
Actions ⇠ Transformations

Xiaolong Wang1∗ Ali Farhadi2,3 Abhinav Gupta1,3
1Carnegie Mellon University 2University of Washington 3The Allen Institute for AI

Abstract

What defines an action like “kicking ball”? We argue

that the true meaning of an action lies in the change or

transformation an action brings to the environment. In

this paper, we propose a novel representation for actions

by modeling an action as a transformation which changes

the state of the environment before the action happens (pre-

condition) to the state after the action (effect). Motivated

by recent advancements of video representation using deep

learning, we design a Siamese network which models the

action as a transformation on a high-level feature space. We

show that our model gives improvements on standard ac-

tion recognition datasets including UCF101 and HMDB51.

More importantly, our approach is able to generalize be-

yond learned action categories and shows significant per-

formance improvement on cross-category generalization on

our new ACT dataset.

1. Introduction

Consider the “soccer kicking” action shown in Figure 1.

What is the right representation for the recognition of such

an action? Traditionally, most research in action recogni-

tion has focused on learning discriminative classifiers on

hand-designed features such as HOG3D [22] and IDT [51].

Recently, with the success of deep learning approaches, the

focus has moved from hand-designed features to building

end-to-end learning systems. However, the basic philoso-

phy remains the same: representing action implies encod-

ing the appearance and motion of the actor. But are actions

all about appearance and motion?

We argue that the true essence of an action lies in the

change or the transformation an action brings to the envi-

ronment and most often these changes can be encoded vi-

sually. For example, the essence of “soccer kicking” lies in

the state change of the ball (acceleration) caused by the leg

of the player. What if we try to represent actions based on

these changes rather than appearance and motion?

In this paper, we propose representing actions as trans-

formations in the visual world. We argue that current action

recognition approaches tend to overfit by focusing on scene

context and hence do not generalize well. This is partly be-

cause of the lack of diversity in action recognition datasets

⇤Work was done while Xiaolong Wang was an intern at AI2.

(a) Representation

× Kick =

(c) Cross category generalization

× Jump =

× =

× =

Training:

Testing:

× Dive =

(d) Action prediction

(b) Recognition

PRECON. × ACTION = EFFECT

Figure 1: We represent actions as the transformations from precondi-

tion to effect. (a) For example, the precondition of kicking is the player

running towards the ball and the effect is the ball flies away. By using this

representation, we can (b) perform action recognition given the training

data on long jump, and (c) generalize the classifier to high jump in testing.

(d) Moreover, we can perform visual prediction given the precondition.

compared to object recognition counterparts. In this paper,

we overcome this problem by forcing a representation to

explicitly encode the change in the environment: the inher-

ent reason that convinced the agent to perform the action.

Specifically, each action is represented as a transformation

that changes the state of the environment from what it was

before the action to what it will be after it. Borrowing the

terminology from NLP, we refer to the state before the ac-

tion as the precondition state and the state after the action as

the effect state, as Fig. 1 illustrates. We build a discrimina-

tive model of transformation by using a Siamese network ar-

chitecture (similar to [2, 1]) where the action is represented

as a linear transformation between the final fully connected

12658

layers of the two towers representing the precondition and

effect states of an action.

Our experimental evaluations show that our representa-

tion is well suited for classical action recognition and gives

state of the art results on standard action recognition dataset

such as UCF101 [42]. However, in order to test the ro-

bustness of our representation, we also test our model for

cross-category generalization. While overfitted representa-

tions would perform competitively on current action recog-

nition datasets (due to lack of diversity), the true test lies

in their ability to generalize beyond learned action cate-

gories. For example, how would a model learned on “open-

ing a window” generalize to recognize “opening the trunk

of the car”? How about generalizing from a model trained

on climbing a cliff to recognize climbing a tree? Our experi-

mental evaluations show that our representation allows suc-

cessful transfer of models across action categories (Fig. 1

(c)). Finally, our transformation model can also be used to

predict what is about to happen (Fig. 1 (d)).

Our contributions include: (a) a new representation of

actions based on transformations in visual world; (b) state

of the art performance on an existing action recognition

dataset: UCF101; (c) addressing the cross-category gener-

alization task and proposing a new dataset, ACT, consisting

of 43 categories of actions, which can be further grouped to

16 classes, and 11234 videos; (d) results on prediction task

for our ACT dataset.

