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Abstract

This paper proposes a novel local descriptor through ac-

cumulated stability voting (ASV). The stability of feature di-

mensions is measured by their differences across scales. To

be more robust to noise, the stability is further quantized by

thresholding. The principle of maximum entropy is utilized

for determining the best thresholds for maximizing discrimi-

nant power of the resultant descriptor. Accumulating stabil-

ity renders a real-valued descriptor and it can be converted

into a binary descriptor by an additional thresholding pro-

cess. The real-valued descriptor attains high matching ac-

curacy while the binary descriptor makes a good compro-

mise between storage and accuracy. Our descriptors are

simple yet effective, and easy to implement. In addition, our

descriptors require no training. Experiments on popular

benchmarks demonstrate the effectiveness of our descrip-

tors and their superiority to the state-of-the-art descriptors.

1. Introduction

Feature matching has gained significant attention be-

cause it has a wide variety of applications such as object

detection [10, 12], scene categorizing [20], image align-

ment [22, 17], image matching [9, 8], co-segmentation [28,

7] and many others. The performance of feature match-

ing heavily relies on accurate feature localization and robust

feature description. This paper focuses on the latter issue on

feature descriptors. A good feature descriptor is often local,

distinctive and invariant. Local descriptors help combating

with problems of occlusion and clutter. Distinctive descrip-

tors allow matching with high confidence. Finally, descrip-

tors need to be invariant to various variations that one could

run into in real-world applications, including orientations,

scales, perspectives, and lighting conditions.

Most descriptors only represent the local neighborhood

of the detected feature at a particular scale (or the domain

size as called by Dong et al. [11]). The scale is often deter-

mined by the feature detection algorithm. The selection of

the scale could be inaccurate and lead to bad matching per-

formance. Previous methods address this issue by finding a

low-dimensional linear approximation for a set of descrip-

tors extracted at different scales [15] or performing pooling

on them [11]. Inspired by these methods, we propose the

accumulated stability voting (ASV) framework for synthe-

sizing a more robust descriptor from descriptors at multi-

ple scales. Figure 1 illustrates the framework. Our frame-

work starts with sampling the scale space around the de-

tected scale. With a set of baseline descriptors extracted at

the sampled scales, we find the difference of two baseline

descriptors for each scale pair. These differences reveal the

stability (insensitivity) of each dimension of the baseline

descriptor with respect to scales. By applying thresholding,

we classify each dimension as “stable” or “unstable.” Us-

ing multiple thresholding, the stability levels can be refined

if necessary. To maximize the discriminant power of the

descriptor, the principle of maximum entropy is explored

for determining the best thresholds. By accumulating the

stability votes from all scale pairs, we obtain a real-valued

descriptor (called ASV-SIFT if SIFT is used as the baseline

descriptor). The descriptor can be converted into a binary

descriptor by performing the second-stage thresholding.

The main contribution of the paper is the overall design

of the ASV framework. Along this way, we have (1) used

differences of descriptors for measuring stability of feature

dimensions across scales, (2) utilized the principle of max-

imum entropy for effective quantization of stability, and (3)

demonstrated the effectiveness of our descriptors by thor-

ough experiments and comparisons.

2. Related Work

Scale Invariant Feature Transformation (SIFT) [23] pro-

vides procedures for both feature detection and description

with good performance. It locates features and estimates

their scales by finding extrema of a Difference-of-Gaussian

pyramid [24] in the scale space. A carefully designed pro-

cedure is used to collect a histogram of gradients within
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Figure 1. The Accumulated Stability Voting (ASV) framework. For each detected feature point, we sample patches {pi}
ns

i=1
at ns different

scales and extract their SIFT descriptors, {xi}
ns

i=1
. The stability voting vectors, {hm}M

m=1
where M = C

ns

2
, are determined by threshold-

ing the absolute difference between any pair of scale samples, xi and xj . By summing up all the stability votes, a real-valued descriptor

ASV (real) is obtained. The higher the score, the more stable the corresponding dimension. A binary variant, ASV (binary), is obtained by

applying multi-thresholding to the ASV (real) descriptor.

the local area around the feature. Several feature detec-

tion methods have been proposed thereafter, such as Harris-

affine [25] and Hessian-affine [27] detectors. The affine ap-

proximate process [31, 25] has been proposed to refine the

elliptical region detected by detectors. In addition to detec-

tors, many real-valued descriptors have also been proposed,

such as LIOP [36], DAISY [33], SURF [4], and HOG [10].

