
Quantized Convolutional Neural Networks for Mobile Devices

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, Jian Cheng∗

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

{jiaxiang.wu, cong.leng, yuhang.wang, qinghao.hu, jcheng}@nlpr.ia.ac.cn

Abstract

Recently, convolutional neural networks (CNN) have

demonstrated impressive performance in various computer

vision tasks. However, high performance hardware is typ-

ically indispensable for the application of CNN models

due to the high computation complexity, which prohibits

their further extensions. In this paper, we propose an effi-

cient framework, namely Quantized CNN, to simultaneously

speed-up the computation and reduce the storage and mem-

ory overhead of CNN models. Both filter kernels in con-

volutional layers and weighting matrices in fully-connected

layers are quantized, aiming at minimizing the estimation

error of each layer’s response. Extensive experiments on

the ILSVRC-12 benchmark demonstrate 4 ∼ 6× speed-up

and 15 ∼ 20× compression with merely one percentage

loss of classification accuracy. With our quantized CNN

model, even mobile devices can accurately classify images

within one second.

1. Introduction

In recent years, we have witnessed the great success

of convolutional neural networks (CNN) [19] in a wide

range of visual applications, including image classification

[16, 27], object detection [10, 9], age estimation [24, 23],

etc. This success mainly comes from deeper network ar-

chitectures as well as the tremendous training data. How-

ever, as the network grows deeper, the model complexity is

also increasing exponentially in both the training and testing

stages, which leads to the very high demand in the computa-

tion ability. For instance, the 8-layer AlexNet [16] involves

60M parameters and requires over 729M FLOPs1to classify

a single image. Although the training stage can be offline

carried out on high performance clusters with GPU acceler-

ation, the testing computation cost may be unaffordable for

common personal computers and mobile devices. Due to

the limited computation ability and memory space, mobile

∗The corresponding author.

AlexNet CNN-S
0

5

10

15
Time Consumption (s)

AlexNet CNN-S
0

100

200

300

400
Storage Consumption (MB)

AlexNet CNN-S
0

100

200

300

400

500
Memory Consumption (MB)

AlexNet CNN-S
0

5

10

15

20

25
Top-5 Error Rate (%)

Original Q-CNN

Figure 1. Comparison on the efficiency and classification accuracy

between the original and quantized AlexNet [16] and CNN-S [1]

on a Huawei
R© Mate 7 smartphone.

devices are almost intractable to run deep convolutional net-

works. Therefore, it is crucial to accelerate the computation

and compress the memory consumption for CNN models.

For most CNNs, convolutional layers are the most time-

consuming part, while fully-connected layers involve mas-

sive network parameters. Due to the intrinsical differ-

ence between them, existing works usually focus on im-

proving the efficiency for either convolutional layers or

fully-connected layers. In [7, 13, 32, 31, 18, 17], low-

rank approximation or tensor decomposition is adopted to

speed-up convolutional layers. On the other hand, param-

eter compression in fully-connected layers is explored in

[3, 7, 11, 30, 2, 12, 28]. Overall, the above-mentioned al-

gorithms are able to achieve faster speed or less storage.

However, few of them can achieve significant acceleration

and compression simultaneously for the whole network.

In this paper, we propose a unified framework for con-

1FLOPs: number of FLoating-point OPerations required to classify one

image with the convolutional network.

4820



volutional networks, namely Quantized CNN (Q-CNN), to

simultaneously accelerate and compress CNN models with

only minor performance degradation. With network pa-

rameters quantized, the response of both convolutional and

fully-connected layers can be efficiently estimated via the

approximate inner product computation. We minimize the

estimation error of each layer’s response during parameter

quantization, which can better preserve the model perfor-

mance. In order to suppress the accumulative error while

quantizing multiple layers, an effective training scheme is

introduced to take previous estimation error into consider-

ation. Our Q-CNN model enables fast test-phase compu-

tation, and the storage and memory consumption are also

significantly reduced.

We evaluate our Q-CNN framework for image classi-

fication on two benchmarks, MNIST [20] and ILSVRC-

12 [26]. For MNIST, our Q-CNN approach achieves over

12× compression for two neural networks (no convolu-

tion), with lower accuracy loss than several baseline meth-

ods. For ILSVRC-12, we attempt to improve the test-phase

efficiency of four convolutional networks: AlexNet [16],

CaffeNet [15], CNN-S [1], and VGG-16 [27]. Generally,

Q-CNN achieves 4× acceleration and 15× compression

(sometimes higher) for each network, with less than 1%

drop in the top-5 classification accuracy. Moreover, we im-

plement the quantized CNN model on mobile devices, and

dramatically improve the test-phase efficiency, as depicted

in Figure 1. The main contributions of this paper can be

summarized as follows:

• We propose a unified Q-CNN framework to acceler-

ate and compress convolutional networks. We demon-

strate that better quantization can be learned by mini-

mizing the estimation error of each layer’s response.

• We propose an effective training scheme to suppress

the accumulative error while quantizing the whole con-

volutional network.

• Our Q-CNN framework achieves 4 ∼ 6× speed-up

and 15 ∼ 20× compression, while the classification

accuracy loss is within one percentage. Moreover, the

quantized CNN model can be implemented on mobile

devices and classify an image within one second.