2. Related Work

Action recognition has been extensively studied in com-

puter vision. Lack of space does not allow a comprehensive

literature review (see [33] for a survey).

Hand-crafted representations have been convention-

ally used to describe patches centered at Space Time In-

terest Points (STIP) [26]. Most successful examples are 3D

Histogram of Gradient (HOG3D) [22], Histogram of Opti-

cal Flow (HOF) [27], and Motion Boundary Histogram [3].

Mid- to high-level representation are also used to model

complex actions [41, 55, 36, 60, 14, 24]. More recently,

trajectory based approaches [51, 31, 29, 50, 18, 32, 25] have

shown significant improvement in action recognition.

Learned representations with deep learning have re-

cently produced state of the art results in action recogni-

tion [17, 21, 39, 52, 48, 49, 28, 8, 58]. Karpathy et al. [21]

proposed to train Convolutional Neural Networks (Con-

vNets) for video classification on the Sports-1M dataset.

To better capture motion information in video, Simonyan

et al. [39] introduced a Two Stream framework to train two

separate ConvNets for motion and color. Based on this

work, Wang et al. [52] extracted deep feature and conducted

trajectory constrained pooling to aggregate convolutional

feature as video representations. In our paper, we also train

the networks taking RGB frames and optical flows as inputs.

Temporal structure of videos have also been shown ef-

fective in action recognition [47, 6, 44, 13, 34]. For exam-

ple, Tang et al. [47] proposed an HMM model to model the

duration as well as the transitions of states in event video.

Fernando et al. [6] learned ranking functions for each video

and tried to capture video-wide temporal information for ac-

tion recognition. Recurrent Neural Networks have also been

used to encode temporal information for learning video rep-

resentations [43, 4, 30, 45, 57, 46]. Srivastava et al. [43]

proposed to learn video representations with LSTM in an

unsupervised manner. Ng et al. [30] proposed to extract

features with a Two Stream framework and perform LSTM

fusion for action recognition. However, these HMM, RNN

and recent LSTM approaches model a sequence of transfor-

mation across frames or key frames; whereas in our frame-

work we model action as a transformation between precon-

dition and effect of action. Note that the location of these

frames are latent in our model.

The most similar work to ours is from Fathi et al. [5]

where the change in the state of objects are modeled us-

ing hand-crafted features in ego-centric videos of 7 activ-

ities. We differ from [5] in that we learn representations

which enable explicit encoding of actions as transforma-

tions. Our representations not only produce state of the

art generic action recognition results, but also allow pre-

dictions of the outcome of actions as well as cross-category

model generalization. To model the transformation, we ap-

ply a Siamese network architecture in this paper, which

is also related to the literature using deep metric learn-

ing [11, 9, 37, 12, 54, 16].

3. Dataset

To study action recognition, several datasets have

been compiled. Early datasets (e.g. Weizmann, KTH,

Hollywood2, UCF Sports, UCF50) are too small for

training ConvNets. Recently, a few large-scale video

datasets have been introduced (e.g. CCV [20], Sports-

1M [21], ActivityNet [10], THUMOS [19] and FGA-

240 datasets [45]). Unfortunately, some of these datasets

have untrimmed videos without localization information for

short term actions. The most commonly studied datasets

are UCF101 [42] and HMDB51 [23]. The UCF101 dataset

lacks the desired diversity among videos in each class. The

HMDB51 dataset does not have enough videos compared to

UCF101, and some of the videos are hard to recognize. But

more importantly, none of these datasets is suitable for our

task of examining cross category generalization of actions.

In this paper, we argue for cross-category generaliza-

tion as a litmus test for action recognition. We believe

that the cross-category recognition task should not allow

approaches to overfit to action classes based on contextual

information. For this task, we propose a dataset, namely

ACT dataset. In this dataset, we collected 11234 video clips

with 43 classes. These 43 classes can be further grouped

into 16 super-classes. For example, we have classes such

as kicking bag and kicking people, they all belong to the

super-class kicking; swinging baseball, swinging golf and

2659

b
aseb

all
g

o
lf

ten
n

is

sw
in

g

b
ag

p

eo
p

le

k
ick

Figure 2: Samples in our ACT dataset. The action classes are arranged

in a two-layer hierarchy. For each class, we collected hundreds of video

clips with large diversities.

swinging tennis can be grouped into swinging. Thus, the

categories are arranged in a 2-layer hierarchy. The higher

layer represents super-classes of actions such as kicking

and swinging. Each super-class has different sub-categories

which are the same action under different subjects, objects

and scenes. During the dataset collection, we also ensured

that we only consider high resolution and diverse videos.

