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Abstract

Bundle adjustment jointly optimizes camera intrinsics

and extrinsics and 3D point triangulation to reconstruct a

static scene. The triangulation constraint however is in-

valid for moving points captured in multiple unsynchro-

nized videos and bundle adjustment is not purposed to es-

timate the temporal alignment between cameras. In this

paper, we present a spatiotemporal bundle adjustment ap-

proach that jointly optimizes four coupled sub-problems:

estimating camera intrinsics and extrinsics, triangulating

3D static points, as well as subframe temporal alignment

between cameras and estimating 3D trajectories of dynamic

points. Key to our joint optimization is the careful integra-

tion of physics-based motion priors within the reconstruc-

tion pipeline, validated on a large motion capture corpus.

We present an end-to-end pipeline that takes multiple uncal-

ibrated and unsynchronized video streams and produces a

dynamic reconstruction of the event. Because the videos are

aligned with sub-frame precision, we reconstruct 3D trajec-

tories of unconstrained outdoor activities at much higher

temporal resolution than the input videos.

1. Introduction

When a moving point is observed from multiple cam-

eras with simultaneously triggered shutters, the dynamic

3D reconstruction problem reduces exactly to the case of

static 3D reconstruction. The classic point triangulation

constraint [11], and the algorithmic edifice of bundle ad-

justment [19] built upon it, applies directly. Currently,

there exists no consumer mechanism to ensure that multiple

personal cameras, i.e., smartphones, consumer camcorders,

or egocentric cameras, are simultaneously triggered [10].

Thus, in the vast majority of dynamic scenes captured by

multiple independent video cameras, no two cameras see

the 3D point at the same time instant. This fact trivially

invalidates the triangulation constraint.

To optimally solve the dynamic 3D reconstruction prob-

∗http://www.cs.cmu.edu/ ILIM/projects/IM/STBA/

lem, we must first recognize all the constituent sub-

problems that exist. The classic problems of point trian-

gulation and camera resectioning in the static case are sub-

sumed. In addition, two new problems arise: reconstructing

3D trajectories of moving points and estimating the tempo-

ral location of each camera. Second, we must recognize

that the sub-problems are tightly coupled. As an exam-

ple, consider the problem of estimating 3D camera pose.

While segmenting out stationary points and using them to

estimate camera pose is a strategy that has been used in

prior work [13], it ignores evidence from moving points that

are often closer to the cameras and therefore provide tighter

constraints for precise camera calibration. Imprecise cam-

era calibration and quantization errors in estimating discrete

temporal offsets result in significant errors in the reconstruc-

tion of moving points1 [14, 8, 21].

Prior work in dynamic 3D reconstruction has addressed

some subset of these problems. For instance, assuming

known (or separately estimated) camera pose and tempo-

ral alignment, Avidan and Shashua posed the problem of

trajectory triangulation [2], where multiple noncoinciden-

tal projections of a point are reconstructed. Trajectory tri-

angulation is an ill-posed problem and current algorithms

appeal to motion priors to constrain reconstruction: linear

and conical motion [2]; smooth motion [13, 20]; sparsity

priors [27]; low rank spatiotemporal priors [15]. Estimating

the relative temporal offsets of videos captured by the mov-

ing cameras is more involved [24, 9]. Currently, the most

stable temporal alignment methods require corresponding

2D trajectories as input [23, 4, 12, 5, 18] and rely purely

on geometric cues to align the interpolated points along the

trajectories across cameras. Recent work has considered the

aggregate problem, but address the spatial and temporal as-

pects of the problem independently [3, 26].

In this paper, we introduce the concept of spatiotempo-

ral bundle adjustment that jointly optimizes for all for sub-

1Consider this example: when a person jogging at 10m/s is captured

by two cameras at 30Hz, one static and one handheld jittering at 3mm per

frame, with the camera baseline of 1m, recording from 4m away. A simple

calculation suggests that a näive attempt to triangulate points of the static

camera with their correspondences of the best aligned frame in the other

camera results in up to 40 cm reconstruction error.
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problems simultaneously. Just as with static 3D reconstruc-

tion, where the most accurate results are obtained by jointly

optimizing for camera parameters and triangulating static

points, the most accurate results for dynamic 3D reconstruc-

tion are obtained when jointly optimizing for the spatiotem-

poral camera parameters and triangulating both static and

dynamic 3D points. Unlike traditional bundle adjustment,

we recognize the need for a motion prior in addition to the

standard reprojection cost that jointly estimates the 3D tra-

jectories corresponding to the sub-frame camera temporal

alignment. We evaluate several physics-based 3D motion

priors (least kinetic energy, least force, and least action) on

the CMU motion capture repository [1]. Such joint esti-

mation is most helpful for dynamic scenes with large back-

ground/foreground separation where the spatial calibration

parameters estimated using background static points are un-

avoidably less accurate for foreground points.