Several binary descriptors recently emerge because they

are efficient in both extraction (by performing binary tests)

and matching (by calculating Hamming distances). No-

table binary descriptors include BRIEF [6], BRISK [21],

FREAK [1], and ORB [29]. They are usually based on a

set of binary tests which compare the intensity values at

two predefined locations. Depending on the result of each

comparison, the corresponding bit is assigned 1 or 0. The

Hamming distance is usually used as the distance metric

between two descriptors and its calculation is much faster

than the Euclidean distance usually used for real-valued de-

scriptors. In addition, the binary descriptors usually have

compact sizes with less storage costs. Both matching ef-

ficiency and low storage requirement make binary descrip-

tors attractive for large-scale image retrieval applications.

Unfortunately, these advantages often come with the short-

coming of being less effective than real-valued descriptors.

Recently, researchers noted that one could extract the

descriptor information in the real-valued domain, such as

pooling of gradients or intensity values, and then encode

the collected information into binary vectors. Simonyan et

al. proposed to use a pooling region selection scheme along

with dimension reduction using low-rank approximation to

extract the local information, and then encode the infor-

mation into a binary descriptor [32]. Trzcinski et al. pro-

posed BinBoost which adopts an AdaBoost-like method

for training binary descriptors using positive and negative

patch pairs in the gradient domain [34]. This type of meth-

ods often utilize learning algorithms and their effectiveness

usually highly depends on the training dataset. For ex-

ample, BinBoost outperforms several methods in the patch

dataset [5], but its performance is not as good in the other

image matching dataset [18]. The same observation has

been made by Balntas et al. [3] and our experiments. Re-

cently, CNN-based descriptors and image matching have

been proposed [13, 39]. Although effective, they require a

large training set and the dimensions of the real-valued de-

scriptors are usually very large, for example, around 4,000

for a CNN-based descriptor [13, 14].

As mentioned above, SIFT assigns each feature a de-

tected scale and extracts the descriptor for that particular

scale. Recently, Hassner et al. observed that selecting a

single scale may lead to poor performance and suggested

aggregating descriptors at multiple scale samples for im-

proving performance [15]. They used a low-dimensional

linear space to approximate a set of feature descriptors ex-

tracted at multiple scales. This descriptor is called scale-

less SIFT (SLS). The similar idea has been adopted for

sampling the affine space. Wang et al. used linear com-

binations to approximate affinely warped patches [37]. Bal-

ntas et al. adopted the similar affine sampling idea on the

binary tests [3], and used a greedy method for selecting the

discriminative dimensions. Similar to SLS, Domain-Size

Pooling (DSP-SIFT) [11] also samples the scale space but

performs pooling on the descriptors at the sample scales.

Our method also explores multiple scale samples for boost-

ing the performance of descriptors. We mostly use SIFT

descriptors at multiple scales as inputs for illustrating the

method. However, the proposed framework can be applied

to any descriptor that can be extracted at multiple scales.

3. Accumulated Stability Voting

The proposed feature transform, Accumulate Stability

Voting (ASV), accepts a multi-scale feature representation

and converts it into a more robust feature descriptor.
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3.1. Accumulated stability voting

Inspired by previous descriptors leveraging multi-scale

SIFT representations such as SLS [15] and DSP-SIFT [11],

given a SIFT feature with the detected scale σ, our method

starts with obtaining a set of SIFT descriptors at several

scales. The method samples ns scales within the scale

neighborhood (λsσ, λlσ) around the detected scale, where

λs is the scaling ratio of the smallest scale and λl is the scal-

ing ratio of the largest scale. At each sampled scale, a SIFT

descriptor is extracted.