2. Preliminary

During the test phase of convolutional networks, the

computation overhead is dominated by convolutional lay-

ers; meanwhile, the majority of network parameters are

stored in fully-connected layers. Therefore, for better test-

phase efficiency, it is critical to speed-up the convolution

computation and compress parameters in fully-connected

layers.

Our observation is that the forward-passing process of

both convolutional and fully-connected layers is dominated

by the computation of inner products. More formally, we

consider a convolutional layer with input feature maps S ∈
R

ds×ds×Cs and response feature maps T ∈ R
dt×dt×Ct ,

where ds, dt are the spatial sizes and Cs, Ct are the number

of feature map channels. The response at the 2-D spatial

position pt in the ct-th response feature map is computed

as:

Tpt
(ct) =

∑

(pk,ps)
〈Wct,pk

, Sps
〉 (1)

where Wct ∈ R
dk×dk×Cs is the ct-th convolutional kernel

and dk is the kernel size. We use ps and pk to denote the

2-D spatial positions in the input feature maps and convolu-

tional kernels, and both Wct,pk
and Sps

are Cs-dimensional

vectors. The layer response is the sum of inner products at

all positions within the dk × dk receptive field in the input

feature maps.

Similarly, for a fully-connected layer, we have:

T (ct) = 〈Wct , S〉 (2)

where S ∈ R
Cs and T ∈ R

Ct are the layer input and layer

response, respectively, and Wct ∈ R
Cs is the weighting

vector for the ct-th neuron of this layer.

Product quantization [14] is widely used in approximate

nearest neighbor search, demonstrating better performance

than hashing-based methods [21, 22]. The idea is to de-

compose the feature space as the Cartesian product of mul-

tiple subspaces, and then learn sub-codebooks for each sub-

space. A vector is represented by the concatenation of sub-

codewords for efficient distance computation and storage.

In this paper, we leverage product quantization to imple-

ment the efficient inner product computation. Let us con-

sider the inner product computation between x, y ∈ R
D. At

first, both x and y are split into M sub-vectors, denoted as

x(m) and y(m). Afterwards, each x(m) is quantized with a

sub-codeword from the m-th sub-codebook, then we have

〈y, x〉 =
∑

m
〈y(m), x(m)〉 ≈

∑

m
〈y(m), c

(m)
km

〉 (3)

which transforms the O(D) inner product computation to

M addition operations (M ≤ D), if the inner products be-

tween each sub-vector y(m) and all the sub-codewords in

the m-th sub-codebook have been computed in advance.

Quantization-based approaches have been explored in

several works [11, 2, 12]. These approaches mostly fo-

cus on compressing parameters in fully-connected layers

[11, 2], and none of them can provide acceleration for the

test-phase computation. Furthermore, [11, 12] require the

network parameters to be re-constructed during the test-

phase, which limit the compression to disk storage instead

of memory consumption. On the contrary, our approach

offers simultaneous acceleration and compression for both

convolutional and fully-connected layers, and can reduce

the run-time memory consumption dramatically.

4821



3. Quantized CNN

In this section, we present our approach for accelerating

and compressing convolutional networks. Firstly, we intro-

duce an efficient test-phase computation process with the

network parameters quantized. Secondly, we demonstrate

that better quantization can be learned by directly minimiz-

ing the estimation error of each layer’s response. Finally,

we analyze the computation complexity of our quantized

CNN model.

3.1. Quantizing the Fullyconnected Layer

For a fully-connected layer, we denote its weighting ma-

trix as W ∈ R
Cs×Ct , where Cs and Ct are the dimensions

of the layer input and response, respectively. The weighting

vector Wct is the ct-th column vector in W .

We evenly split the Cs-dimensional space (where Wct

lies in) into M subspaces, each of C′
s = Cs/M dimen-

sions. Each Wct is then decomposed into M sub-vectors,

denoted as W
(m)
ct . A sub-codebook can be learned for each

subspace after gathering all the sub-vectors within this sub-

space. Formally, for the m-th subspace, we optimize:

min
D(m),B(m)

∥

∥

∥
D(m)B(m) −W (m)

∥

∥

∥

2

F

s.t. D(m) ∈ R
C′

s×K , B(m) ∈ {0, 1}K×Ct

(4)

where W (m) ∈ R
C′

s×Ct consists of the m-th sub-vectors

of all weighting vectors. The sub-codebook D(m) contains

K sub-codewords, and each column in B(m) is an indica-

tor vector (only one non-zero entry), specifying which sub-

codeword is used to quantize the corresponding sub-vector.

The optimization can be solved via k-means clustering.
The layer response is approximately computed as:

T (ct) =
∑

m
〈W (m)

ct , S
(m)〉 ≈

∑

m
〈D(m)

B
(m)
ct , S

(m)〉

=
∑

m
〈D

(m)
km(ct)

, S
(m)〉

(5)

where B
(m)
ct is the ct-th column vector in B(m), and S(m) is

the m-th sub-vector of the layer input. km(ct) is the index

of the sub-codeword used to quantize the sub-vector W
(m)
ct .

In Figure 2, we depict the parameter quantization and

test-phase computation process of the fully-connected layer.