Direct optimization of the spatiotemporal objective is

hard and is susceptible to local minima. We solve this opti-

mization problem using an incremental reconstruction and

temporal alignment algorithm. This optimization frame-

work ensures the proposed 3D motion prior constraint is

satisfied. Our algorithm naturally handles the case of miss-

ing data (e.g., when a point is occluded in a particular time

instant) and scales to many cameras. Thus, we can pro-

duce accurate 3D trajectory estimation at much high tem-

poral resolution than the frame rates of the input videos.

Based on this framework, we present an end-to-end pipeline

that takes multiple uncalibrated and unsynchronized videos

and outputs a dynamic 3D reconstruction of the scene. This

pipeline, inspired by the large-scale static scene reconstruc-

tion [16, 7], is a step towards dynamic event reconstruction

in the wild. As a demonstration, we reconstruct 3D trajec-

tories of dynamic actions captured outdoor by ten smart-

phones without any constraints.

2. Problem Formulation

Consider the scenario of C video cameras observing N

3D points over time. The relation between the 3D point

Xn(t) and its 2D projection xn
c (f) on camera c at frame f

is given by:
[

xn
c (f)
1

]

≡ Kc(f)
[

Rc(f) Tc(f)
]

[

Xn(t)
1

]

, (1)

where Kc(f) is the intrinsic camera matrix, Rc(f) and

Tc(f) are the relative camera rotation and translation, re-

spectively. For simplicity, we denote this transformation

as xn
c (f) = Pc(f,X

n(t)). The time corresponding to

frame f is related to the continuous global time t linearly:

f = αct + βc, where αc and βc are the camera frame rate

and time offset. For a static 3D point, Xn(t) is a constant.

Image reprojection cost. Regardless of its motion, the

reconstruction of a 3D point must satisfy Eq. 1. This gives

the standard reprojection error, which we accumulate over

all 2D points observed by all C cameras for all frames Fc:

SI =
C
∑

c=1

N
∑

n=1

Fc
∑

f=1

V n
c (f)σn

c (f)‖Pc(f,X
n(t))− xn

c (f)‖
2

(2)

where, SI is the image reprojection cost, V n
c (f) is a bi-

nary indicator of the point-camera visibility, and σn
c (f) is

a scalar, weighting the contribution of xn
c (f) to SI . Since

the localization uncertainty of an image point xn
c (f) is pro-

portional to its scale [25], we use the inverse of the feature

scale as the weighting term for each residual term in SI .

However, Eq. 2 is purely spatially defined and does not

encode any temporal information about the dynamic scene.

Any trajectory of a moving 3D point must pass through all

the rays corresponding to the projection of that point in all

views. Clearly, there are infinitely many such trajectories

and each of these paths corresponds to a different temporal

sequencing of the rays. Yet, the true trajectory must also

correctly align all the cameras. This motivates us to inves-

tigate a motion prior that ideally estimates a trajectory that

corresponds to the correct temporal alignment. The cost of

violating such a prior SM can be then added to the image re-

projection cost to obtain a spatiotemporal cost function that

jointly estimates both the spatiotemporal camera calibration

parameters and the 3D trajectories:

S = arg min
X(t),{K,R,t},α,β

SI + SM . (3)

Given multiple corresponding 2D trajectories of both the

static and the dynamic 3D points {xc(t)} for C cameras,

we describe how to jointly optimize Eq. 3 for their 3D lo-

cations X(t), spatial camera parameters at each time in-

stant {Kc(f), Rc(f), Tc(f)} and the temporal alignment

between cameras β. We assume the frame rate α is known.

