
Online Reconstruction of Indoor Scenes from RGB-D Streams

Hao Wang∗, Jun Wang∗, Liang Wang

Baidu Research - Institute of Deep Learning

{wanghao29, wangjun21, wangliang18}@baidu.com

Abstract

A system capable of performing robust online volumetric

reconstruction of indoor scenes based on input from a hand-

held RGB-D camera is presented. Our system is powered

by a two-pass reconstruction scheme. The first pass tracks

camera poses at video rate and simultaneously constructs

a pose graph on-the-fly. The tracker operates in real-time,

which allows the reconstruction results to be visualized dur-

ing the scanning process. Live visual feedbacks makes the

scanning operation fast and intuitive. Upon termination of

scanning, the second pass takes place to handle loop clo-

sures and reconstruct the final model using globally refined

camera trajectories. The system is online with low delay

and returns a dense model of sufficient accuracy. The beau-

ty of this system lies in its speed, accuracy, simplicity and

ease of implementation when compared to previous method-

s. We demonstrate the performance of our system on sever-

al real-world scenes and quantitatively assess the modeling

accuracy with respect to ground truth models obtained from

a LIDAR scanner.

1. Introduction

The paper is about generating dense models of rigid in-

door scenes using inputs streamed from a handheld RGB-

D camera. The reconstruction is performed online with

low delay as the sensor moves. The system also continu-

ously estimates the 6 degrees of freedom (6DOF) pose of

the sensor and returns the globally optimized camera tra-

jectory. An example is shown in figure 1. In computer

vision, structure from motion (SFM) and visual odometry

have been highly active research topics for a long time. In

the robotics community, closely related is what is known

as simultaneous localization and mapping (SLAM). Semi-

nal works [20, 21, 5, 14] demonstrate that robust tracking

and sparse 3D mapping is possible in real-time from visual

input alone. Attempts at real-time dense surface modelling

from passive cameras to date have had limited results, most-

∗indicates equal contributions and joint first authors

ly on outdoor scenes [23, 30], small objects and compact

workspaces [16, 18, 24].

Dense modeling research has recently experienced

somewhat of a new era, as a result of the emergence of

consumer-level depth sensors. The availability of real-time,

reliable depth sensing capabilities together with the ad-

vance of general purpose graphics processing units (GPG-

PU) open new avenues for camera tracking and dense map-

ping. The pioneer work in RGB-D reconstruction literature

is KinectFusion [17]. Since [17], many methods (both on-

line and offline) have been proposed to address the RGB-D

scene reconstruction problem [34, 12, 3, 19, 38, 36, 13, 37,

35, 4, 32], from graphics, vision and robotics communities.

Previous work on RGB-D reconstruction can be catego-

rized into two groups based on the method’s emphasis and

target application. Robotics researchers in general formu-

late the problem in a SLAM framework [8, 34, 12, 13, 31,

32], minimizing the absolute trajectory error (ATE) is their

main focus and the root mean square error (RMSE) of the

ATE is used as the evaluation metric. These SLAM systems

are seldom designed for high fidelity modeling, thus mesh

quality and geometry details are not fully appreciated. By

contrast, graphics and vision communities focus more on

the fidelity of the reconstructed model [36, 38, 37, 35, 4].

Qualitative or quantitative analysis of 3D models is per-

formed to assess the surface quality. Note that to obtain high

quality meshes, expert users are required to operate the sen-

sor and image surfaces at close range. The scanning process

is inherently different from some of the dense SLAM appli-

cations, in which a robot drives a rigidly mounted camera

to create a dense map for an unknown environment.

Our work belongs to the second category, i.e., meshes

are the main outcome of our system and high accuracy is

desired in our applications. While methods for modeling s-

mall objects are relatively mature [29, 17], modeling indoor

scenes automatically still remains a tough challenge. To one

part this is because real-world environments contain sophis-

ticated structures and must be reconstructed from complex

camera trajectories, with each view covering only a small

portion of the scene, making tracking prone to gross fail-

ure. More importantly, scanning large environments suffers
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Figure 1. Automatic online reconstruction from a sequence of

handheld RGB-D images. The top shows the reconstructed 3D

model of our two-pass system. The middle shows our optimized

camera trajectory and the rest show some details of the model.