By decomposing the weighting matrix intoM sub-matrices,

M sub-codebooks can be learned, one per subspace. During

the test-phase, the layer input is split into M sub-vectors,

denoted as S(m). For each subspace, we compute the inner

products between S(m) and every sub-codeword in D(m),

and store the results in a look-up table. Afterwards, only M
addition operations are required to compute each response.

As a result, the overall time complexity can be reduced from

O(CsCt) to O(CsK + CtM). On the other hand, only

sub-codebooks and quantization indices need to be stored,

which can dramatically reduce the storage consumption.

Figure 2. The parameter quantization and test-phase computation

process of the fully-connected layer.

3.2. Quantizing the Convolutional Layer

Unlike the 1-D weighting vector in the fully-connected

layer, each convolutional kernel is a 3-dimensional tensor:

Wct ∈ R
dk×dk×Cs . Before quantization, we need to deter-

mine how to split it into sub-vectors, i.e. apply subspace

splitting to which dimension. During the test phase, the in-

put feature maps are traversed by each convolutional kernel

with a sliding window in the spatial domain. Since these

sliding windows are partially overlapped, we split each con-

volutional kernel along the dimension of feature map chan-

nels, so that the pre-computed inner products can be re-

used at multiple spatial locations. Specifically, we learn the

quantization in each subspace by:

min
D(m),{B

(m)
pk

}

∑

pk

∥

∥

∥
D(m)B(m)

pk
−W (m)

pk

∥

∥

∥

2

F

s.t. D(m) ∈ R
C′

s×K , B(m)
pk

∈ {0, 1}K×Ct

(6)

where W
(m)
pk

∈ R
C′

s×Ct contains the m-th sub-vectors of

all convolutional kernels at position pk. The optimization

can also be solved by k-means clustering in each subspace.

With the convolutional kernels quantized, we approxi-

mately compute the response feature maps by:

Tpt
(ct) =

∑

(pk,ps)

∑

m
〈W (m)

ct,pk
, S(m)

ps
〉

≈
∑

(pk,ps)

∑

m
〈D(m)B(m)

ct,pk
, S(m)

ps
〉

=
∑

(pk,ps)

∑

m
〈D

(m)
km(ct,pk)

, S(m)
ps

〉

(7)

where S
(m)
ps is the m-th sub-vector at position ps in the in-

put feature maps, and km(ct, pk) is the index of the sub-

codeword to quantize the m-th sub-vector at position pk in

the ct-th convolutional kernel.

4822



Similar to the fully-connected layer, we pre-compute the

look-up tables of inner products with the input feature maps.

Then, the response feature maps are approximately com-

puted with (7), and both the time and storage complexity

can be greatly reduced.

3.3. Quantization with Error Correction

So far, we have presented an intuitive approach to quan-

tize parameters and improve the test-phase efficiency of

convolutional networks. However, there are still two crit-

ical drawbacks. First, minimizing the quantization error

of model parameters does not necessarily give the optimal

quantized network for the classification accuracy. In con-

trast, minimizing the estimation error of each layer’s re-

sponse is more closely related to the network’s classifica-

tion performance. Second, the quantization of one layer is

independent of others, which may lead to the accumulation

of error when quantizing multiple layers. The estimation

error of the network’s final response is very likely to be

quickly accumulated, since the error introduced by the pre-

vious quantized layers will also affect the following layers.

To overcome these two limitations, we introduce the idea

of error correction into the quantization of network param-

eters. This improved quantization approach directly min-

imizes the estimation error of the response at each layer,

and can compensate the error introduced by previous lay-

ers. With the error correction scheme, we can quantize the

network with much less performance degradation than the

original quantization method.

3.3.1 Error Correction for the Fully-connected Layer

Suppose we have N images to learn the quantization of a

fully-connected layer, and the layer input and response of

image In are denoted as Sn and Tn. In order to minimize

the estimation error of the layer response, we optimize:

min
{D(m)},{B(m)}

∑

n

∥

∥

∥

Tn −
∑

m
(D(m)B(m))TS(m)

n

∥

∥

∥

2

F

(8)

where the first term in the Frobenius norm is the desired

layer response, and the second term is the approximated

layer response computed via the quantized parameters.

A block coordinate descent approach can be applied to

minimize this objective function. For the m-th subspace, its

residual error is defined as:

R(m)
n = Tn −

∑

m′ 6=m
(D(m′)B(m′))TS(m′)

n (9)

and then we attempt to minimize the residual error of this

subspace, which is:

min
D(m),B(m)

∑

n

∥

∥

∥
R(m)

n − (D(m)B(m))TS(m)
n

∥

∥

∥

2

F
(10)

and the above optimization can be solved by alternatively

updating the sub-codebook and sub-codeword assignment.

Update D
(m). We fix the sub-codeword assignment

B(m), and define Lk = {ct|B
(m)(k, ct) = 1}. The opti-

mization in (10) can be re-formulated as:

min
{D

(m)
k

}

∑

n,k

∑

ct∈Lk

[R(m)
n (ct)−D

(m)T

k S(m)
n ]2 (11)

which implies that the optimization over one sub-codeword

does not affect other sub-codewords. Hence, for each sub-

codeword, we construct a least square problem from (11) to

update it.

