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Abstract

Face detection is one of the most studied topics in the

computer vision community. Much of the progresses have

been made by the availability of face detection benchmark

datasets. We show that there is a gap between current face

detection performance and the real world requirements. To

facilitate future face detection research, we introduce the

WIDER FACE dataset1, which is 10 times larger than exist-

ing datasets. The dataset contains rich annotations, includ-

ing occlusions, poses, event categories, and face bounding

boxes. Faces in the proposed dataset are extremely chal-

lenging due to large variations in scale, pose and occlusion,

as shown in Fig. 1. Furthermore, we show that WIDER

FACE dataset is an effective training source for face de-

tection. We benchmark several representative detection sys-

tems, providing an overview of state-of-the-art performance

and propose a solution to deal with large scale variation.

Finally, we discuss common failure cases that worth to be

further investigated.

1. Introduction

Face detection is a critical step to all facial analysis al-

gorithms, including face alignment, face recognition, face

verification, and face parsing. Given an arbitrary image, the

goal of face detection is to determine the presence of faces

in the image and, if present, return the image location and

extent of each face [27]. While this appears as an effort-

less task for human, it is a very difficult task for comput-

ers. The challenges associated with face detection can be

attributed to variations in pose, scale, facial expression, oc-

clusion, and lighting condition, as shown in Fig. 1. Face de-

tection has made significant progress after the seminal work

by Viola and Jones [21]. Modern face detectors can easily

detect near frontal faces and are widely used in real world

applications, such as digital camera and electronic photo al-

1WIDER FACE dataset, protocol files, and benchmark leader boards

are available at: http://mmlab.ie.cuhk.edu.hk/projects/

WIDERFace/.

Figure 1. We propose a WIDER FACE dataset for face detec-

tion, which has a high degree of variability in scale, pose, occlu-

sion, expression, appearance and illumination. We show example

images (cropped) and annotations. The annotated face bounding

box is denoted in green color. The WIDER FACE dataset consists

of 393, 703 labeled face bounding boxes in 32, 203 images (Best

view in color).

bum. Recent research [2, 14, 17, 24, 28] in this area focuses

on the unconstrained scenario, where a number of intricate

factors such as extreme pose, exaggerated expressions, and

large portion of occlusion can lead to large visual variations

in face appearance.

Publicly available benchmarks such as FDDB [11],
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AFW [30], PASCAL FACE [23], have contributed to

spurring interest and progress in face detection research.

However, as algorithm performance improves, more chal-

lenging datasets are needed to trigger progress and to inspire

novel ideas. Current face detection datasets typically con-

tain a few thousand faces, with limited variations in pose,

scale, facial expression, occlusion, and background clutter,

making it difficult to assess for real world performance. As

we will demonstrate, the limitations of datasets have par-

tially contributed to the failure of some algorithms in coping

with heavy occlusion, small scale, and atypical pose.

In this work, we make three contributions. (1) We in-

troduce a large-scale face detection dataset called WIDER

FACE. It consists of 32, 203 images with 393, 703 labeled

faces, which is 10 times larger than the current largest face

detection dataset [12]. The faces vary largely in appearance,

pose, and scale, as shown in Fig. 1. In order to quantify dif-

ferent types of errors, we annotate multiple attributes: oc-

clusion, pose, and event categories, which allows in depth

analysis of existing algorithms. (2) We show an example

of using WIDER FACE through proposing a multi-scale

two-stage cascade framework, which uses divide and con-

quer strategy to deal with large scale variations. Within this

framework, a set of convolutional networks with various

size of input are trained to deal with faces with a specific

range of scale. (3) We benchmark four representative al-

gorithms [17, 21, 24, 28], either obtained directly from the

original authors or reimplemented using open-source codes.

We evaluate these algorithms on different settings and ana-

lyze conditions in which existing methods fail.

2. Related Work

Brief review of recent face detection methods: Face

detection has been studied for decades in the computer

vision literature. Modern face detection algorithms can

be categorized into four categories: cascade based meth-

ods [2, 10, 15, 16, 21], part based methods [19, 23, 30],

channel feature based methods [25, 24], and neural network

based methods [6, 14, 25, 28]. Here we highlight a few no-

table studies. A detailed survey can be found in [27, 29].

The seminal work by Viola and Jones [21] introduces inte-

gral image to compute Haar-like features in constant time.

These features are then used to learn AdaBoost classifier

with cascade structure for face detection. Various later stud-

ies follow a similar pipeline. Among those variants, SURF

cascade [15] achieves competitive performance. Chen et

al. [2] learn face detection and alignment jointly in the same

cascade framework and obtain promising detection perfor-

mance.

