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Abstract

We present a novel latent embedding model for learning

a compatibility function between image and class embed-

dings, in the context of zero-shot classification. The pro-

posed method augments the state-of-the-art bilinear com-

patibility model by incorporating latent variables. Instead

of learning a single bilinear map, it learns a collection of

maps with the selection, of which map to use, being a la-

tent variable for the current image-class pair. We train the

model with a ranking based objective function which pe-

nalizes incorrect rankings of the true class for a given im-

age. We empirically demonstrate that our model improves

the state-of-the-art for various class embeddings consis-

tently on three challenging publicly available datasets for

the zero-shot setting. Moreover, our method leads to visu-

ally highly interpretable results with clear clusters of differ-

ent fine-grained object properties that correspond to differ-

ent latent variable maps.

1. Introduction

Zero-shot classification [14, 20, 21, 30, 41] is a challeng-

ing problem. The task is generally set as follows: training

images are provided for certain visual classes and the clas-

sifier is expected to predict the presence or absence of novel

classes at test time. The training and test classes are con-

nected via some auxiliary, non visual source of information

e.g. attributes.

Combining visual information with attributes [7, 8, 11,

17, 20, 28, 27] has also supported fine grained classifica-

tion. In fine grained image collections, images that be-

long to different classes are visually similar to each other,

e.g. different bird species. Image labeling for such collec-

tions is a costly process, as it requires either expert opinion

or a large number of attributes. To overcome this limita-

tion, recent works have explored distributed text represen-

tations [23, 29, 24] which are learned from general (or do-

main specific) text corpora.
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Figure 1: LatEm learns multiple Wi’s that maximize the

compatibility between the input embedding (image, text

space) and the output embedding (label space) of all train-

ing examples. The different Wi’s may capture different vi-

sual characteristics of objects, i.e. color, beak shape etc. and

allow distribution of the complexity among them, enabling

the model to do better classification.

Substantial progress has been made for image classifica-

tion problem in the zero-shot setting on fine-grained image

collections [2]. This progress can be attributed to (i) strong

deep learning based image features [19, 36] and (ii) learning

a discriminative compatibility function between the struc-

tured image and class embeddings [1, 2, 12, 32]. The focus

of this work is on the latter, i.e. on improving the compat-

ibility learning framework, in particular via unsupervised

auxiliary information.

The main idea of structured embedding frameworks [1,

2, 12, 32] is to first represent both the images and the

classes in some multi-dimensional vector spaces. Image

embeddings are obtained from state-of-the-art image rep-

resentations e.g. those from convolutional neural networks

[19, 36]. Class embeddings can either (i) be obtained using

manually specified side information e.g. attributes [20], or

(ii) extracted automatically [23, 29] from an unlabeled large

text corpora. A discriminative bilinear compatibility func-

tion is then learned that pulls images from the same class

close to each other and pushes images from different classes

away from each other. Once learned, such a compatibility

1 69



function can be used to predict the class (more precisely, the

embedding) of any given image (embedding). In particular,

this prediction can be done for images from both seen and

unseen classes, hence enabling zero-shot classification.

We address the fine-grained zero-shot classification

problem while being particularly interested in more flexible

unsupervised text embeddings. The state-of-the-art meth-

ods [1, 2, 12, 32] use a unique, globally linear compat-

ibility function for all types of images. However, learn-

ing a linear compatibility function is not particularly suit-

able for the challenging fine-grained classification problem.

For fine-grained classification, a model that can automati-

cally group objects with similar properties together and then

learn for each group a separate compatibility model is re-

quired. For instance, two different linear functions that sep-

arate blue birds with brown wings and from other blue birds

with blue wings can be learned separately. To that end, we

propose a novel model for zero-shot setting which incorpo-

rates latent variables to learn a piecewise linear compatibil-

ity function between image and class embeddings. The ap-

proach is inspired by many recent advances in visual recog-

nition that utilize latent variable models, e.g. in object de-

tection [10, 15], human pose estimation [39] and face de-

tection [43] etc.