Dataset collection. To collect our dataset we used

YouTube videos. We used 50 keywords to retrieve videos

which belong to one of the 43 classes. For each keyword,

we downloaded around 500 high quality videos which have

length within 15 minutes. The videos were labeled by a

commercial crowd-sourcing organization. We asked the

workers to label the starting and ending frames for actions in

the video. For each action class, we provided a detailed de-

scription and 3 annotation examples from different videos.

To increase the diversity of actions, we required the workers

to label no more than 8 action clips in each video, and be-

tween each clips there should be a temporal gap of at least

40 frames. We also set temporal length limitations that each

annotated clip should have at least 1 second and at most 10

seconds. As Figure 2 illustrates, our dataset has large intra-

class diversities.

Task design. We design two tasks for our ACT dataset.

The first task is standard action classification over 43 cate-

gories. The split used for this task included 65% of videos

as training and the rest as testing data, resulting in 7260

training videos and 3974 for testing in total. The second

proposed task for this dataset is cross-category generaliza-

tion. For each of the 16 super-classes, we consider one of

its sub-category as testing and the other sub-categories are

used for training. For example, for super-class “swinging”,

we want to see if the model trained on swinging baseball

and swinging golf can recognize swinging tennis as “swing-

ing”. We create 3 different random splits for the second

task. There are around 7000 training samples and 4000 test-

ing samples on average. Our dataset can be downloaded

from the project website1.

4. Modeling Actions as Transformations

Given an input video X consisting of t frames, we

denote each frame as xi and the whole video as X =
{x1, x2, ..., xt}. We make an assumption that the precon-

dition state of an action corresponds to the first zp frames

and the effect of the action can be seen after from ze un-

til the end. We denote precondition and effect frames as:

Xp = {x1 . . . xzp} and Xe = {xze . . . xt}. Note that we do

not manually define how many frames are used of represent-

ing precondition and effect. Therefore zp and ze are treated

as latent variables, which will be inferred automatically by

our model during training and testing.

Instead of representing the precondition and effect by

pixels and modeling the transformation in pixel space, we

want to represent them using higher-level semantic features

(e.g., the last fully connected layer of a ConvNet). The ac-

tion then corresponds to transformation in higher-level fea-

ture subspace. This can be modeled via a Siamese ConvNet

as shown in Figure 3. Given the video frames for the pre-

condition and effect states, we feed the frames of precondi-

tion state Xp as inputs for the ConvNet on the top and the

frames of effect state Xe are fed to the ConvNet on the bot-

tom. For each tower of ConvNet, it computes the features

for each frame independently, and then the features are ag-

gregated via average pooling. We add a final d-dimensional

fully connected layer after average pooling which represent

the feature space where precondition, effect and the trans-

formation between the two are modeled. Formally, we use

fp(Xp) to represent the d-dimension embedding for the pre-

condition state generated from the network on the top (in

Figure 3) given input Xp. For the network on the bottom,

we represent the embedding for the effect state as fe(Xe)
with the same dimension d given input Xe.

Finally, we model the action as the transformation be-

tween these two states. Specifically, we use a linear trans-

formation matrix to model this. For a dataset with n cate-

gories of actions, we have a set of n corresponding trans-

formation matrices {T1, ..., Tn} to represent them. Each Ti

is a d ⇥ d dimensions matrix. At the training time, given

an input video X that belongs to action category i, we

first obtain the embedding for the precondition and effect

states of the action as fp(Xp) and fe(Xe). We then apply

the transformation matrix Ti on the embedding of the pre-

condition state as Tifp(Xp), which is also a d-dimension

vector. The objective of learning is making the distance

D(Tifp(Xp), fe(Xe)) between the two embeddings small.

Note that while training, the gradients are back propagated

throughout the Siamese networks; thus we learn both the

embedding space and the transformation simultaneously.