3. Physics based Motion Priors

In this section, we investigate several forms of motion

prior needed to compute SM in Eq. 3. We validate each of

these priors on the entire CMU Motion Capture Database

[1] for their effectiveness on modeling human motion.

3.1. 3D Trajectory Motion Priors

When an action is performed, its trajectories must fol-

low the paths that minimize a physical cost function. This

inspires the investigation of the following three types of pri-

ors: least kinetic energy, least force2, and least action [6]

(see Fig. 1 for the formal definitions). In each of these

priors, m denotes the mass of the 3D point, g is the gravita-

tional acceleration force acting on the point at height h(t),

2We actually use the square of the resulting forces.
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and v(t) and a(t) are the instantaneous velocity and accel-

eration at time t, respectively.

Mathematically, the least kinetic energy prior encour-

ages constant velocity motion, the least force prior promotes

constant acceleration motion, and the least action prior fa-

vors projectile motion. While none of these priors hold for

an active system where forces are arbitrarily applied dur-

ing its entire operating time, we conjecture that the cumula-

tive forces applied by both mechanical and biological sys-

tems are sparse and over a small duration of time, the true

trajectory can be approximated by the path that minimizes

the costs defined by our motion priors. Any local error in

the 3D trajectory, either by inaccurate estimation of points

along the trajectory or wrong temporal sequencing between

points observed across different cameras, generates higher

motion prior cost.

Least kinetic motion prior cost. We accumulate the

cost over all N 3D trajectories for all time instances Tn:

(4)SM =

N
∑

n=1

Tn−1
∑

i=1

wn(t)
mn

2
vn(t

i)2(ti+1 − ti),

where γn(t) is the weighting scalar and mn is the point

mass, assumed be to identical for all 3D points and set to be

1. We approximate the instantaneous speed v(ti) at time ti

along the sequence Xn(t) by a forward difference scheme,

vn(t
i) ≈ ‖Xn(ti+1)−Xn(ti)

ti+1−ti
‖. We add a small constant ǫ

to the denominator to avoid instability caused by 3D points

observed at approximately same time. Eq. 4 is rewritten as:

SM =

N
∑

n=1

Tn−1
∑

i=0

wn(t)

2

∥

∥

∥

Xn(ti+1)−Xn(ti)

ti+1 − ti + ǫ

∥

∥

∥

2

(ti+1− ti),

(5)

Using the uncertainty σn
c (f) of the 2D projection of 3D

point Xn(t), the weighting wn(t) can be approximated by

a scaling factor that depends on the point depth λ and its

scale µ, relating the focal length to the physical pixel size,

as wn = σn
c µλ. The least force and least action prior costs

can be computed similarly.

3.2. Evaluation on 3D Motion Capture Data

Consider a continuous trajectory of a moving point in

3D. Sampling this continuous trajectory starting at two dif-

ferent times produces two discrete sequences in 3D. We first

evaluate how the motion prior helps in estimating the tem-

poral offset between the two discrete sequences. We extend

this to 2D trajectories recorded by cameras later. The evalu-

ation is conducted on the entire CMU marker-based motion

capture data containing over 2500 sequences of common

human activities such as playing, sitting, dancing, running

and jumping, captured at 120 fps.

Input: {xc(t)}, {K
′,R′,T′},β′

Output: {X(t)p}, {K,R,T},β
1. Refine the alignment pairwise (Sec. 4.1.1)

2. Generate prioritized camera list (Sec. 4.1.2)

3. while All cameras haved NOT been processed do

for All cameras slots do
Solve Eq. 3 for {Xp(t)} and β

if No sequencing flipped then
Record the STBA cost and its solution.

else
Discard the solution;

end

end

Accept the solution with the smallest cost

end

(Sec. 4.1.3)

4. Solve Eq. 3 for {X(t)p}, {K,R,T},β (Sec. 4.2)

5. Trajectory resampling on {X(t)p} (Sec. 4.2)

Algorithm 1: Spatiotemporal bundle adjustment

Each trajectory is subsampled starting at two different

random times to produce the discrete sequences. 3D zero

mean Gaussian noise is added to every point along the dis-

crete trajectories. The ground truth time offsets are then

estimated by a linear search and we record the solution with

the smallest motion prior cost. For our test, the captured 3D

trajectories are sampled at 12 fps and the offsets are varied

from 0.1 to 0.9 frame interval in 0.1 increments.