Our contributions are as follows. (1) We propose a novel

method for zero-shot learning. By incorporating latent vari-

ables in the compatibility function our method achieves fac-

torization over such (possibly complex combinations of)

variations in pose, appearance and other factors. Instead

of learning a single linear function, we propose to learn a

collection of linear models while allowing each image-class

pair to choose from them. This effectively makes our model

non-linear, as in different local regions of the space the de-

cision boundary, while being linear, is different. We use

an efficient stochastic gradient descent (SGD) based learn-

ing method. (2) We propose a fast and effective method for

model selection, i.e. through model pruning. (3) We evalu-

ate our novel piecewise linear model for zero-shot classifi-

cation on three challenging datasets. We show that incorpo-

rating latent variables in the compatibility learning frame-

work consistently improves the state-of-the-art.

The rest of the paper is structured as follows. In Sec. 3

we detail the bilinear compatibility learning framework that

we base our method on. In Sec. 4 we present our novel

Latent Embedding (LatEm) method. In Sec. 5 we present

our experimental evaluation and in Sec. 6 we conclude.

2. Related Work

We are interested in the problem of zero-shot learn-

ing where the test classes are disjoint from the training

classes [14, 20, 21, 30, 41, 42]. As visual information from

such test classes is not available during training, zero-shot

learning requires secondary information sources to make up

for the missing visual information. While secondary in-

formation can come from different sources, usually they

are derived from either large and unrestricted, but freely

available, text corpora, e.g. word2vec [23], glove [29], or

structured textual sources e.g. wordnet hierarchies [24],

or costly human annotations e.g. manually specified at-

tributes [7, 8, 11, 17, 20, 28, 27]. Attributes, such as ‘furry’,

‘has four legs’ etc. for animals, capture several characteris-

tics of objects (visual classes) that help associate some and

differentiate others. They are typically collected through

costly human annotation [7, 17, 28] and have shown promis-

ing results [1, 3, 6, 20, 22, 33, 34, 40] in various computer

vision problems.

The image classification problem, with a secondary

stream of information, could be either solved by solving re-

lated sub-problems, e.g. attribute prediction [20, 30, 31], or

by a direct approach, e.g. compatibility learning between

embeddings [1, 12, 38]. One such factorization could be

by building intermediate attribute classifiers and then mak-

ing a class prediction using a probabilistic weight of each

attribute for each sample [20]. However, these methods,

based on attribute classifiers, have been shown to be subop-

timal [1]. This is due to their reliance on binary mappings

(by thresholding attribute scores) between attributes and im-

ages which causes loss in information. On the other hand,

solving the problem directly, by learning a direct mapping

between images and their classes (represented as numeri-

cal vectors) has been shown to be better suited. Such label

embedding methods [1, 2, 12, 13, 25, 26, 32, 35] aim to

find a mapping between two embedding spaces, one each

for the two streams of information e.g. visual and textual.

Among these methods, CCA [13] maximizes the correlation

between these two embedding spaces, [26] learns a linear

compatibility between an fMRI-based image space and the

semantic space, [35] learns a deep non-linear mapping be-

tween images and tags, ConSe [25] uses the probabilities

of a softmax-output layer to weight the vectors of all the

classes, SJE [2] and ALE [1] learn a bilinear compatibility

function using a multiclass [4] and a weighted approximate

ranking loss [16] respectively. DeViSE [12] does the same,

however, with an efficient ranking formulation. Most re-

cently, [32] proposes to learn this mapping by optimizing a

simple objective function which has closed form solution.

We build our work on multimodal embedding methods.

However, instead of learning a linear compatibility func-

tion, we propose a nonlinear compatibility framework that

learns a collection of such linear models making the overall

function piecewise linear.

3. Background: Bilinear Joint Embeddings

In this section, we describe the bilinear joint embedding

framework [38, 1, 2], on which we build our Latent Embed-

ding Model (LatEm) (Sec. 4).
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We work in a supervised setting where we are given an

annotated training set T = {(x, y)|x ∈ X ⊂ R
dx , y ∈

Y ⊂ R
dy} where x is the image embedding defined in an

image feature space X , e.g. CNN features [19], and y is the

class embedding defined in a label space Y that models the

conceptual relationships between classes, e.g. attributes [9,

20]. The goal is to learn a function f : X → Y to predict

the correct class for the query images. In previous work

[38, 1, 2], this is done via learning a function F : X ×
Y → R that measures the compatibility between a given

input embedding (x ∈ X ) and an output embedding (y ∈
Y). The prediction function then chooses the class with the

maximum compatibility, i.e.

f(x) = argmax
y∈Y

F (x, y). (1)

In general, the class embeddings reflect the common and

distinguishing properties of different classes using side-

information that is extracted independently of images. Us-

ing these embeddings, the compatibility can be computed

even with those unknown classes which have no corre-

sponding images in the training set. Therefore, this frame-

work can be applied to zero-shot learning [1, 2, 26, 32, 35].