The area of this scene is about 40m2 and the camera trajectory is

about 79 meters long. Scanning the room takes about 360 seconds

and the online reconstruction finishes within 170 seconds, i.e. 170

seconds after the user terminates the scanning process.

from odometry drift. Error accumulation can distort the re-

constructed surface model.

The rest of the paper presents a system for reconstruct-

ing indoor scenes from live RGB-D streams. The philos-

ophy behind our system is to achieve computationally rea-

sonable reconstruction online. Robustness, simplicity and

ease of implementation are also crucial factors considered

when designing the system. In addition to system contribu-

tions, we quantitatively investigate the surface reconstruc-

tion quality using geometrical ground truth acquired by a

LIDAR system. We prepare evaluation sets for benchmark-

ing dense RGB-D reconstruction approaches in a principled

way. This is an important point which enables a fair com-

parison between different reconstruction algorithms.

2. Relation to Previous Work

This paper owes a lot to a sizable body of literature on

dense RGB-D reconstruction, more than we hope to account

for here. For the scope of this paper, of particular interest

are automatic indoor reconstruction systems designed for

quality demanding applications. This excludes methods that

use high level semantic cues [15] or human interaction [35].

The most influential related work is KinectFusion [17].

It represents the scene with a signed distance field (SDF)

which is defined on a volumetric grid. Each incoming depth

image is registered to the SDF and integrated with it us-

ing a frame-to-model alignment scheme. Real-time perfor-

mance is achieved by leveraging GPGPU. Systems built up-

on the original KinectFusion framework are later proposed

to improve its scalability and odometry accuracy [3, 19, 2].

These systems perform online tracking but are lack of ef-

fective mechanisms to protect against error propagation and

error buildup, which are serious concerns from the system

point of view. Therefore in practice they can not well handle

furnished scenes that require comprehensive scanning with

complex camera trajectories.

The importance of loop closure and map optimiza-

tion for large scale RGB-D SLAM has been recognized

by [12, 34, 13, 7, 32]. These works follow a SLAM ar-

chitecture and their systems can be broken up into three

modules, i.e. frontend, backend, and map generation [7].

Typically the frontend tracks the 6DOF camera pose us-

ing either frame-to-frame [12, 13, 7] or frame-to-model ap-

proaches [32]. The backend maintains a pose graph which

models the geometric relations between keyframes. State-

of-the-art RGB-D SLAM systems have complicated system

architectures. Frontend (pose tracker and loop detection)

and backend (graph optimization and map correction) mod-

ules run in several asynchronous threads. Each time a loop

closure is encountered, a constraint is added to the graph

and an optimization process is triggered. Since the recon-

structed map and refined trajectories are from asynchronous

threads, a non-rigid map optimization is coupled with in-

cremental pose graph optimization to obtain consistent re-

sults. The backend latency is high according to the statis-

tics reported in [32], e.g., about 10 seconds for an indoor

sequence that contains two looping points. Recently, [33]

uses incremental bundle adjustment with non-rigid defor-

mation for real-time consistent reconstruction. However, its

point-based representation might lack general applicability
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Figure 2. Illustration of the intrinsic RGB-D sensor calibration. From left to right: ground truth scan from LIDAR, plots of 3D measure-

ments of a single shot before (red) and after (green) distortion compensation, partial RGB-D reconstruction from inputs without and with

applying distortion compensation.

compared with continuous surface representations.

For fidelity demanding applications, several authors re-

port high quality RGB-D reconstructions by performing in-

tensive offline optimization to mitigate alignment inconsis-

tencies and odometry drift [36, 37, 4]. While their result-

s are visually very plausible, long processing time makes

these approaches inapplicable for online applications. We

argue that online reconstruction is both favorable and cru-

cial for obtaining accurate 3D models because by seeing a

continuously-updated model as the surface is imaged, user

can control the coverage by moving the camera appropri-

ately, making the scanning process intuitive and fast.

3. Compensate for Geometric Distortion

Depth measurements from most consumer RGB-D sen-

sors suffer from distortions that increase with range. Dis-

cussion about the exact origin of this distortion is not with-

in the scope of this paper. We detail the geometric distor-

tion compensation step because we experimentally found

it brings significant accuracy improvements and also sup-

presses error buildup during the online scene reconstruc-

tion. We emphasize that distortion compensation (sensor

pre-calibration) should be considered the gold standard for

RGB-D reconstruction and SLAM applications. The accu-

racy gain is well worth the trouble of implementation. This

problem, unfortunately, were rarely discussed in previous

RGB-D mapping literature. An exception is [38], in which

the authors mentioned that the calibration approach of [28]

has been applied to their sensor.