The philosophy of our descriptor design is to use relative

information as it is regarded as more robust and invariant to

variations. For a similar reason, SIFT collects statistics of

gradients, the relative difference of intensity in the spatial

domain. It motivates us to use the difference between SIFT

descriptors for the descriptor design.

We take the absolute value of the difference between two

different SIFT descriptor samples, vi,j = |xi − xj |, where

xi and xj are SIFT descriptors extracted at two different

scales i and j (1 ≤ i, j ≤ ns) and the operator | · | takes

the absolute value for each element of the input vector, i.e.,

v
i,j
k = |xi[k]− xj [k]| where k ∈ [1..128]. The absolute

difference reflects how stable a SIFT bin is across differ-

ent scales. If the value v
i,j
a is smaller than v

i,j
b , then bin a

is considered more stable than bin b since bin a has more

similar behavior across these two scales i and j. Thus, the

vector vi,j reflects the stability of each SIFT bin between

scale i and scale j. There are M = Cns

2 possible scale pairs

for ns sampled scales. Thus, we re-index the stability vec-

tor vi,j as vm where m ∈ [1..M ]. To determine how stable

each SIFT bin is, one could perform pooling on these sta-

bility vectors, i.e., s =
∑M

m=1
v
m. We call the vector s the

accumulated stability. Each element of s reflects how stable

the corresponding SIFT bin is across different scales. Our

first attempt is to use the accumulated stability as the feature

descriptor. We call it AS-SIFT where AS stands for accu-

mulated stability. In Section 4, we show that this descriptor

has slightly better performance than DSP-SIFT.

Note that our method follows the strategy of exploring

and manipulating in the descriptor’s scale space, laid down

by previous methods, SLS, ASR, BOLD, and DSP-SIFT.

These methods extract multi-scale/rotation descriptors and

construct a robust descriptor by summing or forming the

sub-space of them. Our method takes gradients of them.

Consider an arbitrary base descriptor applied to an interest

point at two different scales. Although the regions for fea-

ture extraction are not the same, the difference between the

two yielded feature vectors can be interpreted as the gradi-

ent of the descriptors on that point along the scale space.

Our descriptor operates on such gradients computed at mul-

tiple scales. Thus, a bin of our descriptor represents the ac-

cumulated gradient of a specific statistic, characterized by

the base descriptor in that bin, along the scale space.

We take the philosophy of using relative information a

step further. Instead of recording the stability value for each

bin, we only classify bins as “relatively stable” or “rela-

tively unstable.” In other words, we quantize the stability

value into binary. For that purpose, we perform thresh-

olding on each stability vector and produce a binary vector

h
m = θt (v

m|tm) where θt is the thresholding function and

tm is the chosen threshold. Thus,

h
m
d =

{

1 v
m
d < tm,

0 otherwise.
(1)

If hm
d = 1, the SIFT bin d is regarded as stable for the scale

pair m; otherwise it is not stable. With proper thresholding,

the quantized stability could be more robust to noise. The

binary stability values can be regarded as stability votes. In-

stead of accumulating stability values, we accumulate sta-

bility votes (or the quantized stability) for all scale pairs.

This way, we obtain a real-valued descriptor C:

C =
M
∑

m=1

h
m =

M
∑

m=1











h
m
1

h
m
2

...

h
m
128











. (2)

We call the descriptor ASV-SIFT where ASV stands for ac-

cumulated stability voting.

3.2. Local threshold determination

The remaining issue is how to determine the proper

threshold value tm for each scale pair m. One possibility

would be to learn a global threshold value from the statis-

tics of a set of training examples. Instead of a global thresh-

old, we determine a local threshold for each pair of scales

using the principle of maximum entropy for maximizing in-

formation (the discriminant power in our case). Entropy is

a metric for measuring uncertainty or the amount of infor-

mation. In the field of image thresholding, the principle of

maximum entropy or maximum entropy modeling has been

used for determining proper thresholds [19, 38, 30].

