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Abstract

Sparse representation has been introduced to visual

tracking by finding the best target candidate with mini-

mal reconstruction error within the particle filter frame-

work. However, most sparse representation based trackers

have high computational cost, less than promising tracking

performance, and limited feature representation. To deal

with the above issues, we propose a novel circulant sparse

tracker (CST), which exploits circulant target templates.

Because of the circulant structure property, CST has the fol-

lowing advantages: (1) It can refine and reduce particles

using circular shifts of target templates. (2) The optimiza-

tion can be efficiently solved entirely in the Fourier domain.

(3) High dimensional features can be embedded into CST

to significantly improve tracking performance without sac-

rificing much computation time. Both qualitative and quan-

titative evaluations on challenging benchmark sequences

demonstrate that CST performs better than all other sparse

trackers and favorably against state-of-the-art methods.

1. Introduction

Visual object tracking is a fundamental research topic

in computer vision and is related to a wide range of appli-

cations including video surveillance, auto-control systems,

and human computer interaction. Given the initial state of

a target in the first frame, the goal of tracking is to predict

states of the target over time. Despite very promising ad-

vances over the past decade, it remains a challenging prob-

lem to design a fast and robust tracker due to factors such as

illumination changes, deformations, partial occlusions, fast

motion, and background clutter.

Recently, sparse representation has been developed for

object tracking [26, 25, 22, 28, 27, 36, 4, 19, 41, 18]. The

seminal work in [27] was the first to successfully apply

sparse representation to visual tracking using particle fil-

tering. Here, the tracker represents each target candidate as

a sparse linear combination of dictionary templates that can

be dynamically updated to maintain an up-to-date target ap-

Figure 1. Comparison of our CST tracker with state-of-the-art

methods (KCF, Struck, SCM, ASLA, L1APG, and TLD) on two

videos from a visual tracking benchmark [32]. On the Jogging

sequence, only TLD and CST can track well when partial occlu-

sion happens. On the Tiger sequence, our CST can track the target

throughout the whole sequence, while other trackers suffer from

drift. The sparse trackers (ASLA, L1APG, SCM) fail to track these

sequences. Overall, the proposed CST method performs favorably

against the state-of-the-art trackers.

pearance model. This representation has been shown to be

robust against partial occlusions, thus, leading to improved

tracking performance. However, sparse trackers generally

suffer from the following drawbacks: (1) They remain com-

putationally expensive, despite recent speedup attempts [5].

Sparse trackers perform computationally expensive ℓ1 min-

imization at each frame. In a particle filter framework, com-

putational cost grows linearly with the number of particles

sampled. It is this computational bottleneck that precludes

the use of these trackers in real-time scenarios. (2) They

have limited overall performance. Based on results in the

VOT2014 challenge [24] and the visual tracking bench-

mark [32], sparse trackers do not achieve a better accu-

racy than other types of trackers, such as KCF [16] and

Struck [15]. (3) They are limited in the features they can use

for representation. Due to the high computational cost, most

sparse trackers make use of gray-scale pixel appearance and

cannot adopt more representative features, such as, HOG
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Figure 2. Examples on three video sequences to show particle re-

finement via the proposed CST method. The bounding boxes with

red color are the sampled particles. Due to random sampling, the

sampled particles are far away from the target object. With the pro-

posed CST method, these particles can be refined and translated to

better state denoted with bounding boxes with green color.

and SIFT. As a result, sparse trackers have a bottleneck in

tracking performance due to their limited feature represen-

tation. Due to these issues, sparse trackers cannot achieve

promising results as shown in Figure 1 and are viewed as

inadequate solutions to robust visual tracking.

To deal with the above issues, we propose a novel cir-

culant sparse tracker (CST) with robustness and computa-

tional efficiency for visual tracking using particle filters.