One of the well-known part based methods is deformable

part models (DPM) [7]. Deformable part models define

face as a collection of parts and model the connections

of parts through Latent Support Vector Machine. The

Table 1. Comparison of face detection datasets.
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AFW [30] - - 0.2k 0.47k 12% 70% 18% - - ✦
FDDB [11] - - 2.8k 5.1k 8% 86% 6% - - -

PASCAL FACE [23] - - 0.85k 1.3k 41% 57% 2% - - -

IJB-A [12] 16k 33k 8.3k 17k 13% 69% 18% - - -

MALF [26] - - 5.25k 11.9k N/A N/A N/A ✦ - ✦
AFLW [13] - - 22k 26k 2.8% 70% 17.2% - - -

WIDER FACE 16k 199k 16k 194k 50% 43% 7% ✦ ✦ ✦

part based methods are more robust to occlusion compared

with cascade-based methods. A recent study [17] demon-

strates state-of-the art performance with just a vanilla DPM,

achieving better results than more sophisticated DPM vari-

ants [23, 30]. Aggregated channel feature (ACF) is first

proposed by Dollar et al. [3] to solve pedestrian detection.

Later on, Yang et al. [24] applied this idea on face detec-

tion. In particular, features such as gradient histogram, in-

tegral histogram, and color channels are combined and used

to learn boosting classifier with cascade structure. Recent

studies [14, 28] show that face detection can be further im-

proved by using deep learning, leveraging the high capacity

of deep convolutional networks. We anticipate that the new

WIDER FACE data can benefit deep convolutional network

that typically requires large amount of data for training.

Existing datasets: We summarize some of the well-known

face detection datasets in Table 1. AFW [30], FDDB [11],

and PASCAL FACE [23] datasets are most widely used in

face detection. The AFW dataset is built using Flickr im-

ages. It has 205 images with 473 labeled faces. For each

face, annotations include a rectangular bounding box, 6
landmarks and the pose angles. The FDDB dataset con-

tains the annotations for 5, 171 faces in a set of 2, 845 im-

ages. PASCAL FACE consists of 851 images and 1, 341
annotated faces. Compared with AFW, FDDB, and PAS-

CAL FACE datasets, the AFLW [13] dataset is used as

training source for face detection. AFLW dataset contains

21, 997 images and 25, 993 annotated faces with 21 land-

marks for each face. IJB-A [12] is proposed for face detec-

tion and face recognition. IJB-A contains 24, 327 images

and 49, 759 faces. MALF is the first face detection dataset

that supports fine-gained evaluation. MALF [26] consists

of 5, 250 images and 11, 931 faces. The FDDB dataset has

helped driving recent advances in face detection. However,

it is collected from the Yahoo! news website which bi-

ases toward celebrity faces. The AFW and PASCAL FACE

datasets contain only a few hundred images and has limited

variations in face appearance and background clutter. The

IJB-A and AFLW datasets have large quantity of labeled

data; however, occlusion and pose are not annotated. The

MAFL dataset labels fine-grained face attributes such as oc-

clusion, pose and expression. The number of images and

faces are relatively small. Due to the limited variations in

existing datasets, the performance of recent face detection
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algorithms saturates on current face detection benchmarks.

For instance, on AFW, the best performance is 97.2% AP;

on FDDB, the highest recall is 91.74%; on PASCAL FACE,

the best result is 92.11% AP. The best few algorithms have

only marginal difference.

3. WIDER FACE Dataset

3.1. Overview

To our knowledge, WIDER FACE dataset is currently

the largest face detection dataset, of which images are se-

lected from the publicly available WIDER dataset [22]. We

choose 32, 203 images and label 393, 703 faces with a high

degree of variability in scale, pose and occlusion as depicted

in Fig. 1. WIDER FACE dataset is organized based on 60
event classes. For each event class, we randomly select

40%/10%/50% data as training, validation and testing sets.

Here, we specify two training/testing scenarios:

• Scenario-Ext: A face detector is trained using any ex-

ternal data, and tested on the WIDER FACE test parti-

tion.

• Scenario-Int: A face detector is trained using WIDER

FACE training/validation partitions, and tested on

WIDER FACE test partition.

We adopt the same evaluation metric employed in the PAS-

CAL VOC dataset [5]. Similar to MALF [26] and Cal-

tech [4] datasets, we do not release bounding box ground

truth for the test images. Users are required to submit final

prediction files, which we shall proceed to evaluate.