In our case, we want to find a threshold to maximize the

entropy of the resultant binary voting vector. From the defi-

nition of entropy, the maximal information occurs when the

number of 1s equals the number of 0s in the resultant vec-

tor. Thus, the optimal threshold t⋆m would be the median of

all elements in v
m, i.e., t⋆m=median(vm

1 ,vm
2 , · · · ,vm

128).
There are more complex methods for determining thresh-

olds. However, our experiments found that the median is

simple yet effective. With this rule, the threshold can be

determined locally for each scale pair.

3.3. Multiple thresholding

Using only binary quantization levels could be too re-

strictive and reduce the discriminative power of the descrip-

tor. We can increase the number of quantization levels by
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determining multiple thresholds. Although there are quite

a few multiple-threshold selection schemes [19], we found

that the same maximum entropy principle can still be ap-

plied. We denote the number of thresholds as n1
t for the

first-stage thresholding. Multiple thresholding would par-

tition the range of stability values into (n1
t +1) quantiza-

tion levels. By applying the principle of maximum entropy

again, the resultant vector must contain the same number

of elements for all groups and the thresholds can be deter-

mined thereby. For n1
t thresholds, the maximal number of

votes (the quantized stability value) from each pair of scales

is n1
t . Thus, the maximal number of votes a bin can receive

is Cns

2 ×n1
t and would require

⌈

log2
(

Cns

2 ×n1
t

)⌉

bits to

store. Taking n1
t =7 and ns=10 as an example, there are 8

quantization levels and the maximal number of votes from

each scale pair is 7. Thus, the maximal votes a bin can re-

ceive is 45×7 = 315 and it would take 9 bits for each bin,

making the size of the ASV-SIFT descriptor 128×9 bits.

3.4. Feature interpolation

In principle, the more scale samples we obtain, the more

information we have. However, in our case, taking more

scale samples means extracting more SIFT descriptors. The

overall extraction time depends linearly on the number of

scales. For obtaining more samples without incurring too

much computation overhead, we interpolate SIFT feature

descriptors at the neighboring scales into the additional fea-

ture descriptor at the intermediate scale, x
′

i
= xi+xi+1

2
,

where i ∈ [1..ns−1]. This way, the number of sample fea-

tures we can utilize nearly double, n′

s = ns+(ns−1). Ex-

periments show that the feature interpolation strategy con-

sistently improves the performance of the proposed frame-

work, especially when the sample number is very small, for

example, ns=4.

3.5. Second stage thresholding

The ASV-SIFT descriptor we have discussed so far is

a real-valued descriptor. In some applications, binary de-

scriptors are preferred. For converting ASV-SIFT into

a binary descriptor, the second-stage thresholding can be

added for quantizing the real-valued descriptor. Assume

that we have obtained a real-valued ASV-SIFT descriptor

with the parameters ns and n1
t , as discussed above, the max-

imal value for each dimension is Cns

2 ×n1
t . For applying

the second-stage thresholding, we first decide how many

thresholds are used and denote it as n2
t . To divide the range

[

0, Cns

2 ×n1
t

]

into n2
t + 1 intervals equally, the k-th thresh-

old would be
⌊

C
ns

2
×n1

t
×k

n2
t
+1

⌋

.

4. Experimental Results

In this section, we first describe the datasets and detec-

tor setting. Next, we list the methods for comparisons and

then examine the parameter setting. Finally, we compare

performance of descriptors and analyze the results.

4.1. Datasets and detector setting

We used three datasets for comparing feature descrip-

tors: the Oxford dataset [18], the Fischer dataset [13], and

the local symmetry dataset (SYM dataset [16]). The Ox-

ford dataset is a popular matching dataset and it contains

40 image pairs under different variations including blurring,

compression, viewpoints, lighting and others. The Fischer

dataset was introduced to address the deficiencies of the

Oxford dataset. It provides 400 image pairs with more ex-

treme variations such as zooming, rotation and perspective

and non-linear transformations. The SYM dataset contains

46 image pairs of architectural scenes. It is a challenging

matching dataset as the images exhibits dramatic variations

in lighting, age and even styles.