Here, learning the representation of each particle is again

viewed as a sparse encoding problem. Similar to the above

work, the next target state is decided by particles that have

high similarity with a dictionary of target templates. Unlike

previous methods that need to sample more and more can-

didates to refine the target’s location, we embed translated

versions of the templates in the dictionary using circulant

matrices. By doing this, an accurate sparse representation

of each particle can be efficiently estimated and the target

object can be collectively localized using a small number

of particles. Given an object image patch a of M × N

pixels, where all the circular shifts of am̄,n̄, (m̄, n̄) ∈
{0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1}, are generated as

target templates Â = [a0,0, . . . ,aM−1,N−1]. These circu-

lant shifts approximate the translated versions of a. Then,

each particle can be represented as a sparse linear combina-

tion of dictionary templates Â. Based on the learned sparse

coefficient, we know which element of Â has the highest

similarity with the target candidate. The circular shift of

these elements can be adopted to translate and refine each

particle to make it more similar to the target.

In Figure 2, we show three examples of this particle re-

finement. Since particles are sampled randomly from a pos-

terior distribution, they can be far away from the target ob-

ject as shown in red bounding boxes. If we estimate the tar-

get’s state based on only a few of these particles, the tracker

can easily drift. By embedding circulant versions of the tar-

get templates in the dictionary, particles can be refined as

shown (in green). Because of this refinement, the number

of particles needed for tracking can be reduced dramatically,

thus, making the tracker much more efficient. Moreover, by

exploiting the blockwise circulant structure of the dictio-

nary, all computation can be efficiently done in the Fourier

domain. Also, this allows us to seamlessly exploit more

sophisticated feature representations (e.g. HOG or SIFT)

which existing sparse trackers cannot because of the pro-

hibitive computational cost. As a result, the proposed CST

tracker can achieve much better tracking performance than

state-of-the-art trackers as shown in Figure 1.

Contributions: The contributions of this work are three-

fold. (1) We propose a novel circulant sparse tracker, which

is a robust and effective sparse coding method that exploits

circulant structure in target templates to obtain better track-

ing results than traditional sparse trackers. To the best of

our knowledge, this is the first work to exploit the circu-

lant structure of target templates for sparse representation.

(2) Due to the circular shifts of target templates, we can

refine particles and reduce their number. Moreover, due

to the circulant property, we can apply CST efficiently in

the Fourier domain. This makes our tracking method com-

putationally attractive in general and faster than traditional

sparse trackers in particular. (3) Because all the computa-

tion can be performed efficiently in the Fourier domain, we

can use more sophisticated feature representations, which

significantly improve tracking performance.

2. Related Work

Visual tracking has been studied extensively in the lit-

erature [34, 29, 31]. In this section, we briefly overview

trackers that are most relevant to our work.

Generative vs. Discriminative Tracking: Visual track-

ing algorithms can be generally categorized as either gener-

ative or discriminative. Generative trackers typically search

for the best image regions, which are similar to the tracked

targets [1, 10, 21, 6, 7, 30]. Black et al. [7] learn an off-line

subspace model to represent the target object for tracking.

In [10], the mean shift tracking algorithm represents a tar-

get with nonparametric distributions of color features and

locates the object with mode shifts. Kwon et al. [21] decom-

pose the observation model into multiple basic observation

models to cover a wide range of pose and illumination vari-

ation. In [30], the IVT tracker learns an incremental sub-

space model to adapt appearance changes. As compared to

generative trackers, discriminative approaches cast tracking

as a classification problem that distinguishes the tracked tar-

gets from the background [2, 13, 3, 20, 15, 16, 35, 11, 17].

Avidan [2] combines a set of weak classifiers into a strong

one to do ensemble tracking. Grabner et al. [13] introduce

an online boosting tracking method with discriminative fea-

ture selection. The Struck tracker [15] adopts an online

structured output support vector machine for adaptive vi-

sual tracking. In [16], the KCF tracker exploits the circulant

structure of adjacent image patches in a kernel space with

HOG features. Zhang et al. [35] utilize multiple experts
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using entropy minimization to address the model drift prob-

lem in visual tracking. Hong et al. [17] cooperate short-term

processing and long-term processing in visual tracking.