3.2. Data Collection

Collection methodology. WIDER FACE dataset is a subset

of the WIDER dataset [22]. The images in WIDER were

collected in the following three steps: 1) Event categories

were defined and chosen following the Large Scale Ontol-

ogy for Multimedia (LSCOM) [18], which provides around

1, 000 concepts relevant to video event analysis. 2) Images

are retrieved using search engines like Google and Bing. For

each category, 1, 000-3, 000 images were collected. 3) The

data were cleaned by manually examining all the images

and filtering out images without human face. Then, similar

images in each event category were removed to ensure large

diversity in face appearance. A total of 32, 203 images are

eventually included in the WIDER FACE dataset.

Annotation policy. We label the bounding boxes for all

the recognizable faces in the WIDER FACE dataset. The

bounding box is required to tightly contain the forehead,

chin, and cheek, as shown in Fig. 2. If a face is occluded,

we still label it with a bounding box but with an estima-

tion on the scale of occlusion. Similar to the PASCAL

VOC dataset [5], we assign an ‘Ignore’ flag to any face

Typical 
annotation

Heavy 
occlusion

Partial 
occlusion

Atypical 
pose

Figure 2. Examples of annotation in WIDER FACE dataset (Best

view in color).
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Figure 3. The detection rate with different number of proposals.

The proposals are generated by using Edgebox [31]. Y-axis de-

notes for detection rate. X-axis denotes for average number of

proposals per image. Lower detection rate implies higher diffi-

culty. We show histograms of detection rate over the number of

proposal for different settings (a) Different face detection datasets.

(b) Face scale level. (c) Occlusion level. (d) Pose level.

which is very difficult to be recognized due to low reso-

lution and small scale (10 pixels or less). After annotating

the face bounding boxes, we further annotate the following

attributes: pose (typical, atypical) and occlusion level (par-

tial, heavy). Each annotation is labeled by one annotator

and cross-checked by two different people.

3.3. Properties of WIDER FACE

WIDER FACE dataset is challenging due to large vari-

ations in scale, occlusion, pose, and background clutter.

These factors are essential to establishing the requirements

for a real world system. To quantify these properties, we

use generic object proposal approaches [1, 20, 31], which

are specially designed to discover potential objects in an

image (face can be treated as an object). Through mea-

suring the number of proposals vs. their detection rate of

faces, we can have a preliminary assessment on the diffi-

culty of a dataset and potential detection performance. In

the following assessments, we adopt EdgeBox [31] as ob-

ject proposal, which has good performance in both accuracy

and efficiency as evaluated in [9].
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Figure 4. Histogram of detection rate for different event categories. Event categories are ranked in an ascending order based on the detection

rate when the number of proposal is fixed at 10, 000. Top 1 − 20, 21 − 40, 41 − 60 event categories are denoted in blue, red, and green,

respectively. Example images for specific event classes are shown. Y-axis denotes for detection rate. X-axis denotes for event class name.

Overall. Fig. 3(a) shows that WIDER FACE has a much

lower detection rate compared with other face detection

datasets. The results suggest that WIDER FACE is a more

challenging face detection benchmark compared to exist-

ing datasets. Following the principles in KITTI [8] and

MALF [26] datasets, we define three levels of difficulty:

‘Easy’, ‘Medium’, ‘Hard’ based on the detection rate of

EdgeBox [31], as shown in the Fig. 3(a). The average recall

rates for these three levels are 92%, 76%, and 34%, respec-

tively, with 8, 000 proposal per image.

Scale. We group the faces by their image size (height in pix-

els) into three scales: small (between 10-50 pixels), medium

(between 50-300 pixels), large (over 300 pixels). We make

this division by considering the detection rate of generic ob-

ject proposal and human performance. As can be observed

from Fig 3(b), the large and medium scales achieve high

detection rate (more than 90%) with 8, 000 proposals per

image. For the small scale, the detection rates consistently

stay below 30% even we increase the proposal number to

10, 000.

Occlusion. Occlusion is an important factor for evaluat-

ing the face detection performance. Similar to a recent

study [26], we treat occlusion as an attribute and assign

faces into three categories: no occlusion, partial occlusion,

and heavy occlusion. Specifically, we select 10% faces

as exemplars. Each exemplar face is annotated with two

bounding boxes that denote the visible and full face extent.