As shown in Fig. 1, the least kinetic energy prior and

least force prior perform similarly and both estimate the

time offset between the two trajectories well for low noise

levels. When more noise is added to the trajectory se-

quences, our motion cost favors correct camera sequencing

over closer time offset. This is a desirable property because

wrong sequencing results in a trajectory with loops (Fig. 4).

The least action prior, on the other hand, gives biased results

even when no noise is added to the 3D data.

Since the alignment results using the least kinetic energy

prior is similar to the least force prior, we only present our

algorithm for the least kinetic prior in the remainder of the

paper. Extension to the least force is straight forward.

4. Spatiotemporal Bundle Adjustment

Unlike traditional bundle adjustment, the spatiotemporal

bundle adjustment must jointly optimize for four coupled

problems: camera intrinsics and extrinsics, 3D locations of

static points, temporal alignment of cameras and 3D trajec-

tories of dynamic points. However, direct optimization of

Eq. 3 is hard because: (a) it requires solution to a com-

binatorial problem of correctly sequencing all the cameras

and (b) motion prior cost is strongly discontinuous as small
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Figure 1: Evaluation of the motion priors on 3D motion capture data. The least kinetic energy prior and least force prior

performs similarly and both estimate the time offset between two noisy sequences obtained by uniformly sampling a 3D

trajectory from different starting times. The least action prior gives biased results even for the no-noise case.

changes in time offsets can switch the temporal ordering of

cameras. Thus, it is not possible to ensure the satisfaction

of the motion prior constraint.

To solve this problem, we first follow an incremental re-

construction and alignment approach, where cameras are

added one at a time. In addition to being more computation-

ally efficient (as in traditional bundle adjustment), we show

that this approach allows us to enforce the motion prior con-

straint strictly without any discontinuities due to incorrect

time ordering of cameras. This allows us to then use LM

optimization to jointly estimate all the spatiotemporal cam-

era parameters, and static points and dynamic trajectories.

We start with initial estimates of all the quantities using

a geometry (or triangulation) based method [16, 5]. Even

though the triangulation constraint is not strictly satisfied,

the estimates provide a good starting point for the incre-

mental reconstruction and alignment. The entire method is

summarized in Algorithm.1.

4.1. Incremental Reconstruction and Alignment

4.1.1 Temporal alignment of two cameras

We refine the initial guess by optimizing Eq. 3. How-

ever, just as in point triangulation, the 3D estimation from a

stereo pair is unreliable. Thus, we simply do a linear search

on a discretized set of temporal offsets and only solve Eq.3

for the 3D trajectories. The offset with the smallest cost

is taken as the sub-frame alignment result. We apply this

refinement to all pair of cameras.

4.1.2 Which camera to add next?

As in incremental SfM [16, 7], we need to determine the

next camera to include in the calibration and reconstruction

process. For this, we create a graph with each camera as

a node and define the weighted edge cost between any two

cameras ith and jth as

Eij =
C
∑

k=1,k 6=i,j

Sij

|tij + tjk − tik|

NijBij

, (6)

where tij , Nij , Bij , and Sij are the pairwise offset, the

number of visible corresponding 3D points, the average

camera baseline, and the spatiotemporal cost evaluated for

those cameras, respectively. Intuitively, |tij + tjk − tik| en-

codes the constraint between the time offsets among a cam-

era triplet, and NijBij is a weighting factor favoring the

camera pair with more common points and larger baseline.

Similar to [5, 22], a minimum spanning tree (MST) of

the graph is used to find the alignment of all cameras. We

use the Kruskal MST, which adds nodes with increasing

cost at each step. The camera processing order is deter-

mined once from the connection step of the MST procedure.

4.1.3 Estimating the time offset of the next camera

We temporally order the current processed cameras and in-

sert the new camera into possible time slots between them,

followed by a nonlinear optimization to jointly estimate all

the offsets and 3D trajectories. Any trial where the relative

ordering between cameras change after the optimization are

discarded, ensuring that the motion prior is satisfied. The

trial with the smallest cost is taken as the temporal align-

ment and 3D trajectories of the new set of cameras.

4.2. Final Optimization and DCT Resampling

Starting from the results of the above incremental pro-

cedure, we now jointly optimize Eq. 3 for all the camera

parameters, 3D points and trajectories without allowing any

reordering of the cameras.