Sparse Tracking: Sparse linear representation has re-

cently been introduced to object tracking with demonstrated

success [27, 40, 28, 26, 22, 36, 45, 4, 19, 25, 42, 43, 37, 44].

In the seminal ℓ1 tracking work [27], a candidate region

is represented by a sparse linear combination of target and

trivial templates where the coefficients are computed by

solving a constrained ℓ1 minimization problem with non-

negativity constraints. As this method entails solving one

ℓ1 minimization problem for each particle, the computa-

tional complexity is significant. An efficient ℓ1 tracker

with minimum error bound and occlusion detection was

subsequently developed [28]. In addition, methods based

on dimensionality reduction, as well as, orthogonal match-

ing pursuit [22] and accelerated proximal gradient descent

[4] have been proposed to make ℓ1 tracking more efficient.

Recently, several tracking algorithms have been proposed

to learn the sparse representations of all particles jointly

[38, 18]. In [38], learning the representation of each par-

ticle is viewed as an individual task and a multi-task learn-

ing formulation for all particles is proposed based on joint

sparsity. In [18], a multi-task multi-view joint sparse repre-

sentation for visual tracking is introduced. Based on the

results in the VOT2014 challenge [24] and online track-

ing benchmark [32], sparse trackers clearly have drawbacks

in both efficiency and accuracy. In defense of this type

of tracker, we propose an effective and efficient circulant

sparse tracker.

3. Circulant Sparse Tracking

In this section, we give a detailed description of our parti-

cle filter based circulant sparse tracking method that makes

use of the circulant structure of target templates to repre-

sent particles. Similar to [27], we assume an affine motion

model between consecutive frames. Therefore, the state of

a particle st consists of six affine transformation parame-

ters (2D linear transformation and translation). By applying

an affine transformation based on st, we crop the region

of interest yt from the image and normalize it to the same

size as the target templates in our dictionary, i.e. the tar-

get size in the first frame). The state transition distribution

p(st|st−1) is modeled using a zero-mean Gaussian with di-

agonal covariance. The observation model p(yt|st) reflects

the similarity between an observed image region yt corre-

sponding to a particle st and target templates of the current

dictionary. In this work, p(yt|st) is computed based on the

distance between the refined particle and the template dic-

tionary. At each frame, the target’s state is estimated as a

weighted average of the states of the refined particles.

3.1. Circulant Sparse Model

In the tth frame, we sample n particles. Consider one

of these particles as an example. Its feature representa-

tion is denoted as x ∈ R
d. Here, for simplicity, we as-

sume x is a 1D signal with pixel color values; however,

this can be easily extended to the 2D case with HOG fea-

tures, as we will discuss in Section 3.2. Each x is repre-

sented as a linear combination z of dictionary templates

D, such that x = Dz. In many visual tracking scenar-

ios, target objects are often corrupted by noise or partially

occluded. To address this issue, an error term e can be

added to indicate the pixels in x that are corrupted or oc-

cluded: x = Dz + e. Then, we can rewrite: x = Ac,

where A = [D I], c = [z; e], and I is a d × d identity

matrix. Dictionary D can be constructed from an overcom-

plete sampling of the target. Given K of these base samples

ak with k = 1, . . . ,K each having M × N pixels, A can

be constructed as A = [A1, . . . ,Ak, . . . ,AK ]. Here, Ak

contains all the circular shifts of the k-th base sample a
m̄,n̄
k ,

where (m̄, n̄) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1},

Ak = [a0,0k , . . . ,a
M−1,N−1

k ], and AK+1 = I to represent

the trivial templates. Therefore, each Ak ∈ R
d×d is circu-

lant, and A ∈ R
d×Kd is blockwise circulant. As mentioned

earlier, the circulant shifts of the base templates approxi-

mate their 2D translations. The particle representation can

be obtained by solving the ℓ1 minimization problem (1).