For each dataset, we choose the detector with the state-

of-the-art performance to better reflect the scenarios of the

descriptor’s use in real-world applications. For the Ox-

ford dataset and the Fischer dataset, we use the Difference-

of-Gaussian detector with affine approximation (DoGAff)1,

implemented in VLFeat. We sort the detected features

by the peakScores of VLFeat’s covdet function [35] and

choose around 5,000 feature points per image. For the SYM

dataset, we adopt SYM-I and SYM-G as the detectors [16].

These three datasets provide ground-truth transformations

so that quantitative analysis is possible. We follow the

same evaluation procedure proposed by Mikolajczyk and

Schmids [26]. A feature match is evaluated by calculating

the intersection-over-union (IoU) of the areas of the ground-

truth match and the detected match. It is considered correct

if overlapping >50%. By varying the threshold on the dis-

tance between descriptors which are considered a match,

one can obtain the precision-recall curve. The area under

the curve is called average precision (AP). The average of

APs, mAP, is used for comparing performance of detectors.

4.2. Descriptors for comparisons

We compare our descriptors with the following descrip-

tors. (1) SIFT [23]. We use VLFeat toolbox for extract-

ing SIFT descriptors. (2) Root-SIFT [2]. It reformulates

the SIFT distance by using Hellinger kernel. (3) ASR [37].

Similar to scale-less SIFT (SLS) [15], it represents a set of

the affine warped patches by a subspace representation. (4)

DSP-SIFT [11]. The Domain-Size Pooling (DSP) opera-

tion is performed on SIFT descriptors at different scales.

We used the source code provided by authors for obtaining

the descriptors for features while VLFeat’s covariant detec-

tor is used for detecting features. (5) RAW-PATCH [35]. It

is the raw patch descriptor extracted by VLFeat. The size of

1Note that Dong and Soatto used MSER as the detector in their experi-

ments [11]. We use DoGAff because of its much better performance.
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Figure 2. Experiments with the number of sampled scale ns. The

results for the Oxford dataset are on the left, and the results for

the Fischer dataset are on the right. For all methods other than

SIFT, the performance improves with more scale samples. How-

ever, the performance gain nearly saturates after 10 samples. Note

that 1inS and 1inM mean that feature interpolation is used. The

interpolation strategy helps especially when ns is small.

the patch is fixed at 41×41. (6) LIOP [36]. The intensity or-

der based descriptor extracted by VLFeat. (7) SYMD [16].

The descriptor is designed specifically for capturing lo-

cally symmetry. The concatenation of our descriptor and

SYMD descriptor is denoted as ASV-SIFT (1S*):SYMD.

(8) BOLD [3]. One of the state-of-the-art binary descrip-

tors. It uses a local mask to preserve the stable dimensions.

(9) BinBoost [34]. A binary descriptor learned by a boost-

ing method.

Next, we describe the notations for different variants of

our descriptor. (1) AS-SIFT. A variant of our descriptor by

accumulating the stability vectors vm instead of voting vec-

tors h
m. The parameter setting is the same as ASV-SIFT

(1S⋆). (2) ASV-SIFT (1S⋆). A real-valued descriptor af-

ter our first stage thresholding and accumulation. 1S means

the first stage single thresholding. The asterisk denotes the

specific parameter setting used in Table 1. (3) ASV-SIFT

(1M2M⋆). Our binary descriptor after the two-stage pro-

cess. 1M2M means that multi-thresholding is used in both

the first and the second stages. The asterisk denotes the spe-

cific parameter setting used in Table 2. (4) ASV-PATCH,

ASV-LIOP. Real-valued descriptors by applying our ASV

framework to RAW-PATCH and LIOP descriptors.

4.3. Parameter setting

Similar to DSP-SIFT, our method has three parameters

for determining the sampled scales: λs for scaling ratio of

the smallest scale, λl for scaling ratio of the largest scale,

and ns for the number of sampled scales in between. We

performed experiments to find the best parameters of both

our ASV framework and DSP-SIFT.

0 20 40 60 80 100 120
0
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0.6

Number of 1s

m
A

P

 

 

Oxford

Fischer

Figure 3. Validation of the maximum-entropy-principle-based

threshold selection scheme. The number of 1s of each voting vec-

tor h
m is determined by the chosen threshold. The black dash

line indicates where the best mAP values occur. It shows our me-

dian thresholding scheme maximizes the information of descrip-

tors, thus leading to the best performance among different thresh-

old choices.