A general, unsupervised calibration procedure is de-

scribed in detail in [28]. In this work, we adopt a super-

vised method by leveraging a high accuracy LIDAR scan-

ner that we have in house. Multiple markers are attached

on a flat wall. The ground truth structure of the wall is ob-

tained from the LIDAR system. The wall is also observed

using our RGB-D sensor from different distances and ori-

entations. At each observation spot, we collect 50 to 60

independent measurements and average them to compute a

depth map. The depth camera is then registered into the

ground truth’s coordinate frame from manually labeled 2D-

3D correspondences. The infrared image from depth sensor

and the laser points’ reflection factors provide visual cues

for humans to establish correspondences. Depth cameras’

extrinsic parameters (pose) w.r.t. the LIDAR metric system

are computed via perspective-n-point (PnP) algorithm fol-

lowed by iterative non-linear optimization. Using the ob-

served depth measurements and LIDAR ground truth, a 3D

look-up table (LUT) can be built offline to compensate for

depth distortion. In detail, the image plane is spatially di-

vided into 80×80 rectangular tiles. The Z-axis is sampled

from various distances and for each discrete range a depth

multiplier image is fitted to form a slice of the 3D LUT. At

runtime, to avoid discrete jumps we apply linear interpo-

lation along the beam to compute the per-pixel correction

factor. The undistorted depth maps are used as our system

input. Examples of our calibration results are shown in fig-

ure 2. For users who have difficulties obtaining ground truth

measurements, unsupervised methods such as [28] is also a

good option.

4. Method

Our system adopts a two-pass scheme. The first pass per-

forms parallel camera tracking and pose graph construction,

while the second pass handles loop closure and reconstructs

the final model. The online system consists of the following

three modules.

Camera Tracking: We extends the voxel hashing based

volumetric fusion [19] approach to achieve robust real-time

camera tracking. The reconstruction results can be visual-

ized instantly to guide the scanning.
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Figure 3. Reconstruction of the Reading Room (top row) and the UE Lab (bottom row) datasets. From left to right are results produced by

DVO-SLAM [13], indoor reconstruction method [4] with nonrigid refinement, method [4] with rigid optimization, ElasticFusion [33], and

our method without/with pose graph optimization.

Pose Graph Construction: We detect loops with visual

information and construct a pose graph incrementally on-

the-fly.

Model Reconstruction: Upon termination of scanning,

we perform pose graph optimization to refine the trajectory

and handle loop closures. After that, we make use of the

volumetric fusion to fuse these depth images into a final 3D

model with refined trajectory.

4.1. Preliminaries

The depth camera outputs a sequence of RGB-D frames

{Ii, Di}, where Ii and Di denote the ith color and depth

image respectively. To reconstruct the 3D scene, for each

incoming frame, we need to estimate the camera transfor-

mation matrix

Ti =

[

Ri ti
0⊤ 1

]

(1)

where Ri ∈ SO(3) is the rotation matrix and ti ∈ R3

is a translation vector. An inhomogeneous world point X̃

in 3D is transformed into the camera’s coordinate frame as

RX̃+ t.
We will use the pinhole camera model with pre-

calibrated intrinsic parameters. Suppose fx, fy are focal

lengths and cx, cy are the image centers of the camera, a

3D point X̃ = (X,Y, Z) in the camera coordinate system

is projected to the image plane under perspective projection

π(X̃) = (fx
X

Z
+ cx, fy

Y

Z
+ cy)

⊤ (2)

Conversely, a pixel (u, v) ∈ R2 with depth Z = D(u, v)
can be backprojected through

φ(u, v, Z) = (
u− cx
fx

Z,
v − cy
fy

Z,Z)⊤ (3)

In this paper, the 3D world scene is represented as a TSDF

(truncated signed distance function)

ψ : R3 → R (4)

4.2. Camera Tracking with Volumetric Fusion

To perform real-time 6DOF camera tracking, we adop-

t the framework of volumetric fusion with voxel hash-

ing [19], which can handle large-scale reconstruction with

fine-grained details. The reconstructed scene is represent-

ed as a TSDF on a volumetric grid with voxel hashing data

structure. Voxel hashing structure allows real-time access

and update using GPGPU. With streaming algorithms, data

can be easily streamed in and out the hash table while the

camera is moving. The volumetric fusion framework stores

the TSDF value ψ(p) and an associated weighting factor

W (p) in a voxel whose center locates at point p. And it

has two important components, i.e., frame-to-model regis-

tration and model integration.