min
c

1

2
‖x−Ac‖

2

2
+ λ‖c‖

1
(1)

Solving (1) with large-scale A is infeasible in the visual

tracking task. To deal with this issue, we solve the dual

problem of (1) in the Fourier domain. We introduce a

dummy variable r along with a set of equality constraints:

min
c,r

1

2
‖r‖

2

2
+ λ‖c‖

1
s.t. r = Ac− x (2)

Using z to denote the Lagrange multipliers, we can write

the Lagrangian of this problem as

L(c, r, z) =
1

2
‖r‖

2

2
+ λ‖c‖

1
+ z⊤(Ac− x− r) (3)

Distributing z across the subtraction and grouping terms in-

volving c and r, the resulting dual function is:

max
z

min
c,r

z⊤Ac+ λ‖c‖
1
+

1

2
‖r‖

2

2
− z⊤r− z⊤x (4)

Using the definition of the conjugate function to the ℓ1-

norm and ℓ2-norm squared [9], we get the dual problem

of (1) as shown in (5).

min
z

1

2
z⊤z+ z⊤x s.t.

∥

∥A⊤z
∥

∥

∞
≤ λ (5)
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3.2. Optimization in the Fourier Domain

In this section, we present algorithmic details on how

to efficiently solve the optimization problem (5) in the

Fourier domain using the fast first-order Alternating Direc-

tion Method of Multipliers (ADMM) [8]. We introduce a

variable θ to make θ = A⊤z and ‖θ‖
∞

≤ λ. By in-

troducing augmented Lagrange multipliers to incorporate

the equality constraints into the objective function, we ob-

tain a Lagrangian function that can be optimized through

a sequence of simple closed form update operations in (6),

where c and u > 0 are the Lagrange multiplier and penalty

parameter, respectively. Since the dual solution to the dual

problem of a convex optimization is the primal solution in

general, then the Lagrange multiplier here is actually the

sparse code vector c from (1) [33].

L(c, z, θ) =
z⊤z

2
+ z⊤x+ c⊤(A⊤z− θ) +

u

2

∥

∥A⊤z− θ
∥

∥

2

2

⇒ max
c

min
z,θ

L(c, z, θ) (6)

The ADMM method iteratively updates the variables θ and

z (one at a time) by minimizing (6) and then performs gra-

dient ascent on the dual to update c. By updating these vari-

ables iteratively, convergence can be guaranteed [8]. Con-

sequently, we have three update steps corresponding to all

three variables as follows.

Update θ: Given (c, z), θ is updated by solving the opti-

mization problem (7) with the solution (8).

θ = argmin
θ

u

2

∥

∥A⊤z− θ
∥

∥

2

2
− c⊤θ (7)

⇒ θ = PB∞

λ
(A⊤z+

c

u
) (8)

Here, PB∞

λ
represents the projection operator onto B∞

λ , and

B∞

λ = {x ∈ R
n : ‖x‖

∞
≤ λ}.

Note that, all circulant matrices are made diagonal by the

Discrete Fourier Transform (DFT), regardless of the gener-

ating vector [14]. If X is a circulant matrix, it can be ex-

pressed with its base sample x as

X = Fdiag(x̂)FH , (9)

where F is a constant matrix that does not depend on x,

and x̂ denotes the DFT of the generating vector: x̂ = Fx.

The constant matrix F is known as the DFT matrix. XH

is the Hermitian transpose, i.e., XH = (X∗)⊤, and X∗ is

the complex-conjugate of X. For real numbers, XH = XT .

In (8), A⊤z = [A⊤
1 z; . . . ;A

⊤

K+1
z], and it can be obtained

via (10). Here, F−1 denotes the inverse DFT, while ⊙ de-

notes the element-wise product. The a⊤k is the base sample

of circulant matrix Ak.

θ = PB∞

λ
(F−1[â∗1 ⊙ ẑ+

1

u
ĉ1; . . . ; â

∗

K+1 ⊙ ẑ+
1

u
ĉK+1])

(10)

Algorithm 1: The optimization for (6) via ADMM.