In previous work, the compatibility function takes a simple

form,

F (x, y) = x⊤Wy (2)

with the matrix W ∈ R
dx×dy being the parameter to be

learnt from training data. Due to the bilinearity of F in

x and y, previous work [1, 2, 38] refer to this model as a

bilinear model, however one can also view it as a linear one

since F is linear in the parameter W. In the following, these

two terminologies will be used interchangeably depending

on the context.

4. Latent Embeddings Model (LatEm)

In general, the linearity of the compatibility function

(Eq. (2)) is a limitation as the problem of image classi-

fication is usually a complex nonlinear decision problem.

A very successful extension of linear decision functions to

nonlinear ones, has been through the use of piecewise lin-

ear decision functions. This idea has been applied success-

fully to various computer vision tasks e.g. mixture of tem-

plates [15] and deformable parts-based model [10] for ob-

ject detection, mixture of parts for pose estimation [39] and

face detection [43]. The main idea in most of such models,

along with modeling parts, is that of incorporating latent

variables, thus making the decision function piecewise lin-

ear, e.g. the different templates in the mixture of templates

[15] and the different ‘components’ in the deformable parts

model [10]. The model then becomes a collection of lin-

ear models and the test images pick one from these linear

models, with the selection being latent. Intuitively, this fac-

torizes the decision function into components which focus

on distinctive ‘clusters’ in the data e.g. one component may

focus on the profile view while another on the frontal view

of the object.

Objective. We propose to construct a nonlinear, albeit

piecewise linear, compatibility function. Parallel to the la-

tent SVM formulation, we propose a non-linear compatibil-

ity function as follows,

F (x, y) = max
1≤i≤K

w̃
⊤
i (x⊗ y), (3)

where i = 1, . . . ,K, with K ≥ 2, indexes over the latent

choices and w̃i ∈ R
dxdy are the parameters of the individual

linear components of the model. This can be rewritten as a

mixture of bilinear compatibility functions from Eq. (2) as

F (x, y) = max
1≤i≤K

x⊤Wiy. (4)

Our main goal is to learn a set of compatibility spaces that

minimizes the following empirical risk,

1

N

|T |∑

n=1

L(xn, yn), (5)

where L : X × Y → R is the loss function defined for a

particular example (xn, yn) as

L(xn, yn) =
∑

y∈Y
max{0,∆(yn, y)+F (xn, y)−F (xn, yn)}

(6)

where ∆(y, yn) = 1 if y 6= yn and 0 otherwise. This

ranking-based loss function has been previously used in

[12, 38] such that the model is trained to produce a higher

compatibility between the image embedding and the class

embedding of the correct label than between the image em-

bedding and class embedding of other labels.

Optimization. To minimize the empirical risk in Eq. (5),

one first observes that the ranking loss function L from

Eq. (6) is not jointly convex in all the Wi’s even though

F is convex. Thus, finding a globally optimal solution as in

the previous linear models [1, 2] is out of reach. To solve

this problem, we propose a simple SGD-based method that

works in the same fashion as in the convex setting. It turns

out that our algorithm works well in practice and achieves

state-of-the-art results as we empirically show in Sec. 5.

We explain the details of our Algorithm 1 as follows.

We loop through all our samples for a certain number of

epochs T . For each sample (xn, yn) in the training set, we

randomly select a y that is different from yn (step 3 of Al-

gorithm 1). If the randomly selected y violates the margin

(step 4 in Algorithm 1), then we update the Wi matrices

(steps 5− 13 in Algorithm 1). In particular, we find the Wi
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Algorithm 1 SGD optimization for LatEm

T = {(x, y)|x ∈ R
dx , y ∈ R

dy}

1: for all t = 1 to T do

2: for all n = 1 to |T | do

3: Draw (xn,yn) ∈ T and y ∈ Y \ {yn}
4: if F (xn, y) + 1 > F (xn, yn) then

5: i∗ ← argmax
1≤k≤K

x⊤
nWky

6: j∗ ← argmax
1≤k≤K

x⊤
nWkyn

7: if i∗ = j∗ then

8: W t+1

i∗ ←W t
i∗ − ηtxn(y− yn)

⊤

9: end if

10: if i∗ 6= j∗ then

11: W t+1

i∗ ←W t
i∗ − ηtxny⊤

12: W t+1

j∗ ←W t
j∗ + ηtxny⊤

n

13: end if

14: end if

15: end for

16: end for

that leads to the maximum score for y and the Wj that gives

the maximum score for y. If the same matrix gives the max-

imum score (step 7 in Algorithm 1), we update that matrix.