Figure 2 shows the mAP values for both Oxford and

Fischer datasets with different numbers of sampled scales

ns. Not surprisingly, the performance of all multi-scale

methods improves when ns increases. It is because more

scale samples usually carry on more information. However,

the performance gain becomes marginal when there are too

many samples. Note that our real-valued descriptor ASV-

SIFT (1S) outperforms DSP-SIFT with 20 sampled scales

by only using 6 sampled scales. Our binary descriptor ASV-

SIFT (1M2M) also outperforms DSP-SIFT with 20 samples

when ns reaches 10. This figure also shows the effects of

feature interpolation. ASV-SIFT (1inS) in Figure 2 repre-

sents ASV-SIFT (1S) with feature interpolation, similarly

for ASV-SIFT (1inM). The figure shows that the interpola-

tion strategy does help especially when ns is small.

Note that, although our ASV framework requires thresh-

olding, the threshold values are dynamically and locally

determined without external training or applying hashing.

Thus, there is no extra parameter for thresholding. To vali-

date our threshold selection scheme based on the maximum

entropy principle, we examine the matching performance

with different numbers of 1s and 0s in the voting vector af-

ter thresholding. Figure 3 shows mAP values with different

numbers of 1s after binary thresholding. The black dot line

indicates where the best mAP values locate. For both Ox-

ford and Fischer datasets, the best mAP occurs when the

numbers of 1s and 0s are equal to each other.

In the following experiments, we empirically choose

λs = 1

6
, λl = 3, and ns = 10 for DSP-SIFT2, ASV-SIFT

(1S⋆), and ASV (1M2M⋆). Note that we do not use fea-

ture interpolation in the following experiments as ns is suf-

ficiently large. For ASV-SIFT, when multiple thresholding

is used in either the first or the second stage, we also need to

determine the numbers of thresholds, n1
t and n2

t . We will

discuss these parameters in the next section. For other de-

scriptors, we use the parameters suggested by the original

paper or the implementation.

2Note that, because a different detector is used, the empirically chosen

parameters for DSP-SIFT are different from the original paper [11].
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Method Bits
mAP

Oxford Fischer

real-valued descriptor

SIFT 128*8 0.3691 0.6219

DSP-SIFT 128*8 0.4229 0.6439

Root-SIFT 128*8 0.4218 0.6504

ASR 300*8 0.2470 0.5252

AS-SIFT 128*8 0.4298 0.6447

RAW-PATCH 1681*8 0.1344 0.4063

LIOP 144*8 0.1543 0.5009

1st stage single thresholding (1S)

ASV-SIFT (ns=10)⋆ 128*6 0.4649 0.6623

ASV-SIFT (ns=10, pP) 128*6 0.4479 0.6565

ASV-PATCH (ns=10) 1681*6 0.3560 0.6118

ASV-LIOP (ns=10) 144*6 0.4124 0.6457

1st stage multiple thresholding (1M )

ASV-SIFT (ns=10, n1
t=3)⋆ 128*8 0.4731 0.6630

ASV-SIFT (ns=10, n1
t=7) 128*9 0.4739 0.6631

ASV-SIFT (ns=10, n1
t=15) 128*10 0.4740 0.6627

Table 1. The comparisons of real-valued descriptors.

4.4. Quantitative evaluation

Table 1 and Table 2 respectively report the matching per-

formance of real-valued descriptors and binary descriptors

on both Oxford and Fischer datasets. In addition to mAP,

the two tables also report the storage requirements for all

descriptors. For single-stage single thresholding ASV-SIFT

(1S), the size of each dimension depends on the number of

sampled scales. For our implementation in which ns =10,

the number of scale pairs is Cns

2 =45 and the range of each

dimension in ASV-SIFT (1S⋆) is [0..45]. Thus, 6 bits are

required for storing each dimension. For single-stage mul-

tiple thresholding ASV-SIFT (1M), in addition to ns, the

size of each dimension also depends on how many quan-

tization levels we choose. For example, if 8 levels are

used and ns = 10, the maximal value of a dimension is

45×(8−1) = 315 and 9 bits are required for each dimen-

sion. As shown in Table 1, although more quantization

levels could slightly improve mAP, for making the descrip-

tors more compact, we choose 4 levels (with 3 thresholds,

n1
t = 3) as the best parameter for ASV-SIFT (1M⋆). Fi-

nally, for the second-stage multiple thresholding, we choose

to use 4 quantization levels (with 3 thresholds, n2
t = 3)