We compute the fraction of occlusion as one minus the vis-

ible face area divided by total face area. A face is defined

as ‘partially occluded’ if 1%-30% of the total face area is

occluded. A face with occluded area over 30% is labeled as

‘heavily occluded’. We ask annotator to measure the frac-

tion of occlusion region for each face based on the exem-

plars in each occlusion category. Fig. 2 shows some exam-

ples of partial/heavy occlusions. Fig. 3(c) shows that the

detection rate decreases as occlusion level increases. The

detection rates of faces with partial or heavy occlusions are

below 50% with 8, 000 proposals.

Pose. Similar to occlusion, we define two pose deforma-

tion levels, namely typical and atypical. Fig. 2 shows some

faces of typical and atypical pose. Face is annotated as atyp-

ical under two conditions: either the roll or pitch degree is

larger than 30-degree; or the yaw is larger than 90-degree.

Fig. 3(d) suggests that faces with atypical poses are much

harder to be detected.

Event. Different events are typically associated with differ-

ent scenes. WIDER FACE contains 60 event categories cov-

ering a large number of scenes in the real world, as shown

in Fig. 1 and Fig. 2. To evaluate the influence of event to

face detection, we characterize each event with three fac-

tors: scale, occlusion, and pose. For each factor we com-

pute the detection rate for the specific event class and then

rank the detection rate in an ascending order. Based on the

rank, events are divided into three partitions: easy (41-60
classes), medium (21-40 classes) and hard (1-20 classes).

We show the partitions based on scale in Fig. 4.

Effective training source. As shown in the Table 1, exist-

ing datasets such as FDDB, AFW, and PASCAL FACE do

not provide training data. Face detection algorithms tested

on these datasets are frequently trained with ALFW [13],

which is designed for face landmark localization. However,

there are two problems. First, ALFW omits annotations of

many faces with a small scale, low resolution, and heavy

occlusion. Second, the background in ALFW dataset is rel-

atively clean. As a result, many face detection approaches

resort to generate negative samples from other datasets such

as PASCAL VOC dataset. In contrast, all recognizable faces

are labeled in the WIDER FACE dataset. Because of its

event-driven nature, WIDER FACE dataset has a large num-

ber of scenes with diverse background, making it possible as

a good training source with both positive and negative sam-

ples. We demonstrate the effectiveness of WIDER FACE as

a training source in Sec. 5.2.
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Figure 5. The pipeline of the proposed multi-scale cascade CNN.

4. Multi-scale Detection Cascade

We wish to establish a solid baseline for WIDER FACE

dataset. As we have shown in Table 1, WIDER FACE con-

tains faces with a large range of scales. Fig. 3(b) further

shows that faces with a height between 10-50 pixels only

achieve a proposal detection rate of below 30%. In order to

deal with the high degree of variability in scale, we propose

a multi-scale two-stage cascade framework and employ a

divide and conquer strategy. Specifically, we train a set of

face detectors, each of which only deals with faces in a rel-

atively small range of scales. Each face detector consists

of two stages. The first stage generates multi-scale propos-

als from a fully-convolutional network. The second stage

is a multi-task convolutional network that generates face

and non-face prediction of the candidate windows obtained

from the first stage, and simultaneously predicts for face lo-

cation. The pipeline is shown in Fig. 5. The two main steps

are explained as follow2.

Multi-scale proposal. In this step, we joint train a set

of fully convolutional networks for face classification and

scale classification. We first group faces into four categories

by their image size, as shown in the Table 2 (each row in the

table represents a category). For each group, we further di-

vide it into three subclasses. Each network is trained with

image patches with the size of their upper bound scale. For

example, Network 1 and Network 2 are trained with 30×30
and 120×120 image patches, respectively. We align a face

at the center of an image patch as positive sample and assign

a scale class label based on the predefined scale subclasses

in each group. For negative samples, we randomly cropped

2More details of Multi-scale Cascade CNN can be found in

the project page: http://mmlab.ie.cuhk.edu.hk/projects/

WIDERFace/.

Table 2. Summary of face scale for multi-scale proposal networks.

Scale Class 1 Class 2 Class 3

Network 1 10-15 15-20 20-30

Network 2 30-50 50-80 80-120

Network 3 120-160 160-200 200-240

Network 4 240-320 320-400 400-480

patches from the training images. The patches should have

an intersection-over-union (IoU) of smaller than 0.5 with

any of the positive samples. We assign a value −1 as the

scale class for negative samples, which will have no contri-

bution to the gradient during training.

We take Network 2 as an example. Let {xi}
N
i=1

be a set

of image patches where ∀xi ∈ R
120×120. We denote the

face class label as {yfi }
N
i=1

and the label of a scale class as

{y
sj
i }Ni=1

, where j ∈ {1, 2, 3} denote the three scale classes.