Input : Dictionary A and Particle x. Initialization of

λ, θ = 0, z = 0, c = 0, and u > 0.

Output: Particle Representation c.

1 while not converged do

2 Update θ via (10);

3 Update z via (12);

4 Update c as in (14);

5 end

Update z: Given (c, θ), updating z can be shown to be a

least squares problem, whose solution is given by (11).

z = (AA⊤ +
1

u
I)−1(Aθ −

1

u
x−

1

u
Ac) (11)

Here, Aθ =
∑K

k=1
Akθk = F

∑K

k=1
â∗k ⊙ θ̂∗k,

Ac =
∑K

k=1
Akck = F

∑K

k=1
â∗k ⊙ ĉ∗k, and AA⊤ =

∑K

k=1
AkA

⊤

k = Fdiag(
∑K

k=1
âk ⊙ â∗k)F

H . Therefore,

the update z in (11) can be computed as z = F−1(ẑ), where

ẑ is defined in (12). The fraction denotes element-wise di-

vision. Note that no expensive matrix inversion is required

here. This is the defining difference between sparse repre-

sentation on a traditional dictionary and that on a blockwise

circulant one.

ẑ =

∑K

k=1
(âk ⊙ θ̂k − 1

u
âk ⊙ ĉk)−

1

u
x̂

∑K

k=1
âk ⊙ â∗k + 1

u

(12)

Update c: Given (z, θ), the sparse code c is updated in (13).

The penalty parameter is increased from one iteration to the

next: u = ρu, where ρ > 1.

c = c+ u(A⊤z− θ) (13)

In the Fourier domain, c can be updated as (14).

c = c+u(F−1[â∗1⊙ ẑ− θ̂1; . . . ; â
∗

K+1⊙ ẑ− θ̂K+1]) (14)

The ADMM algorithm that solves (6) is shown in Algo-

rithm 1, where convergence is reached when the change in

the objective function or solution z is below a pre-defined

threshold (e.g., τ = 10−3 in this work). Note that, in Algo-

rithm 1, for a 1D signal x, the F and F−1 are the 1D DFT

and its inverse. When x is 2D, F and F−1 are the 2D DFT

and its inverse. As such, the optimization in the Fourier do-

main is efficient for 2D image patches with multiple chan-

nels, which is a useful property for visual tracking.

3.3. The Proposed CST Tracker

In this section, we give a detailed description of the pro-

posed CST tracker, including the template model update,

target state estimation, and feature representation.
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Model Update: In the proposed tracker, the model con-

sists of target templates A, which are updated dynamically

to handle frame-to-frame changes in target appearance. For

simplicity, we adopt the adaptive strategy in (15) by consid-

ering the current target appearance x. We only update the

target template ak whose sparse representation has a maxi-

mum absolute value among all other templates.

F(ak)
t = (1− η)F(ak)

t−1 + ηF(x) (15)

Here, η is a learning rate parameter, and the ak is the base

sample of circulant matrix Ak.

Target State Estimation: The target state is decided based

on the n sampled particles with their states si and repre-

sentations ci, i = 1, . . . , n. For the i-th particle, its state

si can be refined to s̄i by applying the translation corre-

sponding to the circular shift of the target template whose

corresponding coefficient in ci has the maximum absolute

value. In Figure 2, we show three examples of this par-

ticle state refinement. Then, the target state s can be es-

timated via a weighted average of all the refined particle

states: s =
∑

i πis̄i. Here, πi denotes the confidence score

of the i-th particle, and it is defined as πi = max(|ci|).
Once πi of each particle is computed, they are normalized

to predict the final target state.