Note that Eq. 5 approximates the speed of the 3D point

using finite difference. While this approximation allows

better handling of missing data, the resulting 3D trajectories

are often noisy. Thus, as a post-processing step, we fit the

weighted complete DCT basis function to the estimated tra-

jectories. Our use of DCT for resampling is exactly equiva-

lent to our sample-wise motion prior [17] and is not an extra

smoothing prior. For the uniform DCT resampling, the least

kinetic energy prior cost can be rewritten as:

(7)S′
M =

N
∑

n=1

En⊤WnEn∆t,
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Figure 2: Evaluation of the motion priors on the Motion

Capture database for simultaneous 3D reconstruction and

sub-frame temporal alignment. (a) Spatially, the trajectories

estimated using the motion prior achieves higher accuracy

than generic B-spline trajectories basis. Frame level align-

ment geometric triangulation spreads the error to all cam-

eras and estimates less accurate 3D trajectories. (b) Tem-

porally, our motion prior based method estimates the time

offset between cameras with sub-frame accuracy.

where En is the DCT coefficient of the 3D trajectory n, Wn

is a predefined diagonal matrix, weighting the contribution

of the bases, and ∆t is the resampling period. The 3D tra-

jectory Xn(t) is related to En by Xn(t) = Bn⊤En, where

Bn is a predefined DCT basis matrix. The dimension of

Bn and Wn depend on the trajectory length. We replace

the trajectory Xn(t) by Bn⊤En and rewrite Eq. 3 as:

(8)S = argmin
E

λ1S
′
I + λ2S

′
M ,

where λ1 and λ2 are the weighting scalars and S′
I is the re-

projection error computed using the resampled trajectories.

While applying resampling to the incremental reconstruc-

tion loop can improve the 3D trajectories and the temporal

alignment, it requires inverting a large and dense matrix of

the DCT coefficients, which is computationally demanding.

Thus, we only use this scheme as a post-processing.

5. Analysis on Mocap Data

We validate our approach on synthetic data generated

from the CMU Motion Capture database. The ground truth

trajectory, captured at 120 fps, is imaged by 10 perspec-

tive cameras with resolution of 1920x1080 and 12fps. All

cameras are uniformly arranged in circle and capturing the

scene from 3 m away. We randomly add 3000 background

points arranged in a cylinder of radius 15 m centered at dy-

namic points. The relative offsets, discretized at 0.1 frames,

are randomly varying for every sequence and none of them

generates cameras observing the 3D points synchronously.

We assume that the initial offsets are frame accurate, which

is the case for most geometry-based alignment methods. We

also add zero mean Gaussian noise of 2 pixels standard de-

viation to the 2D trajectories.

The reconstruction and alignment errors are summarized

in Fig.2 and Table 1. Spatially, the point triangulation of the

Geometry Spline Motion prior (after 3) Motion prior (after 5)

Static 3.45 2.93 2.54 2.41

Dynamic 17.8 1.68 0.85 0.74

Table 1: The reprojection error for the entire CMU Mo-

cap dataset. The results for motion prior based method are

shown for different stages of Algo. 1.

frame accurate alignment propagates the error to all cam-

eras and gives the worst result. Trajectories reconstructed

using 3D cubic B-spline basis gives much smaller error than

the point triangulation. However, it also arbitrarily smooths

out the trajectories and is inferior to our method. While both

the direct motion prior and DCT resampling have similar

mean error (direct: 6.6 cm, DCT: 6.5 cm), the former has

larger maximum error due to the noise in approximating the

velocity. Temporally, our method can estimate ground truth

offset at sub-frame accuracy with low uncertainty.

6. Analysis on Handheld Camera Videos

We develop an end-to-end system that takes video

streams for multiple temporally unaligned and spatially un-

calibrated cameras and produces the spatiotemporal calibra-

tion parameters as well as the 3D static points and dynamic

trajectories. We show the results for 3 scenes: checker-

board, jump, and dance, captured by either smartphone or

GoPro cameras, which are rolling shutter camera3. We

quantify the error in 3D trajectory estimation and effect

of sub-frame alignment using the Checkerboard sequence.