We minimize the following loss L =
∑N

i=1
ℓ(yfi ,xi) +∑N

i=1

∑
j∈{1,2,3} ℓ(y

sj
i ,xi), where ℓ is the cross entropy

loss. This loss function can be optimized using the stochas-

tic gradient descent with back-propagation.

Face detection. The prediction of proposed windows from

the previous stage is refined in this stage. For each scale

category, we refine these proposals by joint training face

classification and bounding box regression using the same

CNN structure in the previous stage with the same input

size. For face classification, a proposed window is assigned

with a positive label if the IoU between it and the ground

truth bounding box is larger than 0.5; otherwise it is neg-

ative. For bounding box regression, each proposal is pre-

dicted a position of its nearest ground truth bounding box.

If the proposed window is a false positive, the CNN outputs

a vector of [−1,−1,−1,−1]. We adopt the Euclidean loss

and cross-entropy loss for bounding box regression and face

classification, respectively.
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5. Experimental Results

5.1. Benchmarks

As we discussed in Sec. 2, face detection algorithms can

be broadly grouped into four representative categories. For

each class, we pick one algorithm as a baseline method. We

select VJ [21], ACF [24], DPM [17], and Faceness [28] as

baselines. The VJ [21], DPM [17], and Faceness [28] de-

tectors are either obtained from the authors or from open

source library (OpenCV). The ACF [24] detector is reimple-

mented using the open source code. We adopt the Scenario-

Ext here (see Sec. 3.1), that is, these detectors were trained

by using external datasets and are used ‘as is’ without

re-training them on WIDER FACE. We employ PASCAL

VOC [5] evaluation metric for the evaluation. Following

previous work [17], we conduct linear transformation for

each method to fit the annotation of WIDER FACE.

Overall. In this experiment, we employ the evaluation set-

ting mentioned in Sec. 3.3. The results are shown in Fig. 6

(a.1)-(a.3). Faceness [28] outperforms other methods on

three subsets, with DPM [17] and ACF [24] as marginal

second and third. For the easy set, the average precision

(AP) of most methods are over 60%, but none of them sur-

passes 75%. The performance drops 10% for all methods

on the medium set. The hard set is even more challenging.

The performance quickly decreases, with an AP below 30%
for all methods. To trace the reasons of failure, we examine

performance on varying subsets of the data.

Scale. As described in Sec. 3.3, we group faces according

to the image height: small (10-50 pixels), medium (50-300
pixels), and large (300 or more pixels) scales. Fig. 6 (b.1)-

(b.3) show the results for each scale on un-occluded faces

only. For the large scale, DPM and Faceness obtain over

80% AP. At the medium scale, Faceness achieves the best

relative result but the absolute performance is only 70% AP.

The results of small scale are abysmal: none of the algo-

rithms is able to achieve more than 12% AP. This shows

that current face detectors are incapable to deal with faces

of small scale.

Occlusion. Occlusion handling is a key performance met-

ric for any face detectors. In Fig. 6 (c.1)-(c.3), we show the

impact of occlusion on detecting faces with a height of at

least 30 pixels. As mentioned in Sec. 3.3, we classify faces

into three categories: un-occluded, partially occluded (1%-

30% area occluded) and heavily occluded (over 30% area

occluded). With partial occlusion, the performance drops

significantly. The maximum AP is only 26.5% achieved by

Faceness. The performance further decreases in the heavy

occlusion setting. The best performance of baseline meth-

ods drops to 14.4%. It is worth noting that Faceness and

DPM, which are part based models, already perform rela-

tively better than other methods on occlusion handling.

Pose. As discussed in Sec. 3.3, we assign a face pose as

atypical if either the roll or pitch degree is larger than 30-

degree; or the yaw is larger than 90-degree. Otherwise a

face pose is classified as typical. We show results in Fig. 6

(d.1)-(d.2). Faces which are un-occluded and with a scale

larger than 30 pixels are used in this experiment. The per-

formance clearly degrades for atypical pose. The best per-

formance is achieved by Faceness, with a recall below 20%.

The results suggest that current face detectors are only ca-

pable of dealing with faces with out-of-plane rotation and a

small range of in-plane rotation.

Summary. Among the four baseline methods, Faceness

tends to outperform the other methods. VJ performs

poorly on all settings. DPM gains good performance on

medium/large scale and occlusion. ACF outperforms DPM

on small scale, no occlusion and typical pose settings. How-

ever, the overall performance is poor on WIDER FACE,

suggesting a large room of improvement.