If two different matrices lead to the maximum score (step 9
in Algorithm 1), we update them both using SGD.

Model selection. The number of matrices K in the model

is a free parameter. We use two strategies to select the num-

ber of matrices. As the first method, we use a standard

cross-validation strategy – we split the dataset randomly

into disjoint parts (in a zero-shot setup) and choose the K

with the best cross-validation performance. While this is a

well established strategy which we find to work well exper-

imentally, we also propose a pruning based strategy which

is competitive while being faster to train. As the second

method, we start with a large number of matrices and prune

them as follows. As the training proceeds, each sampled

training examples chooses one of the matrices for scoring –

we keep track of this information and build a histogram over

the number of matrices counting how many times each ma-

trix was chosen by any training example. In particular, this

is done by increasing the counter for Wj∗ by 1 after step 6
of Algorithm 1. With this information, after five passes over

the training data, we prune out the matrices which were cho-

sen by less than 5% of the training examples, so far. This is

based on the intuition that if a matrix is being chosen only

by a very small number of examples, it is probably not crit-

ical for performance. With this approach we have to train

only one model which adapts itself, instead of training mul-

tiple models for cross-validating K and then training a final

model with the chosen K.

Discussion. LatEm builds on the idea of Structured Joint

Embeddings (SJE) [2]. We discuss below the differences

between LatEm and SJE and emphasize our technical con-

tributions.

LatEm learns a piecewise linear compatibility function

through multiple Wi matrices whereas SJE [2] is linear.

With multiple Wi’s the compatibility function has the free-

dom to treat different types of images differently. Let

us consider a fixed class ŷ and two substantially visu-

ally different types of images x1, x2, e.g. the same bird

flying and swimming. In SJE [2] these images will be

mapped to the class embedding space with a single mapping

W⊤x1,W
⊤x2. On the other hand, LatEm will have learned

two different matrices for the mapping i.e. W⊤
1 x1,W

⊤
2 x2.

While in the former case a single W has to map two visu-

ally, and hence numerically, very different vectors (close)

to the same point, in the latent case such two different map-

pings are factorized separately and hence are arguably eas-

ier to perform. Such factorization is also expected to be

advantageous when two classes sharing partial visual sim-

ilarity are to be discriminated e.g. while blue birds could

be relative easily distinguished from red birds, to do so for

different types of blue birds is harder. In such cases, one

of the Wi’s could focus on color while another one could

focus on the beak shape (in Sec. 5.2 we show that this ef-

fect is visible). The task of discrimination against different

bird species would then be handled only by the second one,

which would also arguably be easier.

LatEm uses the ranking based loss [38] in Eq. (6)

whereas SJE [2] uses the multiclass loss of Crammer and

Singer [4] which replaces the
∑

in Eq. (6) with max.

The SGD algorithm for multiclass loss of Crammer and

Singer [4] requires at each iteration a full pass over all the

classes to search for the maximum violating class. There-

fore it can happen that some matrices will not be updated

frequently. On the other hand, the ranking based loss in

Eq. (6) used by our LatEm model ensures that different

latent matrices are updated frequently. Thus, the ranking

based loss in Eq. (6) is better suited for our piecewise linear

model.

5. Experiments

We evaluate the proposed model on three challenging

publicly available datasets of Birds, Dogs and Animals.

First, we describe the datasets, then give the implementa-

tion details and finally report the experimental results.

Datasets. Caltech-UCSD Birds (CUB), Stanford Dogs

(Dogs) are standard benchmarks of fine-grained recogni-

tion [7, 5, 37, 18] and Animals With Attributes (AWA) is

another popular and challenging benchmark dataset [20].

All these three datasets have been used for zero-shot learn-

ing [2, 30, 17, 41]. Tab. 1 gives the statistics for them.

