
Efficient Training of Very Deep Neural Networks for Supervised Hashing

Ziming Zhang, Yuting Chen and Venkatesh Saligrama

Center for Information & Systems Engineering, Boston University

{zzhang14, yutingch, srv}@bu.edu

Abstract

In this paper, we propose training very deep neural net-

works (DNNs) for supervised learning of hash codes. Exist-

ing methods in this context train relatively “shallow” net-

works limited by the issues arising in back propagation (e.g.

vanishing gradients) as well as computational efficiency.

We propose a novel and efficient training algorithm inspired

by alternating direction method of multipliers (ADMM) that

overcomes some of these limitations. Our method decom-

poses the training process into independent layer-wise lo-

cal updates through auxiliary variables. Empirically we

observe that our training algorithm always converges and

its computational complexity is linearly proportional to the

number of edges in the networks. Empirically we man-

age to train DNNs with 64 hidden layers and 1024 nodes

per layer for supervised hashing in about 3 hours using a

single GPU. Our proposed very deep supervised hashing

(VDSH) method significantly outperforms the state-of-the-

art on several benchmark datasets.

1. Introduction

Supervised hashing techniques aim to learn compact and

similarity-preserving binary representations from labeled

data, such that similar inputs are mapped to nearby bi-

nary hash codes in the Hamming space, and information re-

trieval can be efficiently and effectively done in large-scale

databases. A large category of these methods seek to learn a

set of hyperplanes as linear hash functions, such as Iterative

Quantization (ITQ) [12], supervised Minimal Loss Hash-

ing (MLH) [32], Semi-Supervised Hashing (SSH) [46], and

FastHash [28]. Several kernel-based hashing methods like

Binary Reconstructive Embedding (BRE) [24] and Kernel-

Based Supervised Hashing (KSH) [30] have also been pro-

posed.

It is well recognized that deep models are able to learn

powerful image representations in a latent space where sam-

ples with different properties can be well separated. In this

context convolutional Neural Networks (CNN) based hash-

ing schemes have been developed [10, 19, 22, 44, 47, 48,

54]. Hash codes learned from these latent spaces have been

shown to significantly improve the retrieval performance on

many benchmark datasets.

Nevertheless, the efficacy of deep learning in applica-

tions such as hashing hinges on the ability to efficiently train

deep models [11]. Back propagation (or “backprop”) [36]

is currently the most widely-used training method in deep

learning due to its simplicity. Backprop is known to suf-

fer from the so called vanishing gradient issue [16], where

gradients in the front layers of an n-layer network decrease

exponentially with n. This directly impacts computational

efficiency, which in turn limits the size of the networks that

can be trained. For instance, the training of VGG’s very

deep features [39] for ILSVRC2014 with 16 convolutional

layers takes approximately one month using 4 GPUs.

Contributions: We propose a very deep supervised hashing

(VDSH) algorithm by training very deep neural networks

for hashing. Our method can take in any form of vector in-

put, such as raw image intensities, traditional features like

GIST [33], or even CNN features [26]. Given training data

with class labels, our network learns a data representation

tailored for hashing, and outputs binary hash codes with

varying lengths. VDSH can easily train large very deep net-

works within hours on a single GPU.

Our learning objective is to generate optimal hash codes

for linear classification. To this end we minimize the least

square between the weighted encoding features (i.e. the out-

put of our last hidden layer) and their label vectors with reg-

ularization on model parameters to prevent overfitting.

Rather than using backprop, we propose a novel com-

putationally efficient training algorithm for VDSH inspired

by alternating direction method of multipliers (ADMM) [2].

We represent DNN features in a recursive way by intro-

ducing an auxiliary variable to model the output of each

hidden layer for each data sample. Then we apply the

augmented Lagrangian to incorporate our learning objec-

tive with equality constraints, where another set of auxil-

iary variables are introduced to store the network weights

between every pair of adjacent layers locally for efficient

update.

Empirically we demonstrate smooth convergence and

11487

computational efficiency for VDSH. Our training complex-

ity is linearly proportional to the number of connections be-

tween nodes in the network. We train DNNs with up to 64

hidden layers and 1024 nodes per layer for supervised learn-

ing of hash codes within about 3 hours on a single GTX TI-

TAN GPU, while achieving state-of-the-art results on sev-

eral benchmark datasets.

1.1. Related Work

(i) Supervised hashing with deep models: Learning high-

level feature representations by building deep hierarchical

models have shown great potential in various applications.

Researchers have been adopting deep models to jointly

learn image representations and hash codes from data. Kang

et al. [19] proposed a deep multi-view hashing (DMVH)

algorithm to learn hash codes with multiple data represen-

tations. Xia et al. [47] proposed learning image represen-

tations for supervised hashing by approximating the data

affinity matrix with CNN features. Zhao et al. [54] pro-

posed a Deep Semantic Ranking Hashing (DSRH) method

to preserve multilevel semantic similarity between multi-

label images. Erin Liong et al. [10] proposed a deep hashing

method to explore the nonlinear relationships among data.

Zhang et al. [48] proposed a Deep Regularized Similarity

Comparison Hashing (DRSCH) method to allow the length

of output bits to be scalable. Most of the works learn hash

functions on top of a deep CNN architecture. In contrast,

VDSH can be built from arbitrary vector representations.

When CNN features are used, our method can be viewed as

fine-tuning these networks for supervised hashing. Besides,

the scale and depth of our DNNs are much larger than pre-

vious methods, which pose harder challenges for training.