Network Architecture We applied the VGG-16 network

1http://www.cs.cmu.edu/˜xiaolonw/actioncvpr.

html

2660

http://www.cs.cmu.edu/~xiaolonw/actioncvpr.html
http://www.cs.cmu.edu/~xiaolonw/actioncvpr.html

Average

Pooling

Average

Pooling

�1 �� �� … …

Multiply

Compare

… …

… …

2 conv
2 conv

3 conv
3 conv 3 conv

4096 4096
512

512

512

P
r
e
c
o

n
d

itio
n

E

ffe
c
t

A
c
tio

n
s

Figure 3: Siamese network architecture. Given a video, we feed the precondition state frames to the top network and effect state frames to the bottom

network. Each tower of the ConvNet computes the feature for each frame independently, and aggregates the features via average pooling. The pooling

results are fully connected to 512-D embedding outputs. We apply n transformations (actions) on the precondition embedding and compare with the effect

embedding to decide the action class.

architecture [40] for both sides of our Siamese network. The

VGG-16 network is a 16-layer ConvNet with 13 convolu-

tional layers and 3 fully connected layers. As we men-

tioned before, we perform forward propagation for each

video frame independently. We extract the feature of the

second-to-last fully connected layer for each frame, which

is a 4096-D vector. In each side of our model, the features

are aggregated via average pooling, and we use a final fully

connected layer on these pooling outputs. The dimension

of the last embedding layer outputs is d = 512. In our

model, we do not share the model parameters between two

ConvNets. Intuitively, we want to learn different semantic

representations for precondition and effect of actions.

Two Stream Siamese: RGB and Optical Flow as In-

puts. For each input frame, we rescale it by keeping the

aspect ratio and make the smaller side 256 pixels. To repre-

sent the video frames, we follow the same strategy as [39],

which represents the frames with RGB images as well as

optical flow fields. We train two separate models for RGB

and optical flow fields as inputs. For the model using RGB

images as inputs, the input size is 224 ⇥ 224 ⇥ 3. For the

model using optical flow as inputs, we represent each frame

by stacking 10 optical flow fields extracted from 10 consec-

utive frames in the video starting from the current one. The

optical flow field can be represented by a 2-channel image

including horizontal and vertical flow directions. Therefore,

the input size is 224⇥ 224⇥ 20 as mentioned in [39].

Implementation Details. During training and testing,

we re-sample the videos to be 25 frames in length (t = 25)

as [39]. Note that the optical flow fields are still computed

in the original video without re-sampling. We also constrain

the latent variables zp and ze, which are the indexes for the

end frame of the precondition state and start frame of the

effect state such that: zp 2 [1
3
t, 1

2
t) and ze 2 (1

2
t, 2

3
t].

4.1. Training

We now introduce the training procedure for our model.

Suppose we have a dataset of N samples with n categories

{(Xi, yi)}
N
i=1

, where y 2 {1, ..., n} is the label. Our goal

is to optimize the parameters for the ConvNets and trans-

formation matrices {Ti}
n
i=1

. We also need to calculate the

latent variables zp and ze for each sample. Thus, we pro-

pose an EM-type algorithm, which performs a two-step pro-

cedure in each iteration: (i) learning model parameters and

(ii) estimating latent variables .

(i) Learning model parameters. We first discuss the

optimization of model parameters given the latent variables.

Our objective is to minimize the distance between the em-

bedding of the precondition state after transformation and

the embedding of the effect state computed by the second

ConvNet. This can be written as:

minD(Tyfp(Xp), fe(Xe)), (1)

where Ty is the transformation matrix for the ground truth

class y, fp(Xp) is the embedding for the precondition of

the action and fe(Xe) is the embedding for the effect of the

action. We use cosine distance here such that D(v1, v2) =
1− v1·v2

kv1kkv2k
between any two vectors v1, v2.

To make our model discriminative, it is not enough

to minimize the distance between two embeddings given

the corresponding transformation Ty . We also need to

maximize the distances for other incorrect transformations

Ti(i 6= y), which equals to minimize the negative of them.

Thus, we have another term in the objective,

min

nX

i 6=y

max(0,M −D(Tifp(Xp), fe(Xe))), (2)

where M is the margin so that we will not penalize the loss

if the distance is already larger than M . In our experiment,

we set M = 0.5. By combining Eq.(1) and Eq.(2), we

have the final loss for training. It is a contrastive loss given

sample (X, y) and latent variables zp and ze as inputs. We

train our model with back-propagation using this loss.