4.2.1 Frame-to-Model Registration

For frame-to-model registration, we adopt a weighted TS-

DF tracking method, which is similar to [2] and performs

better than the original projective ICP method [17]. It regis-

ters each incoming depth image to the reconstructed TSDF

model instead of a rendered depth image generated from ray

casting. For each pixel (u, v), suppose the corresponding

inhomogeneous 3D point is X̃u,v , to compute the camer-

a transformation {R, t}, we need to minimize an objective

function of the form

ER,t =
∑

u,v

wu,vψ(RX̃u,v + t)2 (5)
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For the rest of the paper we will omit the subscript u, v
for concision. To solve equation (5), we use Gaussian-

Newton nonlinear minimization method. At iteration k + 1
(k ≥ 0), we start to linearize T k+1 around T k by a linear

function

T k+1 ≈









1 −γ β a
γ 1 −α b
−β α 1 c
0 0 0 1









T k (6)

A 6-dimensional vector ξk+1 = (α, β, γ, a, b, c) is a

twist coordinate representing the incremental transforma-

tion relative to T k at iteration k. (α, β, γ) and (a, b, c) are

the angular velocity and the translation vector, respectively.

By denoting Y = T kX, ξk+1 is computed from equa-

tion

∑

w∇ψ(Ỹ)∇ψ(Ỹ)⊤ξk+1 = −
∑

wψ(Ỹ)∇ψ(Ỹ)

(7)

where Ỹ represents Y’s inhomogeneous version (a 3-

vector), ∇ψ(Ỹ) is the derivative of the TSDF function eval-

uated at point Ỹ. ξk+1 can be computed efficiently by solv-

ing this 6× 6 linear equation. The incremental transforma-

tion can then be obtained from ξi+1. We update T k+1 and

iterate this process until convergence. We terminate when

either the change of ξ between iterations is small enough or

a certain number of iteration is reached. The max number of

allowed iteration is set to 20 in our implementation. Similar

to [2], we parallelize the per-pixel computation using GPU

to obtain real-time performance.

4.2.2 Model Integration

For model integration, we apply a non-uniform weighting

strategy to integrate the ith incoming depth image with the

previously reconstructed model (ψi−1,Wi−1). Suppose p

is the center of a voxel that is close to the underlying surface

of the incoming depth image. Through projection we can

compute its distance to the ith camera, denoted by Ci(p),
and the depth value on the projected pixel Di(π(p)). The

distance of p to the underlying surface is fi(p) = Ci(p)−
Di(π(p)). Then the voxel with center p is updated by:

ψi(p) =
Wi−1(p)ψi−1(p) + λi(p)fi(p)

Wi−1(p) + λi(p)
(8)

Wi(p) =Wi−1(p) + λi(p) (9)

The parameter λi(p) makes the model integration favor

points from the near range, which usually has better accu-

racy than points from a far distance. In our experiments, we

use a linear weighting function λi(p) = 1 − (Di(π(p)) −
dmin)/(dmax − dmin) with dmin = 0.5m, dmax = 4.0m.

4.3. Online Pose Graph Construction

To alleviate error accumulation and prevent the system

from drifting, we construct a pose graph incrementally in a

backend thread parallel to the frontend tracking thread. We

denote the pose graph by G = {V, E}. When the ith frame

arrives, we create a new node Vi and add an edge connect-

ing Vi with its predecessor (previous frame) Vi−1. Similar

to fragment based methods [36, 4], we make a valid assump-

tion that the frame-to-model tracker returns locally accurate

pose estimates. Therefore the relative pose between nodes

Vi and Vi−1 is simply computed from their absolute poses

returned by the tracker. Note that unlike [13], we do not

add additional local edges to G thus simplifying our graph

structure.