(ii) DNNs: In the literature, many different DNN architec-

tures (e.g. LeNet [26], AlexNet [23], GoogLeNet [41] and

VGG-VD [39]) and weighting structures (e.g. sparse net-

work [7], circulant structure [29], low-rank approximation

[37]) have been proposed. Several techniques have been

proposed to improve the generalization of networks such

as dropout [40] and dropconnet [43], which can be viewed

as better regularization. Some techniques for speeding-up

the training have been proposed as well such as distributed

training [9] and batch normalization [18]. These architec-

tures and methods, however, are trained using backprop,

suffering from the same issues such as vanishing gradients.

Ongoing efforts to overcome issues in backprop include

variational Bayesian autoencoder [20], auto-encoding target

propagation [1], and difference target propagation [27].

Carreira-Perpinán and Wang [4] recently proposed a

method for training deeply nested systems. Their method

of auxiliary coordinates (MAC) breaks down the depen-

dency in nested systems into equality constraints, so that

the quadratic penalty method can be utilized as an efficient

solver. Shen et al. [38] proposed a Supervised Discrete

Hashing (SDH) method based on MAC which achieved the

state-of-the-art on supervised hashing. Carreira-Perpinán

and Raziperchikolaei [3] proposed learning binary autoen-

coders for hashing as well using MAC.

In contrast our ADMM-based method is more suit-

able and efficient for solving regularized loss minimiza-

tion as has been shown in the Block-Splitting algorithm

[34]. ADMM solves optimization (possibly nonconvex)

problems with equality constraints by decomposing an ob-

jective into several disjoint sub-objectives using new auxil-

iary variables so that the original objective can be optimized

iteratively using coordinate descent. With small additional

computational cost we circumvent the need for relaxation of

penalty related parameters as required in this context [31].

2. Very Deep Supervised Hashing

Our problem setup closely mirrors [38]. We are given

a collection of N samples X = {xi}
N
i=1 ∈ R

d×N . Our

goal is to learn a collection of K-bit binary codes B ∈
{−1, 1}K×N where the i-th column bi ∈ {−1, 1}K denotes

the binary code for the i-th sample xi.

To learn these codes we consider a parameterized family

of models, F (x,Θ), parameterized by Θ, that map an arbi-

trary element x ∈ X to R
K . The hash code for a particular

model described by Θ is then obtained by taking the sign of

F , namely,

bi = sgn(F (xi,Θ)), (1)

where sgn denotes the entry-wise sign function, i.e.

sgn(x) = 1 if x > 0, otherwise sgn(x) = −1.

In supervised hashing we are also provided with class

labels for the N samples and the goal in this context is to

ensure that the binary codes for the samples correspond-

ing to each class are similar. We adopt the perspective of

[38] in that binary codes that are learned in the context of

linear classification are good hashing codes, namely, they

preserve semantic similarity of the data samples. To this

end, we encode the ground truth for each of the C classes

into C-dim binary vectors, yi, i = 1, . . . , N where the j-

th entry yji = 1 if xi belongs to class j. Our hypoth-

esis suggests that there is a collection of C linear classi-

fier functions, w1,w2, . . . ,wC such that the predicted out-

put ŷi = [wT
1 bi, w

T
2 bi, . . . , w

T
Cbi]

T = WTbi closely

matches the ground-truth label vector yi for data xi, where

(·)T denotes the matrix transpose operator. In other words,

we seek hash codes and linear classifiers W such that

ŷi ≈ yi, where the approximation error is measured in

terms of some loss function L. This leads to the following

optimization problem as in [38]:

min
Θ,W,B

∑

i

L(WTbi,yi) + Ω(Θ,W), (2)

s.t. bi = sgn(F (xi,Θ)), ∀i.

1488

Note that this formulation is identical to an unconstrained

objective function, namely,

min
Θ,W

∑

i

L(WT sgn(F (xi,Θ)),yi) + Ω(Θ,W). (3)

Much of the difficulty arises from the need to deal with the

sign function. A number of researchers (see [38]) have pro-

posed various techniques to deal with this problem. These

include (a) approximating the sign function using sigmoids

(e.g. [30]); (b) penalizing deviations between F (·,Θ) and

B (e.g. [38]); (c) relaxing the binary constraint to be con-

tinuous (e.g. [46]), i.e. bi = F (xi,Θ). We adopt approach

(c), where we first learn the continuous embeddings bi and

then threshold them later to be binary codes. This leads to

our objective in training VDSH as follows:

min
Θ,W

∑

i

L(WTF (xi,Θ),yi) + Ω(Θ,W). (4)

While [38] suggests that this method can be fast, it

may lead to sub-optimal performance. As we will see

in our experiments this potential suboptimality is off-

set by training very deep models resulting in signifi-

cantly better performance relative to [38]. For sim-

plicity, we choose squared loss functions and penalties

(although many other choices such as hinge loss, ℓ1
norm penalty etc. are all possible). Specifically, we let

L(WTF (xi,Θ),yi) = 1
2

∥

∥WTF (xi,Θ)− yi

∥

∥

2

2
be a

square loss function. Ω(Θ,W) = αθ

2

∑

m ‖θ(m)‖22 +
αW

2 ‖W‖2F denotes a joint regularizer over Θ and W,

where ‖ · ‖2 and ‖ · ‖F denote ℓ2 norm and Frobenius norm,

respectively, and αθ ≥ 0 and αW ≥ 0 are regularization

parameters.

