives, while the ones

that overlap less than ρ− with the ground truth are deemed

negatives. From these we form positive and negative pairs

of data that we use for the training.

Loss In the end, the two branches in the Siamese Invariance

Network are connected with a single loss layer. For track-

ing we want the network to generate feature representations,

that are close by enough for positive pairs, whereas they are

far away at least by a minimum for negative pairs. Bearing

these requirements in mind and inspired by [5], we employ

the margin contrastive loss

L(xj , xk, yjk) =
1

2
yjkD

2 +
1

2
(1− yjk)max(0, ǫ−D2),

(1)

where D = ‖f(xj) − f(xk)‖2 is the Euclidean distance

of two ℓ2-normalized latent representations, yjk ∈ {0, 1}
indicates whether xj and xk are the same object or not,

and ǫ is the minimum distance margin that pairs depicting

different objects should satisfy.
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Data As tracking is an inherently online task, where no

training data related to the target object are available, it is

important to emphasize that the network is learnt on exter-

nal videos that do not appear in the tracking evaluation sets.

The data should be varying enough, covering a good amount

of semantics and not focus on particular objects, otherwise

the tuned network parameters will overfit to particular ob-

ject categories. Furthermore, as we do not explicitly learn

types of invariances, namely we do not learn “illumination

invariance” separately from “scale invariance”, therefore in

the external data we do not need any specific variation la-

bels. The only requirement is the box annotations within

the video following a particular object.

3.2. Tracking Inference

Once we have completed the learning of the matching

function, we are ready to deploy it as is to tracking, without

any further adapting. We propose a simple tracking strat-

egy. As the only reliable data we have for the target ob-

ject is its location at the first frame, at each frame we com-

pare the sampled candidate boxes with the target object at

the first frame. We pass all the candidate boxes from the

search stream of our network and pick the candidate box

that matches best to the original target,

x̂t = arg max
xj,t

m(xt=0, xj,t), (2)

where xj,t are all the candidate boxes at frame t, m is the

learned matching function, m(x, y) = f(x)T f(y).

Candidate sampling We employ the radius sampling strat-

egy [14]. More specifically, around the predicted location

of the previous frame we sample locations evenly on cir-

cles of different radii. Different from [14], to handle scale

variations we generate at each sampled location multiple

candidate boxes at different scales.

Box refinement Provided that the box prediction is accu-

rate enough, [8, 11] showed that a refinement step of the

boxes can improve localization accuracy significantly. To

this end we adopt their strategy and refine at each frame the

predicted bounding box further.

As in [11] we train four Ridge regressors for the (x, y)
coordinates of the box center and the width and height

(w, h) of the box based on the first frame. The regressors

are not updated during tracking in order to avoid the risk

of contaminating the regressors with noisy data. For each

frame, the regressors take the representation of the picked

candidate box as input and produce a refined box.

4. Experimenents

4.1. Implementation Details

Candidate Sampling We use the radius sampling strat-

egy [14] to generate candidate boxes. We use 10 radial

and 10 angular divisions. The search radius is set to be the

longer axis of the initial box in the first frame. At each sam-

ple location, we generate three scaled versions of the initial

box with the scales being {
√

2

2
, 1,

√
2}.

Network training We use the ALOV dataset [41] for

training and validation. We choose ALOV for training as it

covers many types of variations one could expect in track-

ing. We exclude the 12 videos in ALOV that are also in

tracking benchmark (OTB) [52], as we evaluate the pro-

posed tracker on OTB. After removing the 12 videos, the

training set and the tracking evaluation set have no com-

mon objects. From every two frames in a video, we gener-

ate multiple pairs. One element in a pair is the groundtruth

bounding box in one frame and the other element is a box

sampled in the other frame. The pair is considered to be

positive if the sampled box has a intersection-over-union

overlap larger than 0.7 with the corresponding groundtruth

box and considered to be negative if the overlap is smaller

than 0.5. The training pairs and validation pairs are gen-

erated from different videos, and therefore from different

objects. For training, in total we have sampled from ALOV

dataset 60, 000 pairs of frames and each pair of frames has

128 pairs of boxes. For validation, we have gathered 2, 000
pairs of frames and the same as for training each pair of

frames contains 128 pairs of boxes.

Instead of training the two-stream Siamese network from

scratch, we load the pre-trained network parameters and fine

tune the Siamese network. Specifically, we use the net-

works pre-trained for ImageNet classification, available in

the Caffe library [21]. The initial fine tuning learning rate is

0.001 and the weight decay parameter is 0.001. The learn-

ing rate is decreased by a factor of 10 after every 2 epochs.