Update B
(m). With the sub-codebook D(m) fixed, it

is easy to discover that the optimization of each column in

B(m) is mutually independent. For the ct-th column, its

optimal sub-codeword assignment is given by:

k∗m(ct) = argmin
k

∑

n
[R(m)

n (ct)−D
(m)T

k S(m)
n ]2 (12)

3.3.2 Error Correction for the Convolutional Layer

We adopt the similar idea to minimize the estimation error
of the convolutional layer’s response feature maps, that is:

min
{D(m)},{B

(m)
pk

}

∑

n,pt

∥

∥

∥

∥

∥

∥

Tn,pt −
∑

(pk,ps)

∑

m

(D(m)
B

(m)
pk

)TS(m)
n,ps

∥

∥

∥

∥

∥

∥

2

F

(13)

The optimization also can be solved by block coordinate

descent. More details on solving this optimization can be

found in the supplementary material.

3.3.3 Error Correction for Multiple Layers

The above quantization method can be sequentially applied

to each layer in the CNN model. One concern is that the

estimation error of layer response caused by the previous

layers will be accumulated and affect the quantization of

the following layers. Here, we propose an effective training

scheme to address this issue.

We consider the quantization of a specific layer, assum-

ing its previous layers have already been quantized. The

optimization of parameter quantization is based on the layer

input and response of a group of training images. To quan-

tize this layer, we take the layer input in the quantized net-

work as {Sn}, and the layer response in the original net-

work (not quantized) as {Tn} in Eq. (8) and (13). In this

way, the optimization is guided by the actual input in the

quantized network and the desired response in the original

network. The accumulative error introduced by the previ-

ous layers is explicitly taken into consideration during op-

timization. In consequence, this training scheme can effec-

tively suppress the accumulative error for the quantization

of multiple layers.

4823



Another possible solution is to adopt back-propagation

to jointly update the sub-codebooks and sub-codeword as-

signments in all quantized layers. However, since the sub-

codeword assignments are discrete, the gradient-based op-

timization can be quite difficult, if not entirely impossible.

Therefore, back-propagation is not adopted here, but could

be a promising extension for future work.

3.4. Computation Complexity

Now we analyze the test-phase computation complex-

ity of convolutional and fully-connected layers, with or

without parameter quantization. For our proposed Q-CNN

model, the forward-passing through each layer mainly con-

sists of two procedures: pre-computation of inner products,

and approximate computation of layer response. Both sub-

codebooks and sub-codeword assignments are stored for the

test-phase computation. We report the detailed comparison

on the computation and storage overhead in Table 1.

Table 1. Comparison on the computation and storage overhead of

convolutional and fully-connected layers.

FLOPs

Conv.
CNN d2tCtd

2
kCs

Q-CNN d2sCsK + d2tCtd
2
kM

FCnt.
CNN CsCt

Q-CNN CsK + CtM

Bytes

Conv.
CNN 4d2kCsCt

Q-CNN 4CsK + 1
8d

2
kMCt log2 K

FCnt.
CNN 4CsCt

Q-CNN 4CsK + 1
8MCt log2 K

As we can see from Table 1, the reduction in the compu-

tation and storage overhead largely depends on two hyper-

parameters, M (number of subspaces) and K (number of

sub-codewords in each subspace). Large values of M and

K lead to more fine-grained quantization, but is less effi-

cient in the computation and storage consumption. In prac-

tice, we can vary these two parameters to balance the trade-

off between the test-phase efficiency and accuracy loss of

the quantized CNN model.

4. Related Work

There have been a few attempts in accelerating the test-

phase computation of convolutional networks, and many are

inspired from the low-rank decomposition. Denton et al.

[7] presented a series of low-rank decomposition designs

for convolutional kernels. Similarly, CP-decomposition was

adopted in [17] to transform a convolutional layer into mul-

tiple layers with lower complexity. Zhang et al. [32, 31]

considered the subsequent nonlinear units while learning

the low-rank decomposition. [18] applied group-wise prun-

ing to the convolutional tensor to decompose it into the mul-

tiplications of thinned dense matrices. Recently, fixed-point

based approaches are explored in [5, 25]. By representing

the connection weights (or even network activations) with

fixed-point numbers, the computation can greatly benefit

from hardware acceleration.

Another parallel research trend is to compress parame-

ters in fully-connected layers. Ciresan et al. [3] randomly

remove connection to reduce network parameters. Matrix

factorization was adopted in [6, 7] to decompose the weight-

ing matrix into two low-rank matrices, which demonstrated

that significant redundancy did exist in network parameters.

Hinton et al. [8] proposed to use dark knowledge (the re-

sponse of a well-trained network) to guide the training of

a much smaller network, which was superior than directly

training. By exploring the similarity among neurons, Srini-

vas et al. [28] proposed a systematic way to remove redun-

dant neurons instead of network connections. In [30], mul-

tiple fully-connected layers were replaced by a single “Fast-

food” layer, which can be trained in an end-to-end style with

convolutional layers. Chen et al. [2] randomly grouped

connection weights into hash buckets, and then fine-tuned

the network with back-propagation. [12] combined prun-

ing, quantization, and Huffman coding to achieve higher

compression rate. Gong et al. [11] adopted vector quanti-

zation to compress the weighing matrix, which was actually

a special case of our approach (apply Q-CNN without error

correction to fully-connected layers only).