In addition to edges that link successive frames, there are

loop edges which are added to the graph through loop detec-

tion. To reduce data redundance and system delay, we only

establish loop edges between keyframes. For keyframe se-

lection, the incoming frame is identified as a new keyframe

if its pose is sufficiently different from the last keyframe in

the pose graph’s keyframe queue. In our implementation

we set the threshold for this relative pose change to be (5◦,

0.02m). To enable real-time performance, loops have to be

detected efficiently. We amend the visual place recognition

technique DBoW [9] by replacing original SURF feature

with fast ORB feature [25]. Once a new incoming frame is

being recognized as a keyframe, we treat it as a query im-

age and DBoW returns the best matched keyframe from the

keyframe queue.

To estimate the relative pose between two keyframes, we

first extract 2D feature correspondences using a direct in-

dex strategy, i.e. only feature pairs that are within the same

visual word are considered as matching candidates. Then,

we use Random Sample Consensus (RANSAC) and Nis-

ter’s three-point pose algorithm [22] to calculate their rela-

tive transformation δT . In our implementation, if RANSAC

inlier ratio is less than 25% or inlier number is lower than

15, we consider it as a false detection. Otherwise, we re-

fine δT using all the inliers via Levenberg-Marquardt (LM)

optimization.

By now, we obtain an initial estimate of the relative pose

from 2D-3D correspondences. We further validate δT ’s cor-

rectness and continue refining it before adding it to the pose

graph. We experimentally found that cautious validation of

edge constraints is crucial for pose graph construction be-

cause false loop edges and incorrect pairwise transforma-

tions can distort the final trajectory. First, in practice the

distribution of matched visual features can be non-uniform,

leading to biased pose estimation. To address this problem,

we use δT as an initial guess and employ point-to-plane

ICP to refine it (we experimentally found point-to-plane

ICP outperforms its point-to-point counterpart for robust-

ness). Due to the narrow field of view, aligning two indi-
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vidual depth frames can be unreliable. To increase robust-

ness, we instead align two 3D point clouds formed using

the keyframes and their K-nearest neighbors in the RGB-D

sequence (in our system we set K=10). To speedup ICP,

depth maps are downsampled by half and we project 3D

points to depth image to reduce the ICP search space form

3D to 2D. Second, since geometric-based ICP is sensitive

to planar structures, we perform PCA analysis on one of the

two 3D point clouds and discard the loop edge if points are

mostly sampled from a planar object.

4.4. Model Reconstruction

Before the second pass model reconstruction, we need

to optimize the pose graph to achieve globally consisten-

t frame poses. We incrementally optimize the pose graph

but not coupled with the graph construction procedure. We

control the optimization frequency to balance the delay be-

tween threads and accuracy. Denoting ci,j as a 6-vector

constraint derived from either tracking measurement or loop

detection, and f(Ti, Tj) as the relative transformation (also

6-vector) from pose Ti and Tj , we optimize the pose graph

through minimizing the following energy function

ri,j = f(Ti, Tj)− ci,j

EG({T}) =
∑

ei,j∈E

ρ(rTi,jΩ
−1

i,j ri,j)
(10)

, where Ωi,j is the covariance matrix of edge ei,j , and ρ(.)
is the Cauchy robust function. To approximate and unify

the covariance from different measurements, we adopt the

Monte Carlo estimation [11]. We use the ceres-solver [1]

to solve this minimization problem. Finally, we apply the

volumetric fusion described in section 4.2 to reconstruct the

final model. Camera tracking is replaced by the optimized

trajectory and only depth image integration is performed.

5. Experiments

5.1. Trajectory Evaluation

To evaluate the trajectory accuracy of our method, we

test our system on the RGB-D benchmark presented in [27].