We stop tuning when the validation loss does not decrease

any more.

4.2. Dataset and evaluation metrics

Dataset To evaluate the tracking performance, we use the

online tracking benchmark (OTB) [52]. OTB is a collection

of 50 videos. 51 tracking sequences are defined with bound-

ing box annotations. The dataset covers various challenging

aspects in object tracking, such as fast motion, deformation,

background clutter and occlusion.

Evaluation metrics We follow the evaluation protocol

of [52], where two metrics are used: success plot and pre-

cision plot. Both metrics measure the percentage of suc-

cessfully tracked frames. For the success plot, a frame is

declared to be successfully tracked if the estimated bound-

ing box and the groundtruth box have an intersection-over-

union overlap larger than a certain threshold. For precision

plot, tracking on a frame is considered successful if the

distance between the centers of the predicted box and the

groundtruth box is under some threshold. A plot is given

by varying the threshold values. Tracking algorithms are
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AUC Prec@20

(a) pretrained-alexnet-fc6 42.8 66.3

(b) firstframe-Siamese-finetuned-alexnet-fc6 44.0 67.9

(c) Siamese-finetuned-alexnet-fc6 47.4 72.0

(d) pretrained-alexnet-fc6-nomaxpooling 50.0 70.8

(e) Siamese-finetuned-alexnet-fc6-nomaxpooling 53.9 74.8

(f) Siamese-finetuned-alexnet-conv45fc6-nomaxpooling 55.0 76.2

(g) Siamese-finetuned-vgg16-conv45fc6-nomaxpooling 59.2 83.6

Table 1: Evaluation of different architectural and design

choices of the Siamese invariance network for tracking on

the OTB dataset [52]. We use the recommended evalua-

tion methods, namely the area under the curve (AUC) for

the success plot and the precision at 20 (Prec@20) for the

precision plot.

ranked based on the area under curve (AUC) score for the

success plot and precision at threshold 20 (Prec@20) for the

precision plot. We use the available toolkit provided by the

benchmark to generate plots and numbers. In the following,

we also use success rate where needed, i.e., the percentage

of successfully tracked frames.

4.3. Design evaluation

We first validate our design choices of the network. In

this sets of experiments, box refinement is not considered.

Network tuned generically on external video data vs.

network pre-tuned on ImageNet vs. network fine tuned

target-specifically on first frame In this experiment, we

show the effectiveness of the Siamese network tuned on

external data. To that end, we compare the Siamese fine

tuned AlexNet-style network using ALOV (denoted as

“Siamese-finetuned-alexnet-fc6”) with the ImageNet pre-

tuned AlexNet (“pretrained-alexnet-fc6”) and the Siamese

fine tuned network using the training pairs gathered in the

first frame (“firstframe-Siamese-finetuned-alexnet-fc6”).

In this comparison, all three use a single layer fc6 for

feature representation. As shown in the rows (a)-(c) of

Table 1, the Siamese fine tuned network using ALOV (c)

significantly improves over the pre-tuned net (a), while fine

tuning on the first frame (b) gives a marginal improvement.

We conclude that Siamese networks fine tuned using large

amount of external data are to be preferred.

To max pool or not to max pool? We now examine

our design choice of having no maxing pooling layers in

the network (“pretrained-alexnet-fc6-nomaxpooling” vs.

“pretrained-alexnet-fc6” and “Siamese-finetuned-alexnet-

fc6-nomaxpooling” vs. “Siamese-finetuned-alexnet-fc6”).

As shown in Table 1, (d) vs. (a) and (e) vs. (c), including

max pooling layers deteriorates accuracy, as expected due

to the reduction of the resolution of the feature maps which

causes poor localization. When inspecting the results

sr@0.3 sr@0.5 sr@0.7

pretrained-alexnet-fc6 68.3 46.2 19.6

pretrained-alexnet-fc6-nomaxpooling 75.3 58.1 32.6

Siamese-finetuned-alexnet-fc6 74.6 56.2 25.4

Siamese-finetuned-alexnet-fc6-nomaxpooling 79.3 67.6 38.8

Table 2: Success rates (sr) of the tracker at three

intersection-over-union overlap ratios for different network

architectures. From the table it is clear that a network archi-

tecture without max pooling delivers a more precise local-

ization and hence a better matching function.

when no max pooling layers are included, the success rate

improvement is higher at higher intersection-over-union

overlap ratios, see Table 2. We conclude that max pooling

layers are not necessary for our Siamese invariance network

with small AlexNet-style architecture.