The Jump sequence demonstrates our ability to handle fast

motion using low framerate cameras. The Dance scene

showcases the situation where the static background and dy-

namic foreground are separated by a large distance.

Table 2 presents complete quantitative evaluation on

three video sequences in terms of (a) re-projection error

in pixels for both stationary and dynamic points, (b) num-

ber and average length (time) of the 3D trajectories cre-

ated using points from multiple views. Noticeably, our

method estimate several fold more trajectories and the

longer average trajectory length than geometry approach.

For the checkerboard sequence, since the correspondences

are known, its 3D points are intentionally not discarded.

We also estimate the dynamic points with less re-projection

error, especially for fast actions. The jump in the Jump-

sequence is not reconstructed at all (see Fig. 6) by the

geometry-based method and the low average re-projection

error (1.91) is due to the slow initial motion of the per-

son. Lastly, optimizing for the camera pose along with

the resampling scheme consistently yields a further notice-

ably smaller re-projection error for the Dance sequence with

large background-foreground separation.

3Refer the supplementary material for the data reproprecessing
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Geometry Motion Prior

#Trajectory
Avg samples

per trajectory

RMSE (pixels)

Static—Dynamic
#Trajectory

Avg samples

per trajectory

RMSE (pixels)

Static—Dynamic

RMSE* (pixels)

Static—Dynamic

Checkerboard 88 179.8 0.67 6.59 88 1023.0 0.67 1.21 0.65 1.15

Jump 717 36.4 0.59 1.91 3231 127.8 0.59 1.34 0.6 1.26

Dance 577 22.3 0.82 5.23 4105 216.4 0.82 2.12 0.85 1.71

Table 2: Quantitative analysis for the outdoor sequences. RMSE and RMSE* are the results after stage 3 and 5 of Algo. 1.
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Figure 4: Effect of accurate sub-frame alignment for the 3D trajectory estimation. (a) Point triangulation of frame accurate

alignment gives large reconstruction error and creates different 3D shape with respect to other methods. (b) Incorrect sub-

frame alignment generates 3D trajectory with many loops. (c) Trajectory estimated from correct sub-frame alignment is free

from the loops. (d) Using DCT resampling for (c) gives smooth and shape preserving 3D trajectory.
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Figure 3: Accuracy evaluation of the checkerboard corner

3D trajectories. While the reconstruction is conducted in-

dependently at every corner, collectively, the estimated 3D

trajectories assemble themselves in the grid-like configura-

tion. Our methods produce trajectories with significantly

smaller error than naive geometric triangulation.

Checkerboard scene: This scene is captured by 7 Go-

Pro cameras with resolution of 1920x1080 at 60fps. We

down sample all videos to 10fps to mimic faster motion. We

rigidly align the ground truth configuration of the checker-

board to its estimated position and compute their difference

for every corner. While we applied our method indepen-

dently to each checkerboard corner, collectively, the esti-

mated trajectories assemble themselves in the grid-like con-

figuration of the physical board (see Fig. 3). Quantitatively,

point triangulation of frame accurate alignment produces er-

ror of at least 80 mm for every corner. Conversely, most 3D

corners estimated from our method have much smaller error

(direct motion prior: 35 mm, DCT: 18 mm).

Fig. 4 shows the effect of accurate sub-frame alignment

on the trajectory reconstruction. Due to the fast motion,

geometry based method produces trajectory with much dif-

ferent shape than the motion prior based method. We ar-

tificially alter the sub-frame of the offsets to create wrong

frame sequencing between different cameras and optimize

Eq. 3 for the trajectory. This results in trajectories with

many small loops, a strong cue of incorrect alignment. Con-

versely, our reconstruction with correct time alignment is

free from the loops. Our final result, obtained by DCT re-

sampling, gives smooth and shape preserving trajectories.

Jump scene: This scene is captured by 8 GoPro cameras

at 120 fps at 1280x720 resolution. We compute 2D trajec-

tories at 120 fps and artificially down sample them 30fps to

mimic faster motion. To evaluate the alignment, we increase

the estimated offsets by 4 times and show the alignment on

the original footage at 120fps (see Fig. 5). Notice that the

shadow cast by the folding cloth are well aligned across im-

ages. This means that our alignment is at least 0.25 frames

accurate using 30 fps data.