This benchmark provides synchronized ground truth camer-

a poses for the RGB-D sensor, recorded by a precise motion

capture system. As shown in table 1, we compare our sys-

tem with four other state-of-the-art RGB-D based SLAM

systems: RGB-D SLAM [6], MRS-MAP [26], DVO S-

LAM [13] and Kintinuous SLAM [32]. We also provide our

camera tracking results with volumetric fusion only (with-

out pose graph optimization). We use the RMSE of the ATE

as evaluation metric in our comparison. From the table, we

can see that our system achieves consistent performance ex-

cept the fr1/room dataset which has motion blur caused by

high angular velocity. Our camera tracking via volumetric

0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance(cm)

p
e

rc
e

n
ta

g
e

Reading Room

Ours−Full
Ours−Fusion
DVO−SLAM
Choi−Nonrigid
Choi−Rigid
Elastic

0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance(cm)

p
e

rc
e

n
ta

g
e

UE Lab

Ours−Full
Ours−Fusion
DVO−SLAM
Choi−Nonrigid
Choi−Rigid
Elastic

Figure 5. Cumulative histogram of errors from ground truth sur-

face to the reconstructed surface on Reading Room and UE Lab

datasets.

Table 1. Comparison of the ATE RMSE on the RGB-D SLAM

benchmark datasets[27].

Dataset RGB-D DVO MRS Kintinuous Ours

SLAM SLAM Map SLAM Tracking Optimize

fr1/desk 0.023 0.021 0.043 0.037 0.023 0.024

fr1/desk2 0.043 0.046 0.049 0.071 0.050 0.044

fr1/room 0.084 0.053 0.069 0.075 0.238 0.093

fr1/xyz 0.014 0.011 0.013 0.017 0.013 0.013

fr1/rpy 0.026 0.020 0.027 0.028 0.037 0.029

fr1/plant 0.091 0.028 0.026 0.047 0.055 0.050

fr2/desk 0.057 0.017 0.052 0.034 0.100 0.044

fr2/xyz 0.008 0.018 0.020 0.029 0.027 0.017

fr3/office 0.032 0.018 0.042 0.030 0.056 0.036

fusion shows a comparable performance on trajectory eval-

uation.

5.2. Model Quality Evaluation

For RGB-D dense reconstruction, based on our knowl-

edge, there is no ground truth on real data for evaluating

reconstruction accuracy. We thus make use of a high pre-
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Figure 4. Heat maps showing errors from ground truth surface to the reconstructed surface on Reading Room and UE Lab datasets with

different methods. From blue to red, the error increases from zero to 0.2m.

Table 2. Ground truth information of the two datasets.

Dataset Vertex Frame Area(m2)

Reading Room 7468347 10465 40

UE Lab 9691886 10414 36

cision LIDAR system (Riegl VZ 400) to sense the environ-

ments and build ground truth 3D point clouds for two indoor

scenes (named Reading Room and UE Lab dataset, respec-

tively). Each dataset contains a ground truth point clouds, a

RGB-D video stream, and corresponding calibration infor-

mation (see 2 and 6).

With the ground truth data, we compare our system with

state-of-the-art RGB-D SLAM and reconstruction method-

s: the DVO-SLAM [13], robust indoor reconstruction sys-

tem [4] and ElasticFusion [33]. For DVO-SLAM, we use

its optimized trajectory as inputs for volumetric fusion to

obtain the reconstructed model. For [4], we compare with

its non-rigid refinement and rigid refinement versions. For

ElasticFusion, we compare with the reconstructed point-

based representation. We also evaluate the performance of

our volumetric fusion without pose graph optimization.

We use two kinds of error metrics. One is the mean and

median distance of the reconstructed surface to the ground

truth surface as adopted in [10]. The other is cumulative

histogram of the distance from the ground truth surface to

the reconstructed surface. Both metrics evaluate the recon-

struction accuracy and the second one can also reflect the

reconstruction completeness.

From the heat map 4, the cumulative histogram in Fig-

ure 5, the reconstruction results in Figure 3 and Table 3,

it can be seen that our system performs better than DVO-

SLAM and nonrigid indoor reconstruction system, and is

comparable to rigid indoor reconstruction system and Elas-

tic Fusion on both datasets. Compared with DVO-SLAM,

our frame-to-model registration is more suitable for surface

reconstruction. DVO-SLAM detects much more loop edges

and might fail to estimate the relative camera pose correctly

for such complicated handheld RGB-D sequences. For the

nonrigid indoor reconstruction system, it can produce bet-

Figure 6. Ground truth of Reading Room and UE Lab.

Table 3. Comparison of reconstructed surface to ground truth dis-

tance error (cm), measured by mean and median statistics.