2.1. Very Deep Hashing Model

We formally describe our parameterized model for

F (x,Θ) in this section. Our very deep hashing model

(VDSH) is a network with M hidden layers given by:

F0(xi) = xi,

Fm(xi) = fm(Fm−1(xi);θ
(m)), 1 ≤ m ≤ M

(5)

where Θ = {θ(m)}Mm=1 denotes the set of weights for the

entire network, each θ
(m) ∈ R

Dm×Dm−1(D0 = d,DM =
K) denotes the weights between the (m − 1)-th and m-th

hidden layers, each fm : RDm−1 7→ R
Dm denotes a non-

linear function which maps the outputs from lower layers

Fm−1(xi) to the outputs of upper layers Fm(xi). We let

the final layer be F (xi,Θ) = FM (xi). In VDSH we utilize

the ReLU [15] activation function as f . In particular,

fm(xi;θ
(m)) = max

{

0,θ(m)xi

}

, (6)

Figure 1. Schematics of VDSH training algorithm. Blue color repre-

sents the network structures, the red and green dashed rectangles repre-

sent two two-layer substructures. (Left) Fm(xi) (resp. Fm−1(xi) and

Fm+1(xi)) denotes the output from the m-th (resp. (m − 1)-th and

(m + 1)-th) hidden layers for a data sample xi. (Right) For each data

sample we introduce two types of auxiliary variables z and θ̃ to represent

the outputs of each hidden layer for the data samples and the local copies of

network weights for the substructures. Learning the network weights de-

composes into independent local learning of weights, leading to efficiency

and feasibility of very deep learning

where max is an entry-wise maximum operator. Note that

it is possible for our method to incorporate more complex

functions to define f so that more complex operations on

the hidden nodes can be involved as well, e.g. maxout [13],

dropout [40], dropconnet [43], batch normalization [18],

and network pruning [14]. But this discussion is out of the

scope of our paper, and we consider it as our future work.

2.2. Optimization

While backprop is an option for training VDSH and has

been used before for learning hash codes [10], it suffers

from the well-known “vanishing gradient problem” [16]

where gradients in the front layers of an n-layer network

decrease exponentially with n. This directly impacts com-

putational efficiency, which in turn limits the size of the net-

works that can be trained. To overcome this problem, we

explicitly introduce a set of auxiliary variables {zi,m} for

every xi at every layer m to represent our network in Eq. 5

to circumvent long-term dependencies during training:

zi,m = Fm(xi), ∀i, ∀0 ≤ m ≤ M. (7)

In this way, as observed by [4], the auxiliary variables break

down the network into a collection of two-adjacent-layer

substructures (see Fig. 1).

The issue is that we are still left with dependency be-

tween the loss function L and the regularizer Ω (see Fig. 1).

To circumvent this issue we we introduce new auxiliary

variables θ̃
(m)

i = θ
(m), ∀i, ∀m, motivated by the block

splitting algorithm [34]. We are now in a position to up-

date network weights Θ locally and independently across

the different layers, which leads to improved computational

1489

Figure 2. Illustration of empirical convergence of VDSH using the Lagrangian dual variables for auxiliary variables z’s with different dual update steps β.

efficiency. We rewrite our objective in terms of these auxil-

iary variables as follows:

min
Θ,W,Z,Θ̃

1

2

∑

i

∥

∥WT zi,M − yi

∥

∥

2

2
+Ω(Θ,W), (8)

s.t. θ̃
(m)

i = θ
(m), zi,m = f(zi,m−1; θ̃

(m)

i), ∀i, ∀m ∈ [1,M],

where Z = {zi,m} and Θ̃ = {θ̃
(m)

i }. Note that unlike con-

ventional ADMM methods the second equality constraint

is nonlinear. Our next step is to introduce the augmented

Lagrangian as follows:

min
Θ,W,Z,Θ̃,U,V

1

2

∑

i

∥

∥WT zi,M − yi

∥

∥

2

2
+Ω(Θ,W) (9)

+
β

2

∑

i,m

∥

∥

∥
zi,m − f(zi,m−1; θ̃

(m)

i) + ui,m

∥

∥

∥

2

2

+
γ

2

∑

i,m

∥

∥

∥
θ
(m) − θ̃

(m)

i + vi,m

∥

∥

∥

2

2
,

where U = {ui,m} and V = {vi,m} denote the Lagrangian

related parameters, β ≥ 0 and γ ≥ 0 are predefined dual

update steps. Note that the Lagrangian dual variables for

z’s and θ’s are computed using βui,m and γvi,m, ∀i, ∀m,.