5. Experiments

In this section, we evaluate our quantized CNN frame-

work on two image classification benchmarks, MNIST [20]

and ILSVRC-12 [26]. For the acceleration of convolutional

layers, we compare with:

• CPD [17]: CP-Decomposition;

• GBD [18]: Group-wise Brain Damage;

• LANR [31]: Low-rank Approximation of Non-linear

Responses.

and for the compression of fully-connected layers, we com-

pare with the following approaches:

• RER [3]: Random Edge Removal;

• LRD [6]: Low-Rank Decomposition;

• DK [8]: Dark Knowledge;

• HashNet [2]: Hashed Neural Nets;

• DPP [28]: Data-free Parameter Pruning;

• SVD [7]: Singular Value Decomposition;

• DFC [30]: Deep Fried Convnets.

For all above baselines, we use their reported results under

the same setting for fair comparison. We report the theo-

retical speed-up for more consistent results, since the real-

istic speed-up may be affected by various factors, e.g. CPU,

cache, and RAM. We compare the theoretical and realistic

speed-up in Section 5.4, and discuss the effect of adopting

the BLAS library for acceleration.

4824



Our approaches are denoted as “Q-CNN” and “Q-CNN

(EC)”, where the latter one adopts error correction while the

former one does not. We implement the optimization pro-

cess of parameter quantization in MATLAB, and fine-tune

the resulting network with Caffe [15]. Additional results of

our approach can be found in the supplementary material.

5.1. Results on MNIST

The MNIST dataset contains 70k images of hand-written

digits, 60k used for training and 10k for testing. To evalu-

ate the compression performance, we pre-train two neural

networks, one is 3-layer and another one is 5-layer, where

each hidden layer contains 1000 units. Different compres-

sion techniques are then adopted to compress these two net-

work, and the results are as depicted in Table 2.

Table 2. Comparison on the compression rates and classification

error on MNIST, based on a 3-layer network (784-1000-10) and a

5-layer network (784-1000-1000-1000-10).

Method
3-layer 5-layer

Compr. Error Compr. Error

Original - 1.35% - 1.12%

RER [3] 8× 2.19% 8× 1.24%

LRD [6] 8× 1.89% 8× 1.77%

DK [8] 8× 1.71% 8× 1.26%

HashNets [2] 8× 1.43% 8× 1.22%

Q-CNN 12.1× 1.42% 13.4× 1.34%

Q-CNN (EC) 12.1× 1.39% 13.4× 1.19%

In our Q-CNN framework, the trade-off between accu-

racy and efficiency is controlled by M (number of sub-

spaces) and K (number of sub-codewrods in each sub-

space). Since M = Cs/C
′
s is determined once C′

s is given,

we tune (C′
s,K) to adjust the quantization precision. In Ta-

ble 2, we set the hyper-parameters as C′
s = 4 and K = 32.

From Table 2, we observe that our Q-CNN (EC) ap-

proach offers higher compression rates with less perfor-

mance degradation than all baselines for both networks.

The error correction scheme is effective in reducing the ac-

curacy loss, especially for deeper networks (5-layer). Also,

we find the performance of both Q-CNN and Q-CNN (EC)

quite stable, as the standard deviation of five random runs is

merely 0.05%. Therefore, we report the single-run perfor-

mance in the remaining experiments.

5.2. Results on ILSVRC12

The ILSVRC-12 benchmark consists of over one million

training images drawn from 1000 categories, and a disjoint

validation set of 50k images. We report both the top-1 and

top-5 classification error rates on the validation set, using

single-view testing (central patch only).

We demonstrate our approach on four convolutional net-

works: AlexNet [16], CaffeNet [15], CNN-S [1], and VGG-

16 [27]. The first two models have been adopted in several

related works, and therefore are included for comparison.

CNN-S and VGG-16 use a either wider or deeper structure

for better classification accuracy, and are included here to

prove the scalability of our approach. We compare all these

networks’ computation and storage overhead in Table 3, to-

gether with their classification error rates on ILSVRC-12.

Table 3. Comparison on the test-phase computation overhead

(FLOPs), storage consumption (Bytes), and classification error

rates (Top-1/5 Err.) of AlexNet, CaffeNet, CNN-S, and VGG-16.

Model FLOPs Bytes Top-1 Err. Top-5 Err.

AlexNet 7.29e+8 2.44e+8 42.78% 19.74%

CaffeNet 7.27e+8 2.44e+8 42.53% 19.59%

CNN-S 2.94e+9 4.12e+8 37.31% 15.82%

VGG-16 1.55e+10 5.53e+8 28.89% 10.05%

5.2.1 Quantizing the Convolutional Layer

To begin with, we quantize the second convolutional layer

of AlexNet, which is the most time-consuming layer during

the test-phase. In Table 4, we report the performance un-

der several (C′
s,K) settings, comparing with two baseline

methods, CPD [17] and GBD [18].

Table 4. Comparison on the speed-up rates and the increase of top-

1/5 error rates for accelerating the second convolutional layer in

AlexNet, with or without fine-tuning (FT). The hyper-parameters

of Q-CNN, C′
s and K, are as specified in the “Para.” column.