Dataset DVO Choi-Nonrigid Choi-Rigid Elastic Ours-Fusion Ours-Full

Reading (8.54,5.89) (7.63, 6.11) (2.77,1.91) (1.90,1.35) (7.16,4.62) (2.76,1.93)

UE Lab (5.99,4.26) (6.31,4.96) (4.25,2.99) (2.50,1.99) (5.25,3.42) (3.29,2.24)

ter reconstruction locally, however, the reconstructed model

bears some contraction due to non-rigid deformation. From

Figure 3, we can see the size of result produced by nonrigid

indoor reconstruction is smaller than other approaches. And

from the heat map in Figure 4, we can also see that its er-

rors are mainly introduced by the walls. For ElasticFusion,

we can see that it produces better reconstruction accuracy

while our system obtains superior completeness. This is

because ElasticFusion removes unreliable (low confidence)

points to guarantee high reconstruction accuracy at the cost

of sacrificing model completeness.

5.3. Speed Evaluation

We perform all experiments on a Laptop PC with an In-

tel i7-4710 HQ CPU with @2.50GHz, 16GB of RAM and

a nVidia Geforce GTX 980M GPU with 4GB of memory.

We evaluate the performance of our system on the Read-

ing Room and UE Lab datasets. Our system is composed

of tracking and fusion threads (Tr), pose graph construction
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Table 4. Computational performance of our system and compar-

ison with other methods. Quantities of processing time of each

component and graph structures are illustrated. Delay here mea-

sures the latency between end time of online tracking and starting

time of reconstruction.

Dataset Method
Time(s) Graph

Tr Tr+Opt Delay Recon Nodes Edges

Reading

Ours 361.4 362.9 1.5 169.5 10465 83

DVO 666.9 1295.8 628.9 - 688 2867

Choi about 8 hours in total - -

UE Lab

Ours 359.0 360.4 1.4 157.2 10385 105

DVO 647.8 1079.1 431.4 - 599 2464

Choi about 8 hours in total - -

and optimization threads (Opt), and the second-pass recon-

struction module (Recon). We illustrate the processing time

of these components as well as the number of nodes and

edges of our pose graphs in Table 4. The tracking thread

can process at real-time and the parallel optimization thread

keeps up closely (the 1.5s delay comes from the pose graph

optimization). The second-pass reconstruction and its vi-

sualized results can be presented to user at high frame-rate

(about 70 FPS).

We also compare our performance with the offline

method [4] and online method DVO [13]. Our system

can achieve comparable reconstruction accuracy but with a

much lower time cost compared with [4]. The DVO system

has longer delay of its graph optimization thread. This is

caused by the dense graph structure constructed in DVO’s

backend thread, which is much denser than our pose graph

structure. Thanks to the frame-to-model tracking strategy,

we are able to maintain a sparse graph structure and achieve

better efficiency.

5.4. Limitation

Like most real-time camera tracking methods, the on-

line tracking module in our system tends to fail when there

are fast motions, especially fast rotation. But we argue that

live visual feedbacks can alleviate this problem. By observ-

ing the quality of online reconstruction, the scan operator

can adjust his/her motion accordingly. Our reconstruction

system makes use of visual features for loop detection and

pose graph construction. It will have troubles for loop clo-

sure in large texture-less scenes and scenes with repeated

textures/structures.

6. Conclusion

We present a system for online dense reconstruction of

indoor scenes using inputs from a handheld RGB-D cam-

era. Encouraged by the low latency, accuracy and robust-

ness of our results, we describe all the key components and

their implementation details, including offline depth sen-

sor calibration, real-time frame-to-model tracking, online

pose graph construction and surface model reconstruction.

Unlike existing dense RGB-D SLAM systems, we concen-

trate on the fidelity of the reconstructed models. The out-

put meshes are evaluated quantitatively by comparing with

LIDAR ground truth using meaningful metrics. Thorough

experiments demonstrate that our system produces coher-

ent and accurate results comparable with state-of-the-art of-

fline methods and meanwhile it is efficient, simple, and easy

to implement. We also hope that the LIDAR datasets, of

which we created for evaluating our system, can contribute

on benchmarking indoor RGB-D reconstruction algorithm-

s, encouraging further research. The full dataset is available

for downloading at: http://research.baidu.com/institute-of-

deep-learning/rgbd-recon/.
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