In zero-shot setting, the dataset is divided into three dis-
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Total train+val test

imgs cls imgs cls imgs cls

CUB 11786 200 8855 150 2931 50
AWA 30473 50 24293 40 6180 10
Dogs 19499 113 14681 85 4818 28

Table 1: The statistics of the three datasets used. CUB and

Dog are fine-grained datasets whereas AWA is a more gen-

eral concept dataset.

joint sets of train, val and test. For comparing with

previous works, we follow the same train/val/test set

split used by [2]. In zero-shot learning, where training and

test classes are disjoint sets, to get a more stable estimate

in our own results, we make four more splits by random

sampling, while keeping the number of classes the same as

before. We average results over the total of five splits. The

average performance over the five splits is the default set-

ting reported in all experiments, except where mentioned

otherwise, e.g. in comparison with previous methods.

Image and class embeddings. In our latent embedding

(LatEm) model, the image embeddings (image features)

and class embeddings (side information) are two essen-

tial components. To facilitate direct comparison with the

state-of-the-art, we use the embeddings provided by [2].

Briefly, as image embeddings we use the 1, 024 dimensional

outputs of the top-layer pooling units of the pre-trained

GoogleNet [36] extracted from the whole image. We do

not do any task specific pre-processing on images such as

cropping foreground objects.

As class embeddings we evaluate four different alterna-

tives, i.e. attributes (att), word2vec (w2v), glove (glo)

and hierarchies (hie). Attributes [20, 9] are distinguishing

properties of objects that are obtained through human anno-

tation. For fine-grained datasets such as CUB and Dogs, as

objects are visually very similar to each other, a large num-

ber of attributes are needed. Among the three datasets used,

CUB contains 312 attributes, AWA contains 85 attributes

while Dogs does not contain annotations for attributes. Our

attribute class embedding is a vector per-class measuring

the strength of each attribute based on human judgment.

In addition to human annotation the class embeddings

can be constructed automatically from either a large unla-

beled text corpora or through hierarchical relationship be-

tween classes. This has certain advantages such as we do

not need any costly human annotation, however as a draw-

back, they tend not to perform as well as supervised at-

tributes. One of our motivations for this work is that the

class embeddings captured from a large text corpora con-

tains latent relationships between classes and we would

like to automatically learn these. Therefore, we evalu-

CUB AWA Dogs

SJE LatEm SJE LatEm SJE LatEm

att 50.1 45.5 66.7 71.9 N/A N/A

w2v 28.4 31.8 51.2 61.1 19.6 22.6

glo 24.2 32.5 58.8 62.9 17.8 20.9

hie 20.6 24.2 51.2 57.5 24.3 25.2

Table 2: Comparison of Latent Embeddings (LatEm)

method with the state-of-the-art SJE [2] method. We re-

port average per-class Top-1 accuracy on unseen classes.

We use the same data partitioning, same image features and

same class embeddings as SJE [2]. We cross-validate the K

for LatEm.

ate three common methods for building unsupervised text

embeddings. Word2Vec [23] is a two-layer neural net-

work which predicts words given the context within a skip

window slided through a text document. It builds a vec-

tor for each word in a learned vocabulary. Glove [29] is

another distributed text representation method which uses

co-occurrence statistics of words within a document. We

use the pre-extracted word2vec and glove vectors from

wikipedia provided by [2]. Finally, another way of

building a vectorial structure for our classes is to use a hi-

erarchy such as WordNet [24]. Our hierarchy vectors are

based on the hierarchical distance between child and ances-

tor nodes, in WordNet, corresponding to our class names.

For a direct comparison, we again use the hierarchy vectors

provided by [2]. In terms of size, w2v and glo are 400
dimensional whereas hie is ≈ 200 dimensional.

Implementation details. Our image features are z-score

normalized such that each dimension has zero mean and

unit variance. All the class embeddings are ℓ2 normalized.

The matrices Wi are initialized at random with zero mean

and standard deviation 1√
dx

[1]. The number of epochs is

fixed to be 150. The learning rates for the CUB, AWA and

Dog datasets are chosen as ηt = 0.1, 0.001, 0.01, respec-

tively, and kept constant over iterations. For each dataset,

these parameters are tuned on the validation set of the de-

fault dataset split and kept constant for all other dataset folds

and for all class embeddings. As discussed in Sec 4, we per-

form two strategies for selecting the number of latent ma-

trices K: cross-validation and pruning. When using cross-

validation, K is varied in {2, 4, 6, 8, 10} and the optimal K

is chosen based the accuracy on a validation set. For prun-

ing, K is initially set to be 16, and then at every fifth epoch

during training, we prune all those matrices that support less

than 5% of the data points.