(ii) Estimating latent variables. Given the model pa-

rameters, we want to estimate the end frame index zp of

2661

Algorithm 1 Learning

Input:

N videos with n classes {(Xi, yi)}
N
i=1, iteration number Iter.

Output:

Parameters of ConvNets and transformation matrices.

Model initialization, i = 0.

repeat

1. Forward propagation and feature computation for each frame.

2. Search latent variables with Eq.(3).

3. Back-propagations with the joint loss using Eqs. (1) and (2).

4. i = i+ 1.

until i = Iter

the precondition state and start frame index ze of the effect

state. That is, we want to estimate the latent variables to

give a reasonable temporal segmentation for the input video.

Since the latent variable only depends on the ground truth

action category; we only use the first term in the loss func-

tion, Eq.(1), to estimate zp and ze as follows:

(z⇤p , z
⇤
e) = argmin(zp,ze)D(Tyfp(Xp), fe(Xe)), (3)

where (z⇤p , z
⇤
e) are the estimation results given current

model parameters. To estimate these latent variables, we

use a brute force search through the space of latent vari-

ables. For computation efficiency, we first compute features

for all frames, and then a brute force search only requires

the average pooling step to be redone for each configura-

tion of (zp, ze)
Model pre-training. We first initialize the ConvNets

using ImageNet [35] pre-training and adapt them to ac-

tion classification with fine-tuning as [53]. We transfer the

convolutional parameters to both ConvNet towers and ran-

domly initialize the fully connected layers in our model. We

summarize the learning procedure as Algorithm 1.

Training detail discussions. During training, we have

not explicitly enforced the representations of fp(Xp) and

fe(Xe) to be different. We have tried to use Softmax loss to

classify precondition and effect as two different classes. We

found it does not help improve the performance. The reason

is that the two towers of networks are learned on different

data with different parameters (no sharing) and initializa-

tion, which automatically leads to different representations.

4.2. Inference

During inference, given a video X and our trained

model, our goal is to infer its action class label y and seg-

ment the action into the precondition and effect states at the

same time. The inference objective can be represented as,

min
y,zp,ze

D(Tyfp(Xp), fe(Xe)). (4)

More specifically, we first calculate the ConvNet feature be-

fore the average pooling layer for all the frames. Note that

the first half of the frames are fed into the network for the

precondition state and the second half of the frames are fed

... ...

�V�ã ! "# ! �V�Ø! "$!

�V�ã ! % !

... ...

�V�Ø! "&!

...

�V�ã ! "" !

...

�V�Ø! "' !

...

�V�ã ! "# !

...

�V�Ø! "(!

(a) diving-bungeejumping

(b) throwing-discus

Precondition Effect

Figure 4: Temporal segmentation results after inference. zp and ze are

the latent variables indexing the end frame for precondition and start frame

for effect. Our model can provide reasonable temporal alignment of states

between different videos in the same category.

into the network for the effect state. We do a brute force

search over the space of (y, zp, ze) to estimate the action

category and segmentation into precondition and effect. We

visualize reasonable segmentation results for precondition

and effect states during inference as Figure 4.

Model fusion. We perform the inference with the mod-

els using RGB images and optical flow as inputs separately.

For each video, we have n distance scores from each model.

We fuse these two sets of scores by using weighted average.

As suggested by [53] we weight the flow twice as much as

the RGB ConvNet.

5. Experiment

In this section, we first introduce the details of the

datasets and our experimental settings. Then we provide

quantitative and qualitative results on different datasets.

Datasets. We evaluate our method on three datasets, in-

cluding UCF101 [42], HMDB51 [23] and our ACT dataset.

UCF101 dataset contains 13320 videos with 101 classes.

The HMDB51 dataset is composed of 6766 videos with

51 action categories. For both datasets, we follow the

standard evaluation criteria using 3 official training/testing

splits. Our ACT dataset has 11234 video clips from 43 ac-

tion classes and 16 super-classes. For this dataset, we con-

duct our experiments on two tasks. The first task is standard

action classification of 43 categories. The second task is to

test the generalization ability of our model. We conduct the

experiments using 3 training/testing splits for 16-class clas-

sification. For each super-class, one sub-category is used

for testing and the others for training.

Implementation Details. We first pre-train our net-

2662