Fig. 6 shows our estimated trajectories for all meth-

ods. While the point triangulation of frame accurate align-

ment fails to reconstruct the fast action happening at the

end of the action, our method produces plausible metric re-

construction for the entire action even with relatively low

frame-rate cameras. Due to the lack of ground truth data,

we compare the our reconstruction with the point triangu-

lation using 120 fps videos, where few differences are seen
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(b) Time-aligned images (a) Original images 

(c) Insets of the time-aligned images 

Figure 5: Temporal alignment. (a) Original unaligned images. (b) Our aligned images, estimated from temporally down

sampled video at 30 fps, are shown for the original video captured at 120 fps. (c) Inset of aligned images. The shadow casted

by the folding cloth are well temporally aligned across images.

(b) Motion prior based @30fps (front view) (c) Motion prior based @30fps (top view) 

No fast motion 

0 4 1 2 3 
Time (s) 

(a) Jump scene 

(e) Motion prior based @30fps (zoom-in) (f) Geometry based @120fps (zoom-in) (d) Geometry based @30fps (zoom-in) 

Figure 6: Jump scene. Point triangulation of frame accurate alignment fails to reconstruct the fast action happened at the

end of the sequence. Conversely, our motion prior based approach produces plausible reconstruction for the entire course

of the action even with relatively low frame-rate cameras. Trajectories estimated from our approach highly resembles those

generated by the frame accurate alignment and triangulation at 120fps.

between the two reconstructions.

Dance scene: This scene is captured by five iPhone 6

and five Samsung Galaxy 6 at 60fps. As before, we track

points at 60fps and down sample them to 15fps for process-

ing. We estimate per-frame camera intrinsic to account for

the auto-focus function of smartphone cameras.

Fig. 7 shows our trajectory reconstruction results.

Our method reconstructs fast motion trajectories (jumping),

longer and higher temporal resolution trajectories than point

triangulation results at 15fps. Since we discard many short

2D trajectories (thresholded at 10 samples), we reconstructs

fewer 3D trajectories than geometric triangulation at 60fps.

However, the overall shape of the trajectories are similar.

Interestingly, this scene has a large number of static

background points. This adversely reduces the spatial cal-

ibration accuracy for the foreground points (see Fig. 8).

Using our algorithm clearly improves the spatial calibration

for cameras with enough number of visible dynamic points.
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0 20 5 10 15 

(d) Geometry based @15fps (zoom-in) 

(a) Dance scene 

(e) Motion prior based @15fps (zoom-in) 

Low temporal resolution trajectories 

Fail to reconstruct the fast motion 

(c) Motion prior based @15fps (top view) 

(f) Geometry based @60fps (zoom-in) 

(b) Motion prior based @15fps (side view) 

Time (s) 

No fast motion  

Low temporal resolution 

Figure 7: Dance scene. The 3D trajectories are estimated using 10 15 fps cameras. Noticeably, the trajectories generated from

frame accurate alignment and triangulation are fewer, shorter, and have lower temporal resolution than those reconstructed

from motion prior based approaches.

(b) Insets of the (a): Success (left) and failure (right) epipolar estimation.

(a) A subset of the temporally aligned images and their epipolar lines corresponding to the point in the first camera image

(c) Visibility matrix of the dynamic points

After spatiotemporal bundle adjustmentBefore spatiotemporal bundle adjustment

Figure 8: Evaluation of the spatiotemporal calibration. The blue and red lines are the estimated epipolar lines before and

after spatiotemporal bundle adjustment, respectively. The epipolar lines estimated after spatiotemporal bundle adjustment

have noticeable improvement at the foreground for cameras with a large number of visible dynamic points.

7. Discussion

While our incremental reconstruction and alignment can

strictly enforce the motion prior, linearly searching for the

best sequencing time slot followed by a local optimization

is computational demanding. As the number of camera in-

creases, the number of slots increases. The number of tra-

jectory samples also rises. Thus, the computational com-

plexity increases every iteration.

One of the our biggest obstacles is the requirement of

corresponding 2D trajectories across cameras. Just as SIFT

descriptor for point matching has revolutionized static scene

reconstruction, trajectory descriptor is needed for dynamic

scene reconstruction. To disambiguate the matching, such

a descriptor must accumulate information spatiotemporally.

Further effort must be invested to solve this problem.
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