Method Para. Speed-up
Top-1 Err. ↑ Top-5 Err. ↑

No FT FT No FT FT

CPD

- 3.19× - - 0.94% 0.44%

- 4.52× - - 3.20% 1.22%

- 6.51× - - 69.06% 18.63%

GBD

- 3.33× 12.43% 0.11% - -

- 5.00× 21.93% 0.43% - -

- 10.00× 48.33% 1.13% - -

Q-CNN

4/64 3.70× 10.55% 1.63% 8.97% 1.37%

6/64 5.36× 15.93% 2.90% 14.71% 2.27%

6/128 4.84× 10.62% 1.57% 9.10% 1.28%

8/128 6.06× 18.84% 2.91% 18.05% 2.66%

Q-CNN

(EC)

4/64 3.70× 0.35% 0.20% 0.27% 0.17%

6/64 5.36× 0.64% 0.39% 0.50% 0.40%

6/128 4.84× 0.27% 0.11% 0.34% 0.21%

8/128 6.06× 0.55% 0.33% 0.50% 0.31%

From Table 4, we discover that with a large speed-up

rate (over 4×), the performance loss of both CPD and GBD

become severe, especially before fine-tuning. The naive

parameter quantization method also suffers from the sim-

ilar problem. By incorporating the idea of error correction,

our Q-CNN model achieves up to 6× speed-up with merely

0.6% drop in accuracy, even without fine-tuning. The ac-

curacy loss can be further reduced after fine-tuning the sub-

sequent layers. Hence, it is more effective to minimize the

estimation error of each layer’s response than minimize the

quantization error of network parameters.

Next, we take one step further and attempt to speed-up

all the convolutional layers in AlexNet with Q-CNN (EC).

4825



Table 5. Comparison on the speed-up/compression rates and the increase of top-1/5 error rates for accelerating all the convolutional layers

in AlexNet and VGG-16.

Model Method Para. Speed-up Compression
Top-1 Err. ↑ Top-5 Err. ↑

No FT FT No FT FT

AlexNet
Q-CNN

(EC)

4/64 3.32× 12.46× 1.33% - 0.94% -

6/64 4.32× 18.55× 2.32% - 1.90% -

6/128 3.71× 15.25× 1.44% 0.13% 1.16% 0.36%

8/128 4.27× 20.26× 2.25% 0.99% 1.64% 0.60%

VGG-16
LANR [31] - 4.00× 2.73× - - 0.95% 0.35%

Q-CNN (EC) 6/128 4.06× 23.68× 3.04% 1.06% 1.83% 0.45%

We fix the quantization hyper-parameters (C′
s,K) across all

layers. From Table 5, we observe that the loss in accuracy

grows mildly than the single-layer case. The speed-up rates

reported here are consistently smaller than those in Table 4,

since the acceleration effect is less significant for some lay-

ers (i.e. “conv 4” and “conv 5”). For AlexNet, our Q-CNN

model (C′
s = 8,K = 128) can accelerate the computation

of all the convolutional layers by a factor of 4.27×, while

the increase in the top-1 and top-5 error rates are no more

than 2.5%. After fine-tuning the remaining fully-connected

layers, the performance loss can be further reduced to less

than 1%.

In Table 5, we also report the comparison against LANR

[31] on VGG-16. For the similar speed-up rate (4×), their

approach outperforms ours in the top-5 classification error

(an increase of 0.95% against 1.83%). After fine-tuning, the

performance gap is narrowed down to 0.35% against 0.45%.

At the same time, our approach offers over 23× compres-

sion of parameters in convolutional layers, much larger than

theirs 2.7× compression2. Therefore, our approach is effec-

tive in accelerating and compressing networks with many

convolutional layers, with only minor performance loss.

5.2.2 Quantizing the Fully-connected Layer

For demonstration, we first compress parameters in a single

fully-connected layer. In CaffeNet, the first fully-connected

layer possesses over 37 million parameters (9216× 4096),

more than 60% of whole network parameters. Our Q-CNN

approach is adopted to quantize this layer and the results are

as reported in Table 6. The performance loss of our Q-CNN

model is negligible (within 0.4%), which is much smaller

than baseline methods (DPP and SVD). Furthermore, error

correction is effective in preserving the classification accu-

racy, especially under a higher compression rate.

Now we evaluate our approach’s performance for com-

pressing all the fully-connected layers in CaffeNet in Ta-

ble 7. The third layer is actually the combination of 1000

classifiers, and is more critical to the classification accuracy.

Hence, we adopt a much more fine-grained hyper-parameter

2The compression effect of their approach was not explicitly discussed

in the paper; we estimate the compression rate based on their description.

Table 6. Comparison on the compression rates and the increase of

top-1/5 error rates for compressing the first fully-connected layer

in CaffeNet, without fine-tuning.
Method Para. Compression Top-1 Err. ↑ Top-5 Err. ↑

DPP

- 1.19× 0.16% -

- 1.47× 1.76% -

- 1.91× 4.08% -

- 2.75× 9.68% -

SVD

- 1.38× 0.03% -0.03%

- 2.77× 0.07% 0.07%

- 5.54× 0.36% 0.19%

- 11.08× 1.23% 0.86%

Q-CNN

2/16 15.06× 0.19% 0.19%

3/16 21.94× 0.35% 0.28%

3/32 16.70× 0.18% 0.12%

4/32 21.33× 0.28% 0.16%

Q-CNN

(EC)

2/16 15.06× 0.10% 0.07%

3/16 21.94× 0.18% 0.03%

3/32 16.70× 0.14% 0.11%

4/32 21.33× 0.16% 0.12%

setting (C′
s = 1,K = 16) for this layer. Although the

speed-up effect no longer exists, we can still achieve around

8× compression for the last layer.