Multi-layer features vs. single-layer features Next, we

evaluate whether it is more advantageous to use features

from a single layer or from multiple layers. We compare

“Siamese-finetuned-alexnet-conv45fc6-nomaxpooling”,

which uses the outputs of layers conv4, conv5 and

fc6 as features, with “Siamese-finetuned-alexnet-fc6-

nomaxpooling”, which uses the output of fc6 as feature.

Table 1 shows that using multi-layer features is helpful ((e)

vs. (f)). We conclude that using features from multiple

layers is advantageous.

Large net vs. small net Lastly, we compare a VGGNet-

style architecture with an AlexNet-style architecture

(“Siamese-finetuned-vgg16-conv45fc6-nomaxpooling” vs.

“Siamese-finetuned-alexnet-fc6-nomaxpooling”). Both use

as features the outputs of three layers. As shown in the last

two rows (f) and (g) of Table 1, using a deeper network im-

proves the performance significantly.

4.4. Stateoftheart comparison

Overall comparison In addition to the 29 trackers included

in the benchmark [52], e.g., TLD [23], Struck [14] and

SCM [57], we also include the most recent trackers for

comparison. The included recent trackers are TGPR [9],

MEEM [56], SO-DLT [47], KCFDP [19] and MUSTer [18].

As described earlier, the proposed SINT focuses on the

tracking matching function, while having a simple online

inference. As a preliminary demonstration that SINT can

be further improved by employing more advanced online

components, we also evaluate a variant of SINT, coined

SINT+, which uses an adaptive candidate sampling strat-

egy suggested by [48] and optical flow [4]. In SINT+, the

sampling range is adaptive to the image resolution, set to be

30/512 ∗w in this experiment, where w is the image width.

Optical flow is used in SINT+ to filter out motion incon-

sistent candidates. Specifically, given the pixels covered by
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Figure 3: State-of-the-art comparison on OTB [52]. In spite of the fact that the online part of the proposed SINT is just

selecting the patch that matches best to the target in the first frame, SINT is on par with state-of-the-art tracker. SINT+, using

a better candidate sampling than SINT and optical flow as an additional component, achieves the best performance.

OPE TRE SRE

MEEM 57.2 / 84.0 58.5 / 83.2 51.8 / 76.9

MUSTer 62.1 / 83.6 60.9 / 81.1 56.2 / 78.9

SINT 62.5 / 84.8 64.3 / 84.9 57.9 / 80.6

Table 3: Robustness evaluation on OTB, measured in

AUC/Prec@20. OPE is one-pass evaluation. TRE and SRE

are temporal and spatial robustness evaluation. The results

of MEEM are taken from [56] and the results of MUSTer

are obtained using the publicly available code.

the predicted box in the previous frame and the estimated

optical flow, we know where those pixels are in the current

frame and we remove the candidate boxes that contain less

than 25% of those pixels, as these candidates are deemed

inconsistent to the motion.

Figure 3 shows the overall performance. For clarity,

only the top performing trackers are shown. Despite

relying on a simple NCC-like tracking inference, SINT

reaches state-of-the-art performance, being tantalizingly

close to MUSTer [18] and more accurate than others by a

considerable margin. SINT+, with an adaptive sampling

and a simple use of optical flow, further improves SINT,

outperforming clearly all state-of-the-art other trackers.

Temporal and spatial robustness To verify the robustness

of the proposed tracker, we conduct the temporal robustness

evaluation (TRE) and spatial robustness evaluation (SRE)

defined by the benchmark. The results are summarized

in Table 3. Compared to MEEM and MUSTer, SINT is

temporally and spatially the same as robust, if not better.

Per distortion type comparison Further, the 50 videos in

the benchmark are annotated with 11 distortion types(e.g.,

25

39

28

29 19

12

17

31

6

21

4

IV OPR SV OCC DEF MB FM IPR OV BC LR

Figure 4: Per attribute comparison on AUC score of the

proposed SINT with MUSTer [18]. The bars are the per-

formance difference between SINT and MUSTer. Positive

means SINT is better. The integer number at each bar is the

number of tracking sequences belonging to that group.

illumination variation, occlusion etc.). To gain more in-

sights, we evaluate the performance of SINT for individual

attributes and compare with MUSTer [18]. SINT performs

better in 6 and 7 out of the 11 groups for the AUC and

the Prec@20 metrics respectively. Due to the space limit,

Figure 4 only shows the plot for AUC. It is observed that

MUSTer is better mainly in “occlusion” and “deformation”,

whereas SINT is better in “motion blur”, “fast motion”,

“in-plane rotation”, “out of view” and “low resolution”.