5.2. WIDER FACE as an Effective Training Source

In this experiment, we demonstrate the effectiveness of

WIDER FACE dataset as a training source. We adopt

Scenario-Int here (see Sec. 3.1). We train ACF and Face-

ness 3 on WIDER FACE to conduct this experiment. These

two algorithms have shown relatively good performance on

WIDER FACE previous benchmarks (see Sec. 5.1). Faces

with a scale larger than 30 pixels in the training set are used

to retrain both methods. We train the ACF detector us-

ing the same training parameters as the baseline ACF. The

negative samples are generated from the training images.

For the Faceness detector, we first employ models shared

by the authors to generate face proposals from the WIDER

FACE training set. After that, we train the classifier with

the same procedure described in [28]. We test these mod-

els (denoted as ACF-WIDER and Faceness-WIDER) on the

WIDER FACE testing set and the FDDB dataset.

WIDER FACE. As shown in Fig. 7, the retrained models

perform consistently better than the baseline models. The

average AP improvement of retrained ACF detector is 5.4%
in comparison to baseline ACF detector. For the Faceness,

the retrained Faceness model obtain 4.2% improvement on

the WIDER hard test set.

FDDB. We further evaluate the retrained models on the

FDDB dataset. Similar to the WIDER FACE dataset, the

retrained models achieve improvement in comparison to the

baseline methods. The retrained ACF detector achieves a

recall rate of 87.48%, outperforms the baseline ACF by a

considerable margin of 1.4%. The retrained Faceness de-

tector obtains a high recall rate of 91.78%. The recall rate

improvement of the retrained Faceness detector is 0.8% in

comparison to the baseline Faceness detector. It worth not-

ing that the retrained Faceness detector performs much bet-

3More baselines will be re-implemented and reported at: http://

mmlab.ie.cuhk.edu.hk/projects/WIDERFace/.
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(a.2) Medium set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

 

 

ACF-0.526
DPM-0.448
Faceness-0.573
VJ-0.333

(a.3) Hard set
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(b.1) Small scale
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(b.2) Medium scale
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(b.3) Large scale
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(c.1) No occlusion

(c.2) Partial occlusion
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(c.3) Heavy occlusion
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(d.1) Typical pose
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(d.2) Extreme pose

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

 

 

ACF-0.127
DPM-0.162
Faceness-0.183
VJ-0.053

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

 

 

ACF-0.530
DPM-0.453
Faceness-0.579
VJ-0.336

Figure 6. Precision and recall curves of different subsets of WIDER FACES: (a.1)-(a.3) Overall Easy/Medium/Hard subsets. (b.1)-(b.3)

Small/Medium/Large scale subsets. (c.1)-(c.3) None/Partial/Heavy occlusion subsets. (d.1)-(d.2) Typical/Atypical pose subsets.

Table 3. Comparison of per class AP. To save space, we only show abbreviations of category names here. The event category is organized

based on the rank sequence in Fig. 4 (from hard to easy events based on scale measure). We compare the accuracy of Faceness and ACF

models retrained on WIDER FACE training set with the baseline Faceness and ACF. With the help of WIDER FACE dataset, accuracies

on 56 out of 60 categories have been improved. The re-trained Faceness model wins 30 out of 60 classes, followed by the ACF model with

26 classes. Faceness wins 1 medium class and 3 easy classes.

Traf. Fest. Para. Demo. Cere. March. Bask. Shop. Mata. Acci. Elec. Conc. Awar. Picn. Riot. Fune. Chee. Firi. Raci. Vote.

ACF .421 .368 .431 .330 .521 .381 .452 .503 .308 .254 .409 .512 .720 .475 .388 .502 .474 .320 .552 .457

ACF-WIDER .385 .435 .528 .464 .595 .490 .562 .603 .334 .352 .538 .486 .797 .550 .395 .568 .589 .432 .669 .532

Faceness .497 .376 .459 .410 .547 .434 .481 .575 .388 .323 .461 .569 .730 .526 .455 .563 .496 .439 .577 .535

Faceness-WIDER .535 .451 .560 .454 .626 .495 .525 .593 .432 .358 .489 .576 .737 .621 .486 .579 .555 .454 .635 .558

Stoc. Hock. Stud. Skat. Gree. Foot. Runn. Driv. Dril. Phot. Spor. Grou. Cele. Socc. Inte. Raid. Base. Patr. Angl. Resc.