Table 7. Comparison on the compression rates and the increase of

top-1/5 error rates for compressing all the fully-connected layers

in CaffeNet. Both SVD and DFC are fine-tuned, while Q-CNN

and Q-CNN (EC) are not fine-tuned.
Method Para. Compression Top-1 Err. ↑ Top-5 Err. ↑

SVD
- 1.26× 0.14% -

- 2.52× 1.22% -

DFC
- 1.79× -0.66% -

- 3.58× 0.31% -

Q-CNN

2/16 13.96× 0.28% 0.29%

3/16 19.14× 0.70% 0.47%

3/32 15.25× 0.44% 0.34%

4/32 18.71× 0.75% 0.59%

Q-CNN

(EC)

2/16 13.96× 0.31% 0.30%

3/16 19.14× 0.59% 0.47%

3/32 15.25× 0.31% 0.27%

4/32 18.71× 0.57% 0.39%

From Table 7, we discover that with less than 1% drop in

accuracy, Q-CNN achieves high compression rates (12 ∼
20×), much larger than that of SVD3and DFC (< 4×).

Again, Q-CNN with error correction consistently outper-

forms the naive Q-CNN approach as adopted in [11].

3In Table 6, SVD means replacing the weighting matrix with the multi-

plication of two low-rank matrices; in Table 7, SVD means fine-tuning the

network after the low-rank matrix decomposition.

4826



5.2.3 Quantizing the Whole Network

So far, we have evaluated the performance of CNN models

with either convolutional or fully-connected layers quan-

tized. Now we demonstrate the quantization of the whole

network with a three-stage strategy. Firstly, we quantize all

the convolutional layers with error correction, while fully-

connected layers remain untouched. Secondly, we fine-tune

fully-connected layers in the quantized network with the

ILSVRC-12 training set to restore the classification accu-

racy. Finally, fully-connected layers in the fine-tuned net-

work are quantized with error correction. We report the

performance of our Q-CNN models in Table 8.

Table 8. The speed-up/compression rates and the increase of top-

1/5 error rates for the whole CNN model. Particularly, for the

quantization of the third fully-connected layer in each network,

we let C′
s = 1 and K = 16.

Model
Para.

Speed-up Compression Top-1/5 Err. ↑
Conv. FCnt.

AlexNet
8/128 3/32 4.05× 15.40× 1.38% / 0.84%

8/128 4/32 4.15× 18.76× 1.46% / 0.97%

CaffeNet
8/128 3/32 4.04× 15.40× 1.43% / 0.99%

8/128 4/32 4.14× 18.76× 1.54% / 1.12%

CNN-S
8/128 3/32 5.69× 16.32× 1.48% / 0.81%

8/128 4/32 5.78× 20.16× 1.64% / 0.85%

VGG-16
6/128 3/32 4.05× 16.55× 1.22% / 0.53%

6/128 4/32 4.06× 20.34× 1.35% / 0.58%

For convolutional layers, we let C′
s = 8 and K = 128

for AlexNet, CaffeNet, and CNN-S, and let C′
s = 6 and

K = 128 for VGG-16, to ensure roughly 4 ∼ 6× speed-

up for each network. Then we vary the hyper-parameter

settings in fully-connected layers for different compression

levels. For the former two networks, we achieve 18× com-

pression with about 1% loss in the top-5 classification accu-

racy. For CNN-S, we achieve 5.78× speed-up and 20.16×
compression, while the top-5 classification accuracy drop is

merely 0.85%. The result on VGG-16 is even more encour-

aging: with 4.06× speed-up and 20.34×, the increase of

top-5 error rate is only 0.58%. Hence, our proposed Q-CNN

framework can improve the efficiency of convolutional net-

works with minor performance loss, which is acceptable in

many applications.

5.3. Results on Mobile Devices

We have developed an Android application to fulfill

CNN-based image classification on mobile devices, based

on our Q-CNN framework. The experiments are carried

out on a Huawei R© Mate 7 smartphone, equipped with an

1.8GHz Kirin 925 CPU. The test-phase computation is car-

ried out on a single CPU core, without GPU acceleration.

In Table 9, we compare the computation efficiency and

classification accuracy of the original and quantized CNN

models. Our Q-CNN framework achieves 3× speed-up for

AlexNet, and 4× speed-up for CNN-S. What’s more, we

compress the storage consumption by 20 ×, and the re-

Table 9. Comparison on the time, storage, memory consumption,

and top-5 classification error rates of the original and quantized

AlexNet and CNN-S.
Model Time Storage Memory Top-5 Err.

AlexNet
CNN 2.93s 232.56MB 264.74MB 19.74%

Q-CNN 0.95s 12.60MB 74.65MB 20.70%

CNN-S
CNN 10.58s 392.57MB 468.90MB 15.82%

Q-CNN 2.61s 20.13MB 129.49MB 16.68%

quired run-time memory is only one quarter of the original

model. At the same time, the loss in the top-5 classification

accuracy is no more than 1%. Therefore, our proposed ap-

proach improves the run-time efficiency in multiple aspects,

making the deployment of CNN models become tractable

on mobile platforms.