as the best parameter for ASV-SIFT (1M2M⋆) because it

improves mAP significantly with only the modest size in-

crease. Note that each dimension of the real-valued descrip-

tors is assumed to be stored in a byte as higher precision

only leads to minor improvement.

Similar to [11], in our experiments, DSP-SIFT outper-

forms SIFT by a margin. Root-SIFT has similar perfor-

mance with DSP-SIFT. ASR performs poorly. It is prob-

ably because the regions detected by DoGAff are relatively

Method Bits
mAP

Oxford Fischer

binary descriptor

BOLD 512*1 0.2937 0.5532

BinBoost 256*1 0.1815 0.3553

1S⋆ with 2nd stage single thresholding (1S2S)

ASV-SIFT (ns=10) 128*1 0.3517 0.5855

1M⋆ with 2nd stage single thresholding (1M2S)

ASV-SIFT (ns=10) 128*1 0.3587 0.5945

1M⋆ with 2nd stage multiple thresholds (1M2M )

ASV-SIFT (ns=10, n2
t=2) 256*1 0.4234 0.6369

ASV-SIFT (ns=10, n2
t=3)⋆ 384*1 0.4399 0.6483

Table 2. The comparisons of binary descriptors.

Method
mAP

SYM-I SYM-G

SIFT 0.3522 0.4077

SYMD 0.2608 0.3276

DSP-SIFT 0.3679 0.4208

ASV-SIFT(1S⋆) 0.3734 0.4345

SIFT:SYMD 0.3692 0.4553

DSP-SIFT:SYMD 0.3885 0.4627

ASV-SIFT(1S⋆):SYMD 0.4039 0.4738
Table 3. mAP for the SYM dataset

small and the affine samples might not be useful for the

ASR method. After the first-stage thresholding, our ASV-

SIFT (1S⋆) consistently outperforms other real-valued de-

scriptors in both Oxford and Fischer datasets. The asterisk

in the table indicates the specific parameter setting we men-

tioned earlier. In Table 1, we also show mAP when using

another threshold selection scheme [19] (indicated by ASV-

SIFT (ns = 10, pP) in Table 1). It shows that the more

complex threshold selection schemes may not lead to bet-

ter performance. The necessity of the first stage threshold-

ing is confirmed by comparing AS-SIFT and ASV-SIFT in

Table 1 and also shown in the third column of the head-to-

head comparisons in Figure 6. Our ASV framework can

also be applied to descriptors other than SIFT. We applied it

for converting RAW-PATCH into ASV-PATCH, and LIOP

into ASV-LIOP. Table 1 shows the performance is signifi-

cantly improved with the ASV framework. Table 2 com-

pares two state-of-the-art binary descriptors, BOLD and

BinBoost, with our binary descriptor using the second-stage

thresholding. By using multiple thresholding in both the

first and the second stages, our ASV-SIFT (1M2M⋆) defeats

the other binary descriptors by a great margin. It even out-

performs many real-valued descriptors such as SIFT, ASR,

and DSP-SIFT.

The SYM dataset has its own characteristics and differ-

ent detectors are used for the state-of-the-art performance.

Table 3 summarizes the matching performance of several
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Figure 4. PR curves of challenging pairs in the Oxford dataset. The most challenging pair (magnitude 6 in Figure 5) of each class is

presented in the figure.
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Figure 5. The number of correct correspondences using different descriptors under different transformation magnitudes in the Oxford

dataset. The weakest magnitude is 2, and 6 is the strongest one. The performance generally degrades when the magnitude gets stronger.

descriptors with two different detectors, SYM-I and SYM-

G. In either case, ASV-SIFT outperforms SIFT, DSP-SIFT

and SYMD, a descriptor specially designed for the scenario

of the dataset. As indicated by Hauagge and Snavely [16],

the performance of a descriptor can be boosted by com-

bining with the SYMD descriptor as they explore comple-

mentary information. After a weighted concatenation with

the SYMD descriptor, ASV-SIFT (1S⋆):SYMD has the best

performance for this dataset.