To solve Eq. 9, we propose a novel algorithm

listed in Alg. 1, where N denotes the total num-

ber of training samples and I denotes the identity ma-

trix. For better exposition in Alg. 1, we denote

∀i, ∀m,Gi,m(·) =
∥

∥

∥
zi,m − f(zi,m−1; θ̃

(m)

i) + ui,m

∥

∥

∥

2

2
,

Qi,m(·) =
∥

∥

∥
θ
(m) − θ̃

(m)

i + vi,m

∥

∥

∥

2

2
. We alternatively op-

timize one variable of G or Q at a time.In each iteration,

using the auxiliary variables z’s the classification error is

first propagated to the last (or top) hidden layer and then se-

quentially propagated to the rest of the hidden layers. Next

given these updated z’s, the local copies of network weights

θ̃
(m)

i are updated independently. This later leads to updates

of the entire network weights Θ. Finally the classifier W is

updated to minimize the total regularized loss while fixing

the rest of the parameters. We repeat the updating until the

algorithm satisfies convergence condition. Note that since

Algorithm 1 VDSH training algorithm

Input : training data {(xi,yi)} and parameters αθ, αW , β, γ

Output : network weights Θ

Randomly initialize Θ,W;

∀i, ∀m ∈ [1,M], θ̃
(m)
i ← θ

(m),vi,m ← 0, zi,0 ← xi, zi,m ←

f(zi,m−1; θ̃
(m)
i),ui,m ← 0;

repeat

foreach i do

zi,M ← argminzi,M

{

1
2

∥

∥WT zi,M − yi

∥

∥

2

2
+ β

2
Gi,M (zi,M)

}

;

ui,M ← ui,M + zi,M − f(zi,M−1; θ̃
(M)
i);

end

for m = M − 1 : −1 : 1 do

∀i, zi,m ← argminzi,m {Gi,m(zi,m) + Gi,m+1(zi,m)};

∀i,ui,m ← ui,m + zi,m − f(zi,m−1; θ̃
(m)
i);

end

foreach m do

∀i, θ̃
(m)
i ← argmin

θ̃
(m)
i

{

βGi,m(θ̃
(m)
i) + γQi,m(θ̃

(m)
i)

}

;

θ
(m) ← γ

γN+αθ

∑

i

(

θ̃
(m)
i − vi,m

)

;

∀i,vi,m ← vi,m + θ
(m) − θ̃

(m)
i ;

end

W← argminW

{

αW

2
‖W‖2F + 1

2

∑

i

∥

∥WT zi,M − yi

∥

∥

2

2

}

;

until converge;

return Θ;

foreach loop in Alg. 1 can be updated independently it is

amenable to distributed or parallel computation [45]. Nev-

ertheless, we do not pursue it here.

During testing, we utilize the learned network weights Θ

and apply Eq. 1 and 5 to compute the hash codes.

2.3. Discussion

We analyze the behavior of VDSH training algorithm in

Alg. 1 with a small DNN of 8 hidden layers and 64 nodes

(or neurons) per layer on the MNIST [25] dataset. For sim-

plicity, all training parameters are set beforehand. Each sub-

problem in Alg. 1 is optimized with subgradient descent.

(i) Empirical convergence: Theoretically our VDSH is

not guaranteed to converge to local minima. Neverthe-

less, empirically ADMM works well even if the objec-

tives are nonconvex as observed in [17]. Note that the La-

grangian dual variables for z’s (i.e. Ei(β‖ui,m‖2), ∀m) and

1490

(a) Original raw pixel features (b) Layer-1 output features (c) Layer-2 output features (d) Layer-4 output features (e) Layer-8 output features

Figure 3. t-SNE visualization of different features on MNIST training samples, where different colors denote different classes. Clearly, for this network

the output features with more hidden layers are better separated, i.e. layer-8 output features (before rounding) are the best.

(a) (b)

Figure 4. Actual training time comparison using CPU and GPU by (a)

training 8 hidden layer DNNs with different number of nodes per layer,

and (b) training DNNs with various hidden layers but 64 nodes per layer.

θ’s (i.e. Ei(γ‖vi,m‖2), ∀m) will converge when zi,m =

f(zi,m−1;θ
(m)) and θ̃

(m)

i = θ
(m), ∀i, ∀m, holds respec-

tively. This motivates us to plot the mean of the ℓ2 norm of

the Lagrangian dual variables to demonstrate the empirical

convergence behavior of our VDSH.

Fig. 2 depicts the empirical convergence behavior for

each hidden layer. Intuition suggests that small dual up-

date steps (e.g. β = 10−5, 10−3) lead to slow convergence,

which we see empirically in slow change in terms of mean

value. On the other hand large steps (e.g. β = 10) can

lead to zigzag behavior around a local optimum. For an

appropriate step size (e.g. β = 10−1), we do see smooth

convergence at all the layers.

Interestingly, for all the four different dual steps, all eight

layers tend to show similar convergence rates. For instance,

in Fig. 2(c) where β = 10−1, all curves tend to be rela-

tively flat by iteration 100. This implies larger changes at

front layers and small changes at final layers in our network,

leading to faster convergence. This in turn implies that our

training algorithm for VDSH has the potential to overcome

the vanishing gradient issue in backprop1. Similar behavior

has been observed for θ.

We visualize the output features from different layers

with β = 10−1 at 100 iterations using t-SNE [42] in Fig. 3.

As the number of layers increases, the data evidently forms

clearer clusters, indicating that our VDSH not only encodes

data effectively but also converges at each layer.

(ii) Computational complexity: The computational com-

plexity of VDSH is O(
∑M

m=0 DmDm+1N) where D0 = d

1For graphical comparison on convergence rate, please refer to http:

//neuralnetworksanddeeplearning.com/chap5.html

denotes the input dimension, DM+1 = Nc denotes output

dimension (i.e. the number of classes), and N the number of

training samples. This follows from the fact that the com-

putational complexity of training VDSH is proportional to

training each individual two-layer substructure (see Fig. 1)

on account of our ADMM-style decomposition. Now since

information goes through the substructure back and forth

with subgradient descent updates, the computational com-

plexity of a substructure per data sample corresponding to

layers m, m+ 1 grows as O(DmDm+1).