5.4. Theoretical vs. Realistic Speedup

In Table 10, we compare the theoretical and realistic

speed-up on AlexNet. The BLAS [29] library is used in

Caffe [15] to accelerate the matrix multiplication in con-

volutional and fully-connected layers. However, it may not

always be an option for mobile devices. Therefore, we mea-

sure the run-time speed under two settings, i.e. with BLAS

enabled or disabled. The realistic speed-up is slightly lower

with BLAS on, indicating that Q-CNN does not benefit as

much from BLAS as that of CNN. Other optimization tech-

niques, e.g. SIMD, SSE, and AVX [4], may further improve

our realistic speed-up, and shall be explored in the future.

Table 10. Comparison on the theoretical and realistic speed-up on

AlexNet (CPU only, single-threaded). Here we use the ATLAS

library, which is the default BLAS choice in Caffe [15].

BLAS
FLOPs Time (ms) Speed-up

CNN Q-CNN CNN Q-CNN Theo. Real.

Off
7.29e+8 1.75e+8

321.10 75.62
4.15×

4.25×

On 167.794 55.35 3.03×

6. Conclusion

In this paper, we propose a unified framework to si-

multaneously accelerate and compress convolutional neural

networks. We quantize network parameters to enable ef-

ficient test-phase computation. Extensive experiments are

conducted on MNIST and ILSVRC-12, and our approach

achieves outstanding speed-up and compression rates, with

only negligible loss in the classification accuracy.

7. Acknowledgement

This work was supported in part by National Natural Sci-

ence Foundation of China (Grant No. 61332016), and 863

program (Grant No. 2014AA015105).

4This is Caffe’s run-time speed. The code for the other three settings is

on https://github.com/jiaxiang-wu/quantized-cnn.

4827

https://github.com/jiaxiang-wu/quantized-cnn


References

[1] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convolu-

tional nets. In British Machine Vision Conference (BMVC),

2014.

[2] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing neural networks with the hashing

trick. In International Conference on Machine Learning

(ICML), pages 2285–2294, 2015.

[3] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and

J. Schmidhuber. High-performance neural networks for vi-

sual object classification. CoRR, abs/1102.0183, 2011.

[4] I. Corporation. Intel architecture instruction set extensions

programming reference. Technical report, Intel Corporation,

Feb 2016.

[5] M. Courbariaux, Y. Bengio, and J. David. Training deep

neural networks with low precision multiplications. In In-

ternational Conference on Learning Representations (ICLR),

2015.

[6] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Fre-

itas. Predicting parameters in deep learning. In Advances in

Neural Information Processing Systems (NIPS), pages 2148–

2156, 2013.

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural Infor-

mation Processing Systems (NIPS), pages 1269–1277, 2014.

[8] J. D. Geoffrey Hinton, Oriol Vinyals. Distilling the knowl-

edge in a neural network. CoRR, abs/1503.02531, 2015.

[9] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[10] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 580–587, 2014.

[11] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compress-

ing deep convolutional networks using vector quantization.

CoRR, abs/1412.6115, 2014.

[12] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quanti-

zation and huffman coding. CoRR, abs/1510.00149, 2015.

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

British Machine Vision Conference (BMVC), 2014.

[14] H. Jegou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 33(1):117–128,

Jan 2011.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-

volutional architecture for fast feature embedding. CoRR,

abs/1408.5093, 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 1106–1114, 2012.

[17] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S.

Lempitsky. Speeding-up convolutional neural networks us-

ing fine-tuned cp-decomposition. In International Confer-

ence on Learning Representations (ICLR), 2015.

[18] V. Lebedev and V. S. Lempitsky. Fast convnets using group-

wise brain damage. CoRR, abs/1506.02515, 2015.

[19] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. E. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu-

tation, 1(4):541–551, 1989.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[21] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu. Online sketch-

ing hashing. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2503–2511, 2015.

[22] C. Leng, J. Wu, J. Cheng, X. Zhang, and H. Lu. Hashing

for distributed data. In International Conference on Machine

Learning (ICML), pages 1642–1650, 2015.

[23] G. Levi and T. Hassncer. Age and gender classification using

convolutional neural networks. In IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW),

pages 34–42, 2015.

[24] C. Li, Q. Liu, J. Liu, and H. Lu. Learning ordinal dis-

criminative features for age estimation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2570–2577, 2012.

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. CoRR, abs/1603.05279, 2016.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision

(IJCV), pages 1–42, 2015.

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations (ICLR), 2015.

[28] S. Srinivas and R. V. Babu. Data-free parameter pruning for

deep neural networks. In British Machine Vision Conference

(BMVC), pages 31.1–31.12, 2015.

[29] R. C. Whaley and A. Petitet. Minimizing development

and maintenance costs in supporting persistently optimized

BLAS. Software: Practice and Experience, 35(2):101–121,

Feb 2005.

[30] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. J.

Smola, L. Song, and Z. Wang. Deep fried convnets. CoRR,

abs/1412.7149, 2014.

[31] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very

deep convolutional networks for classification and detection.

CoRR, abs/1505.06798, 2015.

[32] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient

and accurate approximations of nonlinear convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1984–1992, 2015.

4828