Failure modes of SINT When similar objects appear in

view, the tracker may jump from the target to another as

it only looks for the maximum similarity with the original

patch of the target in the first frame (Figure 5: left). And,

when there is large occlusion, the matching function might

suffer (Figure 5: right).
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SINT Groundtruth

Figure 5: Failure cases of SINT: similar confusing object

(left) and large occlusion (right). Examples are from OTB

sequences ‘Bolt’ and ‘Lemming’ respectively. In the left

example, the tracker fires on another Jamaican runner in the

same uniform as the target. In the right example, the target

is heavily occluded by the lighter.

Fishing Rally BirdAttack

Soccer GD Dancing

SINT MEEM MUSTer Groundtruth

Figure 6: Example frames from the 6 test sequences.

4.5. Additional sequences and reidentification

We now further illustrate the strength of the proposed

SINT on 6 newly collected sequences from YouTube. We

downloaded the sequences so that they are extra challeng-

ing in terms of tracking distortions as defined by [52]. Fig-

ure 6 shows example frames from these sequences. The se-

quences have considerable degrees of scale change (“Fish-

ing”, “Rally”, “BirdAttack” and “GD”), fast motion (“Bir-

dAttack”, “Soccer” and “Dancing”), out-of-plane rotation

(“Rally” and “Dancing”), non-rigid deformation (“Fish-

ing”, “BirdAttack” and “Dancing”), low contrast (“Fish-

ing”), illumination variation (“GD” and “Dancing”) and

poorly textured objects (“Fishing” and “BirdAttack”).

We evaluate the proposed tracker, SINT, with

MEEM [56] and MUSTer [18] on these sequences.

The performance is summarized in Table 4, where we

adopt the AUC score metric from the benchmark [52].

Results show that SINT is again a competitive tracker,

outperforming MUSTer [18] and MEEM [56].

We, furthermore, observe that provided a window sam-

pling over the whole image using [58], SINT is accurate

in target re-identification, after the target was missing for a

significant amount of time from the video. We illustrate this

in Figure 7, where we track Yoda. As shown in Figure 7, the

tracker has good capability of discovering the target when it

re-enters the scene after being absent for a complete shot.

MEEM [56] MUSTer [18] SINT

Fishing 4.3 11.2 53.7

Rally 20.4 27.5 53.4

BirdAttack 40.7 50.2 66.7

Soccer 36.9 48.0 72.5

GD 13.8 34.9 35.8

Dancing 60.3 54.7 66.8

mean 29.4 37.8 58.1

Table 4: Comparison on AUC score of the proposed SINT

with MEEM [56] and MUSTer [18].

Figure 7: The capability of the tracker to re-discover the

target, illustrated on a 1500-frame, 12-shot Star Wars video.

One object (Yoda) is appearing in 6 of the shots, while being

absent in the intermediate ones. Red dots indicate Yoda is

present while black dots indicate Yoda is absent. Y-axis is

the matching score with the target at the first frame. The

results show good capability of the tracker to discover the

target when it re-enters the scene.

5. Conclusion

This work presents Siamese INstance search Tracker,

SINT. It tracks the target, simply by matching the initial

target in the first frame with candidates in a new frame and

returns the most similar one by a learned matching function.

The strength of the tracker comes from the powerful match-

ing function, which is the focus of the work. The match-

ing function is learned on ALOV [41], based on the pro-

posed two-stream very deep neural network. We take extra

care that there is absolutely no overlap between the train-

ing videos and any of the videos for evaluation. Namely,

we do not aim to do any pre-learning of the tracking tar-

gets. Once learned, the matching function is used as is,

without any adapting, to track arbitrary, previously unseen

targets. It turns out the matching function is very effective

in coping with common appearance variations an object can

have in videos. The simple tracker built upon the matching

function, reaches state-of-the-art performance on OTB [52],

without updating the target, tracker combination, occlusion

detection and alike. Further, SINT allows for target re-

identification after the target was absent for a complete shot,

demonstrated on a 1500-frame, 12-shot Star Wars video.
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