We depict the speed of training using un-optimized

MATLAB implementation2 in Fig. 4. All training parame-

ters are set as default. The CPU and GPU used for compar-

ison are i7-4930MX@3GHz and Quadro K2100M, respec-

tively. The timing behavior using either CPU or GPU in

both plots supports our computational complexity analysis

above: in (a) the timing is roughly quadratic in the num-

ber of nodes, and in (b) the timing is roughly linear in the

number of hidden layers.

We also compare our method with backprop in terms of

computational time. To train a shallow model with 4 hidden

layers and 64 nodes per layer, our training speed is about

20 times faster than backprop while achieving similar per-

formance. However, to train a deeper model with 48 hid-

den layers and 256 nodes per layer, our training algorithm

converges within 1 hour, while backprop has not converged

within weeks.

3. Experiments

In this section, we compare our VDSH with state-of-

the-art supervised hashing methods, including SDH [38],

BRE [24], MLH [32], CCA-ITQ [12], KSH [30], FastHash

[28], DSRH [54], DSCH [48] and DRSCH [48] on image

retrieval tasks. Following the evaluation protocols used in

previous supervised hashing methods (e.g. [38, 48]), each

dataset is split into a large retrieval database and a small

query set. The entire retrieval database is used to train the

hashing models unless otherwise specified. The lengths of

output hash codes vary from 16 to 128 bits. The retrieval

performance on the query set is evaluated using mean aver-

2Our code can be downloaded at https://zimingzhang.

wordpress.com/.

1491

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html
https://zimingzhang.wordpress.com/
https://zimingzhang.wordpress.com/

60

70

64

80

90

A
U

C
 (

%
)

48

100

32

Layers

MNIST: Precision

16 1024512

Nodes

8 2561284 6432

(a)

60

70

64

80

90

A
U

C
 (

%
)

48

100

32

Layers

MNIST: MAP

16 1024512

Nodes

8 2561284 6432

(b)

30

40

64

50

60

A
U

C
 (

%
)

48

70

32

Layers

CIFAR-10: Precision

16 1024512

Nodes

8 2561284 6432

(c)

30

40

64

50

60

A
U

C
 (

%
)

48

70

32

Layers

CIFAR-10: MAP

16 1024512

Nodes

8 2561284 6432

(d)

Figure 5. Network evaluation using default features (i.e. pixel intensities and GIST) on MNIST and CIFAR-10. (a, c) AUC of the precision vs. code-length

curve w.r.t. varying number of layers and dimensions. (b, d) AUC of the MAP vs. code-length curve w.r.t. varying number of layers and dimensions.

age precision (MAP) and precision (or recall) within Ham-

ming radius 2. All the data samples are normalized to have

unit length. For simplicity, our networks all have the same

number of nodes in each hidden layer. We tune our network

architectures as well as training parameters using cross val-

idation on training data, and report our performance on the

query data using the best networks. Our experiments are all

run on an Xeon E5-2696 v2 and a single GTX TITAN with

un-optimized MATLAB implementation.

3.1. Datasets and Setup

We test VDSH mainly on three benchmark datasets for

image retrieval tasks with learned hash functions: MNIST,

CIFAR-10 [21], and NUS-WIDE [8]. Our method learns

the mapping function from image features to hash codes,

equivalent to learning from image pixels implicitly by com-

position of functions.

MNIST contains 70K gray-scale handwritten digit im-

ages with 28 × 28 pixels from “0” to “9”. Following [38],

we randomly sample 100 images per class to form a 1K im-

age query set, and use the rest 69K images as the training

and retrieval database. By default each image is represented

by a 784-dim vector consisting of its pixel intensities.

CIFAR-10 contains 60K color images of resolution of

32 × 32 pixels from 10 object classes, with 6K images per

class. Following [38], we randomly sample 100 images per

class as the query set and use the rest 59K images as the

training and retrieval set. As default features, each image is

presented by a 512-dim GIST [33] feature vector.

NUS-WIDE contains about 270K images collected from

the web. It is a multi-label dataset where each image is

associated with one or more of the 81 semantic concepts.

Each image is represented by a 500-dim bag-of-words fea-

ture vector that is provided in the dataset. Following [38],

we only consider the 21 most frequent concept labels and

randomly sample 100 images per label to form the query

set. The remaining images are used as the training and re-

trieval set. Two images are considered as a true match if

they share at least one common label.

3.2. Network Evaluation

To explore the effect of different network architectures

on the retrieval performance, we train a series of networks

with varying depth from 4 to 64 hidden layers and dimen-

sion from 32 to 1024 nodes per layer, and report the Area-

Under-Curve (%) of the precision and MAP for varying

code lengths in Fig. 5 for MNIST and CIFAR-10. Note that

for both metrics the plots on both datasets behave similarly,

but the best networks for each dataset is different.

In general larger networks with more hidden layers and

nodes per layer lead to better hash codes and better perfor-

mance. The performance appears to saturate beyond a cer-

tain network size which in turn demonstrates the utility of

regularization in preventing overly complicated models. In

addition we also see that as the number of nodes/layers in-

creases we obtain better retrieval performance. Intuitively,

this makes sense because these numbers control the amount

of information passing from one layer to the other.