5.1. Comparison with State­of­the­Art

We now provide a direct comparison between our LatEm

and the state-of-the-art SJE [2] method. SJE (Sec. 3) learns
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CUB AWA Dogs

SJE LatEm SJE LatEm SJE LatEm

w 51.7 47.4 73.9 76.1 N/A N/A

w/o 29.9 34.9 60.1 66.2 35.1 36.3

Table 3: Combining embeddings either including or not in-

cluding supervision in the combination. w: the combination

includes attributes, w/o: the combination does not include

attributes.

a bilinear function that maximizes the compatibility be-

tween image and class embeddings. Our LatEm on the

other hand learns a nonlinear, i.e. piece-wise linear func-

tion, through multiple compatibility functions defined be-

tween image and class embeddings.

The results are presented in Tab. 2. Using the text

embeddings obtained through human annotation, i.e. at-

tributes (att), LatEm improves over SJE on AWA (71.9%
vs. 66.7%) significantly. However, as our aim is to re-

duce the accuracy gap between supervised and unsuper-

vised class embeddings, we focus on unsupervised embed-

dings, i.e. w2v, glo and hie. On all datasets, LatEm with

w2v, glo and hie improves the state-of-the-art SJE [2]

significantly. With w2v, LatEm achieves 31.8% accuracy

(vs 28.4%) on CUB, 61.1% accuracy (vs 51.2%) on AWA

and finally 22.6% (vs 19.6%) on Dogs. Similarly, using

glo, LatEm achieves 32.5% accuracy (vs 24.2%) on CUB,

62.9% accuracy (vs. 58.8%) on AWA and 20.9% accuracy

(vs. 17.8%) on Dogs. Finally, while LatEm with hie on

Dogs improves the result to 25.2% from 24.3%, the im-

provement is more significant on CUB (24.2% from 20.6%)

and on AWA (57.5% from 51.2%). These results establish

our novel Latent Embeddings (LatEm) as the new state-of-

the-art method for zero-shot learning on three datasets in

ten out of eleven test settings. They are encouraging, as they

quantitatively show that learning piecewise linear latent em-

beddings indeed capture latent semantics on the class em-

bedding space.

Following [2] we also include a comparison when com-

bining supervised and unsupervised embeddings. The re-

sults are given in Tab 3. First, we combine all the em-

beddings, i.e. att,w2v,glo,hie for AWA and CUB.

LatEm improves the results over SJE significantly on AWA

(76.1% vs 73.9%). Second, we combine the unsupervised

class embeddings, i.e. w2v,glo,hie, for all datasets.

LatEm consistently improves over the combined embed-

dings obtained with SJE in this setting. On CUB combining

w2v,glo,hie achieves 34.9% (vs 29.9%), on AWA, it

achieves 66.2% (vs 60.1%) and on Dogs, it obtains 36.3%
(vs 35.1%). These experiments show that the embeddings

contain non-redundant information, therefore the results

tend to improve by combining them.

CUB AWA Dogs

SJE LatEm SJE LatEm SJE LatEm

att 49.5 45.6 70.7 72.5 N/A N/A

w2v 27.7 33.1 49.3 52.3 23.0 24.5

glo 24.8 30.7 50.1 50.7 14.8 20.2

hie 21.4 23.7 43.4 46.2 24.6 25.6

Table 4: Average per-class top-1 accuracy on unseen classes

(the results are averaged on five folds). SJE: [2], LatEm:

Latent embedding model (K is cross-validated).

Stability evaluation of zero-shot learning. Zero-shot

learning is a challenging problem due to the lack of labeled

training data. In other words, during training time, neither

images nor class relationships of test classes are seen. As a

consequence, zero-shot learning suffers from the difficulty

in parameter selection on a zero-shot set-up, i.e. train,

val and test classes belong to disjoint sets. In order to

get stable estimates of our predictions, we experimented on

additional (in our case four) independently and randomly

chosen data splits in addition to the standard one. Both

with our LatEm and the publicly available implementation

of SJE [2] we repeated the experiments five times.