ACF .549 .430 .557 .502 .467 .394 .626 .562 .447 .576 .343 .685 .577 .719 .628 .407 .442 .497 .564 .465

ACF-WIDER .519 .591 .666 .630 .546 .508 .707 .609 .521 .627 .430 .756 .611 .727 .616 .506 .583 .529 .645 .546

Faceness .617 .481 .639 .561 .576 .475 .667 .643 .469 .628 .406 .725 .563 .744 .680 .457 .499 .538 .621 .520

Faceness-WIDER .611 .579 .660 .599 .588 .505 .672 .648 .519 .650 .409 .776 .621 .768 .686 .489 .607 .607 .629 .564

Gymn. Hand. Wait. Pres. Work. Parach. Coac. Meet. Aero. Boat. Danc. Swim. Fami. Ball. Dres. Coup. Jock. Tenn. Spa. Surg.

ACF .749 .472 .722 .720 .589 .435 .598 .548 .629 .530 .507 .626 .755 .589 .734 .621 .667 .701 .386 .599

ACF-WIDER .750 .589 .836 .794 .649 .492 .705 .700 .734 .602 .524 .534 .856 .642 .802 .589 .827 .667 .418 .586

Faceness .756 .540 .782 .732 .645 .517 .618 .592 .678 .569 .558 .666 .809 .647 .774 .742 .662 .744 .470 .635

Faceness-WIDER .768 .577 .740 .746 .640 .540 .637 .670 .718 .628 .595 .659 .842 .682 .754 .699 .688 .759 .493 .632
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(a) WIDER Easy
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(b) WIDER Medium
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(c) WIDER Hard
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(d) FDDB

Figure 7. WIDER FACE as an effective training source. ACF-

WIDER and Faceness-WIDER are retrained with WIDER FACE,

while ACF and Faceness are the original models. (a)-(c) Preci-

sion and recall curves on WIDER Easy/Medium/Hard subsets. (d)

ROC curve on FDDB dataset.

ter than the baseline Faceness detector when the number of

false positive is less than 300.

Event. We evaluate the baseline methods on each event

class individually and report the results in Table 3. Faces

with a height larger than 30 pixels are used in this experi-

ment. We compare the accuracy of Faceness and ACF mod-

els retrained on WIDER FACE training set with the baseline

Faceness and ACF. With the help of WIDER FACE dataset,

accuracies on 56 out of 60 event categories have been im-

proved. It is interesting to observe that the accuracy ob-

tained highly correlates with the difficulty levels specified

in Sec. 3.3 (also refer to Fig. 4). For example, the best per-

formance on “Festival” which is assigned as a hard class is

no more than 46% AP.

5.3. Evaluation of Multi­scale Detection Cascade

In this experiment we evaluate the effectiveness of the

proposed multi-scale cascade algorithm. Apart from the

ACF-WIDER and Faceness-WIDER models (Sec. 5.2), we

establish a baseline based on a “Two-stage CNN”. This

model differs to our multi-scale cascade model in the way

it handles multiple face scales. Instead of having multiple

networks targeted for different scales, the two-stage CNN

adopts a more typical approach. Specifically, its first stage

consists only a single network to perform face classification.

During testing, an image pyramid that encompasses differ-

ent scales of a test image is fed to the first stage to generate

multi-scale face proposals. The second stage is similar to

our multi-scale cascade model – it performs further refine-

ment on proposals by simultaneous face classification and

bounding box regression.

We evaluate the multi-scale cascade CNN and baseline
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(b) WIDER Medium
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Figure 8. Evaluation of multi-scale detection cascade: (a)-(c) Pre-

cision and recall curves on WIDER Easy/Medium/Hard subsets.

methods on WIDER Easy/Medium/Hard subsets. As shown

in Fig. 8, the multi-scale cascade CNN obtains 8.5% AP im-

provement on the WIDER Hard subset compared to the re-

trained Faceness, suggesting its superior capability in han-

dling faces with different scales. In particular, having mul-

tiple networks specialized on different scale range is shown

effective in comparison to using a single network to han-

dle multiple scales. In other words, it is difficult for a sin-

gle network to handle large appearance variations caused

by scale. For the WIDER Medium subset, the multi-scale

cascade CNN outperforms other baseline methods with a

considerable margin. All models perform comparably on

the WIDER Easy subset.

6. Conclusion

We have proposed a large, richly annotated WIDER

FACE dataset for training and evaluating face detection al-

gorithms. We benchmark four representative face detection

methods. Even considering an easy subset (typically with

faces of over 50 pixels height), existing state-of-the-art al-

gorithms reach only around 70% AP, as shown in Fig. 8.