3.3. Performance Comparisons

We compare VDSH with other supervised hashing meth-

ods in detail on MNIST and CIFAR-10, respectively. As

our final models, we train a network with 48 hidden layers

and 256 nodes per layer on MNIST, and a network with 16

hidden layers and 1024 nodes per layer on CIFAR-10. The

training time for MNIST is about 15 minutes, and 6.6 mil-

liseconds per sample for testing including hash code gener-

ation to retrieve a 69K-sample database. CIFAR-10 takes

around 1 hour for training, and 4 milliseconds per sample

to retrieve a 59K-sample database.

The comparison with default features is shown in Fig. 6

(a-d). Note that we are unable to use the full training set

for BRE and KSH due to their huge memory requirements,

and hence a 5K image subset is randomly sampled for these

methods. We can see clearly that our VDSH significantly

outputs the competitors by large margins. Also VDSH is

more robust than others by maintaining very stable perfor-

mance across increasing code lengths.

In order to compare VDSH fairly with other deep hash-

ing methods which learn the CNN features jointly with the

hash codes, we utilize the pre-trained “vgg-f” model [6]

to extract CNN features on MNIST and CIFAR-10 directly

without any fine-tuning. We then apply VDSH, SDH, CCA-

ITQ and FastHash on these CNN features to generate hash

codes. Compared to fully optimized deep hashing meth-

ods such as DRSCH [48], this two-stage scheme has not

1492

16 32 64 96 128

Code length

0

20

40

60

80

100

P
re

c
is

io
n
 (

%
)

MNIST: raw pixel intensity

(a)

16 32 64 96 128

Code length

0

20

40

60

80

100

R
e
c
a
ll

(%
)

MNIST: raw pixel intensity

(b)

16 32 64 96 128

Code length

0

20

40

60

80

P
re

c
is

io
n
 (

%
)

CIFAR-10: GIST feature

(c)

16 32 64 96 128

Code length

0

20

40

60

80

M
A

P
 (

%
)

CIFAR-10: GIST feature

VDSH

SDH

FastHash

CCA-ITQ

MLH

BRE

KSH

(d)

16 32 64 96 128

Code length

80

85

90

95

100

P
re

c
is

io
n
 (

%
)

MNIST: CNN feature

(e)

16 32 64 96 128

Code length

95

96

97

98

99

100

M
A

P
 (

%
)

MNIST: CNN feature

(f)

16 32 64 96 128

Code length

40

50

60

70

80

90

P
re

c
is

io
n
 (

%
)

CIFAR-10: CNN feature

(g)

16 32 64 96 128

Code length

50

60

70

80

90

M
A

P
 (

%
)

CIFAR-10: CNN feature

VDSH

SDH

FastHash

CCA-ITQ

DSRH

DSCH

DRSCH

(h)

Figure 6. Retrieval performance comparison on MNIST and CIFAR-10 within Hamming radius 2.

(a) VDSH: GIST feature

(b) SDH: GIST feature

(c) VDSH: CNN feature

(d) SDH: CNN feature

Figure 7. t-SNE visualization of the 64-bit binary hash codes of all test images in CIFAR-10. (a-b) or (c-d) are plotted using the same images and scales.

been optimized for retrieval. The pre-learned CNN is ag-

nostic to the hash codes that are intended to be generated.

We report the precision and MAP comparison in Fig. 6(e-

h) with the same experimental settings as in [48] and [54]

for the CNN features. Note that they only reported results

with up to 64 bits, so their curves are incomplete here. Sur-

prisingly, both VDSH and SDH work significantly better

than the competitors. VDSH is consistently the best, deliv-

ering robust performance across all code lengths. FastHash

tends to have good MAP performance, however, its preci-

sion within Hamming radius 2 drops drastically with longer

hash codes, which is indicative of its inability to form com-

pact clusters in the hash code space.

Evidently, the robust behavior suggests that the hash

codes generated by VDSH in testing are sufficiently well

clustered that data samples from the same class are mapped

to nearby hash codes. We verify our conjecture by com-

paring VDSH, SDH and FastHash on CIFAR-10: (1) we

visualize the hash codes with 64 bits of all the test images

using t-SNE in Fig. 7, and (2) we directly report the preci-

sion and recall w.r.t. different code lengths with Hamming

radius equal to 0, 1, and 2, respectively, in Fig. 8.

As we see in Fig. 7, with different features VDSH forms

cleaner clusters relative to SDH, suggesting good retrieval

performance3. This visual observation implies that, for

VDSH, during testing a query image typically falls into or

near the cluster belonging to its ground-truth class. This

leads to Hamming distance being relatively small for the

archival data within the same class than for other methods.

We next plot performance for decreasing Hamming ra-

dius in Fig. 8. VDSH appears to be robust and does not

suffer performance degradation with decreasing radius. In

contrast the performance of SDH and FastHash varies sig-

nificantly and they both achieve the best result within Ham-

ming radius 2. This finding further strengthens our view

that VDSH is capable of learning compactly clustered hash

codes across different code lengths (see also Fig. 7).

Finally we test VDSH on NUS-WIDE using a network

with 32 hidden layers and 128 nodes per layer. It takes

less than 5 minutes for training, and 31.4 milliseconds

3Note that (a) appears to have fewer points than (b), but in fact there

are the same number of points in both plots and many of the bit codes for

the same classes collapse to the same 2D points in (a). Similarly we see

this in (c) and (d) as well.