The results are presented in Tab 4. For all datasets, all the

result comparisons between SJE and LatEm hold and there-

fore the conclusions are the same. Although the SJE out-

performs LatEm with supervised attributes on CUB, LatEm

outperforms the SJE results with supervised attributes on

AWA and consistently outperforms all the SJE results ob-

tained with unsupervised class embeddings. The details

of our results are as follows. Using supervised class em-

beddings, i.e. attributes, on AWA, LatEm obtains an im-

pressive 72.5% (vs 70.5%) and using unsupervised em-

beddings the highest accuracy is observed with w2v with

52.3% (vs 49.3%). On CUB, LatEm with w2v obtains the

highest accuracy among the unsupervised class embeddings

with 33.1% (vs 27.7%) On Dogs, LatEm with hie obtains

the highest accuracy among all the class embeddings, i.e.

25.6% (vs 24.6%). These results insure that our accuracy

improvements reported in Tab 2 were not due to a dataset

bias. By augmenting the datasets with four more splits, our

LatEm obtains a consistent improvement on all the class

embeddings on all datasets over the state-of-the-art.

Note that, for completion, in this section we provided

a full comparison with the state-of-the-art on all class em-

beddings, including supervised attributes. However, there

are two disadvantages of using attributes. First, since fine-

grained object classes share many common properties, we

need a large number of attributes which is costly to obtain.

Second, attribute annotations need to be done on a dataset

basis, i.e. the attributes collected for birds do not work with

dogs. Consequently, attribute based methods are not gen-
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small bird with mostly yellow plumage

sea bird with red eyes

blue plumage with brown wings

Glove embeddingWord2vec embedding

long and pointy beak

brown head, light breast, small bird

completely black plumage

Figure 2: Top images ranked by the matrices using word2vec and glove on CUB dataset, each row corresponds to different

matrix in the model. Qualitative examples support our intuition – each latent variable captures certain visual aspects of the

bird. Note that, while the images may not belong to the same fine-grained class, they share common visual properties.

eralizable across datasets. Therefore, we are interested in

the unsupervised text embeddings settings, i.e. w2v, glo,

hie. Moreover, with these unsupervised embeddings, our

LatEm outperforms the SJE on nine out of nine cases in all

our datasets. For the following sections, we will present

results only with w2v, glo and hie.

5.2. Interpretability of latent embeddings

In Sec. 5.1, we have demonstrated that our novel latent

embedding method improves the state-of-the-art of zero-

shot classification on two fine-grained datasets of birds and

dogs, i.e. CUB and Dogs, and one dataset of Animals, i.e.

AWA. In this section, we zoom into the challenging CUB

dataset and aim to investigate if individual Wi’s learn vi-

sually consistent and interpretable latent relationships be-

tween images and classes. We use word2vec and glove as

text embeddings. Fig 2 shows the top scoring images re-

trieved by three different Wi for the two embeddings i.e.

w2v and glo.

For w2v, we observe that the images scored highly by

the same Wi (each row) share some visual aspect. The im-

ages in the first row are consistently of birds which have

long and pointy beaks. Note that they belong to differ-

ent classes; having a long and pointy beak is one of the

shared aspect of birds of these classes. Similarly, for the

second row, the retrieved images are of small birds with

brown heads and light colored breasts and the last row con-

tains large birds with completely black plumage. These

results are interesting because although w2v is trained on

wikipedia in an unsupervised manner with no notion of at-

tributes, our LatEm is able to (1) infer hidden common

properties of classes and (2) support them with visual ev-

idence, leading to a data clustering which is optimized for

classification, however also performs well in retrieval.

For glo, similar to the results with w2v, the top-scoring

images using the same Wi consistently show distinguish-

ing visual properties of classes. The first row shows blue

birds although belonging to different species, are clus-

tered together which indicates that this matrix captures the

“blue”ness of the objects. The second row has exclusively

aquatic birds, surrounded by water. Finally, the third row

has yellow birds only. Similar to w2v, although glo is

trained in an unsupervised manner, our LatEm is able to

bring out the latent information that reflect object attributes

and support this with its visual counterpart.

These results clearly demonstrate that our model factor-

izes the information with visually interpretable relations be-

tween classes.

5.3. Pruning vs. cross­validation for model selection

In this section we evaluate the performances obtained

with the number of matrices in the model is fixed with prun-

ing vs. cross-validation.

Tab. 5 presents the number of matrices selected by two

methods along with their performances on three datasets. In

terms of performance, both methods are competitive. Prun-

ing outperforms cross validation on five cases and is out-

performed on the remaining six cases. The performance

gaps are usually within 1-2% absolute, with the exception

of AWA dataset with att and w2v with 72.5% vs. 70.7%
and 52.3% vs. 49.3%, respectively for cross validation and

pruning. Hence neither of the methods has a clear advan-

tage in terms of performance, however cross validation is

slightly better.