For more careful examination, Figure 4 displays the

precision-recall (PR) curves of several most challenging im-

age pairs in the Oxford dataset. Our ASV-SIFT (1S⋆) and

ASV-SIFT (1M2M⋆) descriptors perform the best in most

cases. Particularly, our method is robust to extreme trans-

formations such as the ones in Boat (1|6) (zoom+rotation)

and Graf (1|6) (viewpoint). In Figure 5, the numbers

of correct correspondences by using different descriptors

are compared under different transformation magnitudes.

Our descriptors are particularly good at finding the correct

matching pairs for blur and compression transformations.

For other transformations such as rotation, viewpoint, and

zoom, although without clear advantages, our descriptors

keep pace with top performers. ASR [37] and BOLD [3]

cannot perform well probably because the detected region
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Figure 6. Head-to-head comparisons. The first row is for the Oxford dataset while the second row is for the Fischer dataset. The first three

columns compare our real-valued descriptor ASV-SIFT (1S⋆) with SIFT, DSP-SIFT and AS-SIFT respectively. The last two compare our

binary descriptor ASV-SIFT (1M2M⋆) with SIFT and BOLD.
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Figure 7. Comparisons of descriptors in terms of both storage re-

quirement and matching performance. Our real-valued descriptor

ASV-SIFT (1S⋆) provides the best matching performance among

all descriptors. Our binary descriptor ASV-SIFT (1M2M⋆) gives

comparable performance to state-of-the-art real-valued descriptors

with only 46 bytes per feature.

is small and under the zoom or viewpoint transformation,

exploring rotation samples does not help much. The bad

performance of BinBoost [34] could be attributed to the dif-

ferent training dataset.

Figure 6 shows the head-to-head comparisons between

two selected descriptors. Each point in the plot displays the

average precision (AP) of an image pair using the two se-

lected descriptors. The first two columns shows that our

real-valued descriptor ASV-SIFT (1S⋆) outperforms SIFT

and DSP-SIFT on most image pairs of both Oxford and

Fischer datasets. The third column compares ASV-SIFT

(1S⋆) and AS-SIFT. It shows that the first-stage threshold-

ing consistently improves the matching performance. The

last two columns show that our binary descriptor ASV-SIFT

(1M2M⋆) is superior to SIFT (even though SIFT consumes

much more space) and the state-of-the-art binary descriptor

BOLD by a large margin.

4.5. Storage and time requirements

Figure 7 plots descriptors as a point in the space of

storage requirement and matching performance. Our real-

valued descriptor ASV-SIFT (1S⋆) provides the best match-

ing performance among all descriptors. With only 46 bytes

per feature, our binary descriptor ASV-SIFT (1M2M⋆)

gives comparable performance to DSP-SIFT while signifi-

cantly outperforming SIFT, BOLD, and BinBoost. It shows

that the two-stage thresholding strategy is quite effective on

making a good compromise between storage requirement

and matching performance. Similar to DSP-SIFT, the ex-

traction time of the ASV-SIFT descriptor depends linearly

to the number of sampled scales. On average, our method

takes 10.2 (21.0) seconds for constructing a descriptor for

an image in the benchmarks with 4 (10) sampled scales.

5. Conclusion

We have introduced a new local descriptor: accumu-

lated stability voting. It provides both a real-valued de-

scriptor and a binary descriptor. The real-valued descrip-

tor outperforms the state-of-the-art descriptors in terms of

mAP. The binary descriptor consumes only about one-

third of storage while still maintaining a decent matching

performance, making a good compromise between stor-

age requirement and matching effectiveness. More re-

sults and the codes of this framework are available at

https://github.com/shamangary/ASV.
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