1493

16 32 64 96 128

Code length

0

20

40

60

80

P
re

c
is

io
n
 (

%
)

GIST feature

(a)

16 32 64 96 128

Code length

0

20

40

60

80

R
e
c
a
ll

(%
)

GIST feature

(b)

16 32 64 96 128

Code length

20

40

60

80

P
re

c
is

io
n
 (

%
)

CNN feature

(c)

16 32 64 96 128

Code length

0

20

40

60

80

R
e
c
a
ll

(%
)

CNN feature

VDSH: R=0

VDSH: R=1

VDSH: R=2

SDH: R=0

SDH: R=1

SDH: R=2

FastHash: R=0

FastHash: R=1

FastHash: R=2

(d)

Figure 8. Precision-recall comparison on CIFAR-10 by varying Hamming radius (denoted by “R”) using (a-b) GIST features and (c-d) CNN features.

16 32 64 96 128

Code length

0

20

40

60

80

P
re

c
is

io
n
 (

%
)

NUS-WIDE

(a)

16 32 64 96 128

Code length

35

40

45

50

55

M
A

P
 (

%
)

NUS-WIDE

VDSH

SDH

FastHash

CCA-ITQ

MLH

BRE

KSH

(b)

Figure 9. Precision and MAP comparison on NUS-WIDE with Hamming

radius equal to 2. The features used here are the bag-of-words feature

vectors provided by the dataset.

per sample for hash code generation to retrieve a 190K-

sample database. Performance comparisons are depicted in

Fig. 9. For CCA-ITQ, SDH and VDSH, the entire retrieval

database is used for training. For the other methods, their

huge memory requirements limit us to randomly sample 5K

images for training. Here VDSH consistently achieves the

best. But the performance gap between VDSH and SDH

is not as significant as those in Fig. 6. We hypothesize

that this could be due to the fact that this is a multi-label

dataset. Since we define two images to be neighbors when

they share one common label, about 36 percent of the image

pairs in this dataset are defined to be neighbors, compared

with around 5 percent for a single label dataset of the same

scale. The feature spaces of different classes (i.e. concepts)

thus tend to have large overlap. Our VDSH network could

get confused by the same training samples that belong to

different classes and thus unable to generate very effective

hash codes. Another possibility is that the performance us-

ing the provided bag-of-words features may be already sat-

urated.

In addition, we compare our method with others on

ILSVRC2012 [35]. Same as SDH [38], we randomly select

10 images for each of 1K classes in the training dataset from

ILSVRC2012 to create a 10K-image training set to train dif-

ferent hashing methods, and utilize the entire 50K-image

validation dataset in ILSVRC2012 as the query set. We first

extract 4096-dim features using the vgg-f model. Then we

compare our VDSH with SDH and FastHash based on 64-

bit hash codes within Hamming radius 2, and here are the

results (method, precision, recall): (VDSH, 7.73%, 4.82%),

(SDH, 2.67%, 0.96%), (FastHash, 0.29%, 0.61%). Clearly,

our method is still remarkably better than the state-of-the-

art for supervised hashing.

4. Conclusion

In this paper, we propose a very deep supervised hash-

ing (VDSH) algorithm to learn hash codes by training very

deep neural networks. Our VDSH utilizes the outputs of

DNNs to generate hash codes by rounding. For computa-

tional efficiency we formulate the training of VDSH as an ℓ2
norm regularized least square problem and propose a novel

ADMM based training algorithm which can overcome the

issues such as vanishing gradients in the traditional back-

prop algorithm by decomposing network-wide training into

multiple independent layer-wise local updates. We discuss

the empirical convergence and computational complexity of

our training algorithm, and illustrate the weights learned

by the networks. We conduct comprehensive experiments

to compare VDSH with other (deep) supervised hashing

methods on three benchmark datasets (i.e. MNIST, CIFAR-

10, and NUS-WIDE), and VDSH outperforms the state-of-

the-art significantly. As future work, we plan to introduce

VDSH into person re-identification [49, 50, 51] and zero-

shot activity retrieval [5, 52, 53] as applications.

Acknowledgement

We thank the anonymous reviewers for their very useful com-

ments. This material is based upon work supported in part by the

U.S. Department of Homeland Security, Science and Technology

Directorate, Office of University Programs, under Grant Award

2013-ST-061-ED0001, by ONR Grant 50202168 and US AF con-

tract FA8650-14-C-1728. The views and conclusions contained

in this document are those of the authors and should not be in-

terpreted as necessarily representing the social policies, either ex-

pressed or implied, of the U.S. DHS, ONR or AF.

References

[1] Y. Bengio, D.-H. Lee, J. Bornschein, and Z. Lin. Towards biolog-

ically plausible deep learning. arXiv preprint arXiv:1502.04156,

2015. 2

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-

tributed optimization and statistical learning via the alternating di-

rection method of multipliers. Foundations and Trends R© in Machine

Learning, 3(1):1–122, 2011. 1

1494

[3] M. A. Carreira-Perpinán and R. Raziperchikolaei. Hashing with bi-

nary autoencoders. In CVPR, 2015. 2

[4] M. A. Carreira-Perpinán and W. Wang. Distributed optimization of

deeply nested systems. In AAAI, 2014. 2, 3

[5] G. D. Castanon, Y. Chen, Z. Zhang, and V. Saligrama. Efficient ac-

tivity retrieval through semantic graph queries. In ACM Multimedia,

2015. 8

[6] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return

of the devil in the details: Delving deep into convolutional nets. In

BMVC, 2014. 6

[7] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F.