In terms of the model size, cross validation seems to have

a slight advantage. It selects a smaller model, hence more

space and time efficient one, seven cases out of eleven. The

trend is consistent for all class embeddings for the AwA

dataset but is mixed for CUB and Dogs. The advantage

of pruning over cross-validation is that it is much faster to

train – while cross validation requires training and testing

with multiple models (once each per every possible choice
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CUB AWA Dogs

PR CV PR CV PR CV

att 3 4 7 2 N/A N/A

w2v 8 10 8 4 6 8
glo 6 10 7 6 9 4
hie 8 2 7 2 11 10

CUB AWA Dogs

PR CV PR CV PR CV

att 43.8 45.6 63.2 72.5 N/A N/A

w2v 33.9 33.1 48.9 52.3 25.0 24.5
glo 31.5 30.7 51.6 50.7 18.8 20.2

hie 23.8 23.7 45.5 46.2 25.2 25.6

Table 5: (Left) Number of matrices selected (on the original split) and (right) average per-class top-1 accuracy on unseen

classes (averaged over five splits). PR: proposed model learnt with pruning, CV: with cross validation.
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Figure 3: Effect of latent variable K, with unsupervised

class embeddings (on CUB dataset with five splits).

of K), pruning just requires training once. There is however

another free parameter in pruning i.e. choice of the amount

of training data supporting a matrix for it to survive prun-

ing. Arguably, it is more intuitive than setting directly the

number of matrices to use instead of cross validating.

5.4. Evaluating the number of latent embeddings

In Sec. 5.1, when we use multiple splits of the data,

although the relative performance difference between the

state of the art and our method has not changed, for some

cases we observe a certain increase or decrease in accuracy.

In this section, we investigate the experiments performed

with five-folds on the CUB dataset and provide further anal-

ysis for a varying number of K. For completeness of the

analysis, we also evaluate the single matrix case, namely

K ∈ {1, 2, 4, 6, 8, 10} using unsupervised embeddings, i.e.

w2v, glo, hie.

Fig. 3 shows the performance of the model with a differ-

ent number of matrices. We observe that the performance

generally increases with increasing K, initially, and then

the patterns differ with different embeddings. With w2v the

performance keeps increasing until K = 6 and then starts

decreasing, probably due to model overfitting. With glo

the performance increases until K = 10 where the final ac-

curacy is ≈ 5% higher than with K = 1. With the hie

embedding the standard errors do not increase significantly

in any of the cases, are similar for all values of K and there

is no clear trend in the performance. In conclusion, the vari-

ation in performance with K seems to depend of the embed-

dings used, however, in the zero-shot setting, depending on

the data distribution the results may vary up to 5%.

6. Conclusions

We presented a novel latent variable based model, Latent

Embeddings (LatEm), for learning a nonlinear (piecewise

linear) compatibility function for the task of zero-shot clas-

sification. LatEm is a multi-modal method: it uses images

and class-level side-information either collected through

human annotation or in an unsupervised way from a large

text corpus. LatEm incorporates multiple linear compati-

bility units and allows each image to choose one of them –

such choices being the latent variables. We proposed a rank-

ing based objective to learn the model using an efficient and

scalable SGD based solver.

We empirically validated our model on three challeng-

ing benchmark datasets for zero-shot classification of Birds,

Dogs and Animals. We improved the state-of-the-art for

zero-shot learning using unsupervised class embeddings on

AWA up to 66.2% (vs 60.1% )and on two fine-grained

datasets, achieving 34.9% accuracy (vs 29.9%) on CUB

as well as achieving 36.3% accuracy (vs 35.1%) on Dogs

with word2vec. On AWA, we also improve the accu-

racy obtained with supervised class embeddings, obtaining

76.1% (vs 73.9%). This demonstrates quantitatively that

our method learns a latent structure in the embedding space

through multiple matrices. Moreover, we made a qualita-

tive analysis on our results and showed that the latent em-

beddings learned with our method leads to visual consisten-

cies. Our stability analysis on five dataset folds for all three

benchmark datasets showed that our method can generalize

well and does not overfit to the current dataset splits. We

proposed a new method for selecting the number of latent

variables automatically from the data. Such pruning based

method speeds the training up and leads to models with

competitive space-time complexities cf. the cross-validation

based method.
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