With this new dataset, we wish to encourage the commu-

nity to focusing on some inherent challenges of face de-

tection – small scale, occlusion, and extreme poses. These

factors are ubiquitous in many real world applications. For

instance, faces captured by surveillance cameras in public

spaces or events are typically small, occluded, and with

atypical poses. These faces are arguably the most interest-

ing yet crucial to detect for further investigation.

Acknowledgement This work is partially supported by Sense-

Time Group Limited, the Hong Kong Innovation and Technology 
Support Programme, the General Research Fund sponsored by the 
Research Grants Council of the Kong Kong SAR (CUHK 416312), 
and the National Natural Science Foundation of China (61503366, 
91320101, 61472410; Corresponding author: Ping Luo).

5532



References

[1] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In CVPR, 2014. 3

[2] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade

face detection and alignment. In ECCV. 2014. 1, 2

[3] P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral channel

features. In BMVC, 2009. 2

[4] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: A benchmark. In CVPR, 2009. 3

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The Pascal visual object classes VOC

challenge. IJCV, 2010. 3, 6

[6] S. S. Farfade, M. Saberian, and L. Li. Multi-view face de-

tection using deep convolutional neural networks. In ICMR,

2015. 2

[7] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 2010. 2

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

CVPR, 2012. 4

[9] J. Hosang, R. Benenson, and B. Schiele. How good are de-

tection proposals, really? In BMVC, 2014. 3

[10] C. Huang, H. Ai, Y. Li, and S. Lao. High-performance rota-

tion invariant multiview face detection. TPAMI, 2007. 2

[11] V. Jain and E. Learned-Miller. FDDB: A benchmark for face

detection in unconstrained settings. Technical report, Uni-

versity of Massachusetts, Amherst, 2010. 1, 2

[12] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney,

K. Allen, P. Grother, A. Mah, M. Burge, and A. K. Jain.

Pushing the frontiers of unconstrained face detection and

recognition: IARPA janus benchmark A. In CVPR, 2015.

2

[13] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof. An-

notated facial landmarks in the wild: A large-scale, real-

world database for facial landmark localization. In First

IEEE International Workshop on Benchmarking Facial Im-

age Analysis Technologies, 2011. 2, 4

[14] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-

tional neural network cascade for face detection. In CVPR,

2015. 1, 2

[15] J. Li and Y. Zhang. Learning SURF cascade for fast and

accurate object detection. In CVPR, 2013. 2

[16] S. Liao, A. K. Jain, and S. Z. Li. A fast and accurate uncon-

strained face detector. TPAMI, 2015. 2

[17] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool.

Face detection without bells and whistles. In ECCV. 2014.

1, 2, 6

[18] M. Naphade, J. Smith, J. Tesic, S.-F. Chang, W. Hsu,

L. Kennedy, A. Hauptmann, and J. Curtis. Large-scale con-

cept ontology for multimedia. MultiMedia, 2006. 3

[19] R. Ranjan, V. M. Patel, and R. Chellappa. A deep pyramid

deformable part model for face detection. CoRR, 2015. 2

[20] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

2013. 3

[21] P. Viola and M. J. Jones. Robust real-time face detection.

IJCV, 2004. 1, 2, 6

[22] Y. Xiong, K. Zhu, D. Lin, and X. Tang. Recognize complex

events from static images by fusing deep channels. In CVPR,

2015. 3

[23] J. Yan, X. Zhang, Z. Lei, and S. Z. Li. Face detection by

structural models. IVC, 2014. 2

[24] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Aggregate channel

features for multi-view face detection. CoRR, 2014. 1, 2, 6

[25] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Convolutional channel

features. In ICCV, 2015. 2

[26] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Fine-grained evaluation

on face detection in the wild. In FG, 2015. 2, 3, 4

[27] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in

images: a survey. TPAMI, 2002. 1, 2

[28] S. Yang, P. Luo, C. C. Loy, and X. Tang. From facial parts

responses to face detection: A deep learning approach. In

ICCV, 2015. 1, 2, 6

[29] C. Zhang and Z. Zhang. A survey of recent advances in face

detection. Technical report, Tech. rep., Microsoft Research,

2010. 2

[30] X. Zhu and D. Ramanan. Face detection, pose estimation,

and landmark localization in the wild. In CVPR, 2012. 2

[31] C. Zitnick and P. Dollár. Edge boxes: Locating object pro-

posals from edges. In ECCV, 2014. 3, 4

5533