Chang. An exploration of parameter redundancy in deep networks

with circulant projections. In ICCV, 2015. 2

[8] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. Nus-

wide: A real-world web image database from national university of

singapore. In CIVR, 2009. 6

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Se-

nior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep

networks. In NIPS, pages 1223–1231, 2012. 2

[10] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep hashing

for compact binary codes learning. In CVPR, June 2015. 1, 2, 3

[11] X. Glorot and Y. Bengio. Understanding the difficulty of training

deep feedforward neural networks. In AISTATS, pages 249–256,

2010. 1

[12] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantiza-

tion: A procrustean approach to learning binary codes for large-scale

image retrieval. PAMI, 35(12):2916–2929, 2013. 1, 5

[13] I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Ben-

gio. Maxout networks. In ICML, pages 1319–1327, 2013. 3

[14] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and

connections for efficient neural networks. In NIPS, 2015. 3

[15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classifica-

tion. arXiv preprint arXiv:1502.01852, 2015. 3

[16] S. Hochreiter, Y. Bengio, and P. Frasconi. Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies. IEEE Press,

2001. 1, 3

[17] M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence analysis of

alternating direction method of multipliers for a family of nonconvex

problems. arXiv preprint arXiv:1410.1390, 2014. 4

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015. 2, 3

[19] Y. Kang, S. Kim, and S. Choi. Deep learning to hash with multiple

representations. In ICDM, pages 930–935, 2012. 1, 2

[20] D. P. Kingma and M. Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013. 2

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of features

from tiny images, 2009. 6

[22] A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for

content-based image retrieval. In ESANN, 2011. 1

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In NIPS, pages 1097–

1105, 2012. 2

[24] B. Kulis and T. Darrell. Learning to hash with binary reconstructive

embeddings. In NIPS, pages 1042–1050, 2009. 1, 5

[25] Y. LeCun and C. Cortes. MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/, 2010. 4

[26] Y. LeCun et al. Lenet-5, convolutional neural networks. 1, 2

[27] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio. Difference tar-

get propagation. In Machine Learning and Knowledge Discovery in

Databases, pages 498–515. Springer, 2015. 2

[28] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast

supervised hashing with decision trees for high-dimensional data. In

CVPR, pages 1971–1978, 2014. 1, 5

[29] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse

convolutional neural networks. In CVPR, pages 806–814, 2015. 2

[30] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised

hashing with kernels. In CVPR, pages 2074–2081, 2012. 1, 3, 5

[31] J. Nocedal and S. Wright. Numerical optimization. Springer series

in operations research and financial engineering. Springer, 2nd ed.

edition, 2006. 2

[32] M. Norouzi and D. M. Blei. Minimal loss hashing for compact binary

codes. In ICML, pages 353–360, 2011. 1, 5

[33] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. IJCV, 42(3):145–175, 2001.

1, 6

[34] N. Parikh and S. Boyd. Block splitting for distributed optimization.

Mathematical Programming Computation, 6(1):77–102, 2014. 2, 3

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

IJCV, pages 1–42, April 2015. 8

[36] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education, 2 edition, 2003. 1

[37] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-

hadran. Low-rank matrix factorization for deep neural network train-

ing with high-dimensional output targets. In ICASSP, pages 6655–

6659, 2013. 2

[38] F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised discrete hash-

ing. In CVPR, 2015. 2, 3, 5, 6, 8

[39] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556,

2014. 1, 2

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural net-

works from overfitting. JMLR, 15(1):1929–1958, 2014. 2, 3

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolu-

tions. arXiv preprint arXiv:1409.4842, 2014. 2

[42] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE.

JMLR, 9(2579-2605):85, 2008. 5

[43] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regulariza-

tion of neural networks using dropconnect. In ICML, pages 1058–

1066, 2013. 2, 3

[44] D. Wang, P. Cui, M. Ou, and W. Zhu. Deep multimodal hashing with

orthogonal regularization. In IJCAI, pages 2291–2297, 2015. 1

[45] H. Wang, A. Banerjee, and Z.-Q. Luo. Parallel direction method of

multipliers. In NIPS, pages 181–189, 2014. 4

[46] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for

large-scale search. PAMI, 34(12):2393–2406, 2012. 1, 3

[47] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for

image retrieval via image representation learning. In AAAI, 2014. 1,

2

[48] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable deep

hashing with regularized similarity learning for image retrieval and

person re-identification. CoRR, abs/1508.04535, 2015. 1, 2, 5, 6, 7

[49] Z. Zhang, Y. Chen, and V. Saligrama. A novel visual word co-

occurrence model for person re-identification. In ECCV Workshop

on Visual Surveillance and Re-Identification, 2014. 8

[50] Z. Zhang, Y. Chen, and V. Saligrama. Group membership prediction.

In ICCV, 2015. 8

[51] Z. Zhang and V. Saligrama. PRISM: Person re-identification via

structured matching. arXiv preprint arXiv:1406.4444, 2014. 8

[52] Z. Zhang and V. Saligrama. Zero-shot learning via semantic similar-

ity embedding. In ICCV, 2015. 8

[53] Z. Zhang and V. Saligrama. Zero-shot learning via joint latent simi-

larity embedding. In CVPR, 2016. 8

[54] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic ranking

based hashing for multi-label image retrieval. In CVPR, 2015. 1, 2,

5, 7

1495