Image Representation: Most existing sparse trackers

make use of vectorized grayscale values to represent the im-

age patch x. It tends to be infeasible to adopt more sophis-

ticated and higher-dimensional features, such as HOG and

SIFT, since the added computational cost would be signifi-

cant. On the other hand, our formulation (1) seamlessly en-

ables the use of richer feature representations, without sacri-

ficing much computationally. Algorithm (1) is used as is but

with each target template ak represented using the new fea-

ture. Similar to the grayscale case, the optimization can be

efficiently solved in the Fourier domain, since only element-

wise operations are needed. As such, we make HOG fea-

tures feasible for sparse trackers.

For a more intuitive view of the proposed method, we

visualize an empirical example to show how the proposed

CST tracker works in Figure 3. Clearly, embedding circu-

lant shifts of base templates into the sparse representation

is helpful in refining each particle’s state and localizing the

target accurately.

4. Experimental Results

In this section, we present experimental results. (1) We

introduce the experimental setup. (2) We perform a com-

prehensive evaluation of different features in sparse track-

ers. (3) We provide quantitative, qualitative, and attribute-

specific comparisons with state-of-the-art trackers.

Figure 3. Illustration for particle refinement: (a) the original sam-

pled particle in red, (b) the learned coefficient c, and (c) the re-

fined particle in green with a circular shift (m̄ = 2, n̄ = 3). Here,

K = 5 and x is 41× 50× 31 using HOG.

4.1. Experimental Setup

All experiments are implemented in MATLAB on an In-

tel(R) Xenon(R) 2.70 GHz CPU with 64 GB RAM.

Parameters: The λ in (1) is set to 1. The learning rate η

in (15) is set to 0.03. We use the same parameter values

and initialization for all the sequences. All the parameter

settings are available in the source code to be released for

accessible reproducible research and comparative analysis.

Datasets and Evaluation Metrics: We evaluate our pro-

posed method on a large benchmark dataset [32] that con-

tains 50 videos with comparisons to state-of-the-art meth-

ods. The performance of our approach is quantitatively val-

idated by three metrics used in [11, 32] including distance

precision (DP), center location error (CLE), and overlap

success (OS). The DP is computed as the relative number

of frames in the sequence where the center location error is

smaller than a certain threshold. As in [32], the DP values at

a threshold of 20 pixels are reported. The CLE is computed

as the average Euclidean distance between the ground-truth

and the target’s estimated center location. The OS is de-

fined as the percentage of frames where the bounding box

overlap surpasses a threshold of 0.5, which correspond to

the PASCAL evaluation criterion.We provide results using

the average DP, CLE, and OS over all 50 sequences. In

addition, we plot the precision and success plots as recom-

mended in [32]. In the legend, we report the average dis-

tance precision score at 20 pixels for each method. The

average overlap precision is plotted in the success plot. The

area under the curve (AUC) is included in the legend. We

also report the speed of the trackers in average frames per

second (FPS) over all image sequences.

4.2. Particle Refinement Strategy

In this section, we discuss how the proposed CST can

refine particles, thus, effectively reducing the number of

particles needed for accurate tracking. This involves two

strategies: particle refinement and search region padding.

As shown in Figure 4 (a), particles (denoted in different

colors) are translated towards the target object (denoted in

green color). The translation of each particle is set to the

circular shift corresponding to the highest absolute valued

3884



Figure 4. Particle reducing strategy via (a) particle refinement and

(b) search region padding. See text for more details.

Table 1. Comparison with state-of-the-art trackers on the 50
benchmark sequences. Our approach performs favorably against

existing methods in overlap success (OS) (%), distance precision

(DP) (%) and center location error (CLE) (in pixels). The first

and second highest values are highlighted in red and blue. Addi-

tionally, our method is faster compared to the best performing and

existing sparse tracker (SCM).

CST-HOG CST-Color
L1APG SCM ASLA MTT

[4] [45] [19] [38]

OS 68.2 48.9 44.0 61.6 51.1 44.5

DP 77.7 54.3 48.5 64.9 53.2 47.5

CLE 40.4 86.2 77.4 54.1 73.1 94.5

FPS 2.2 3.0 2.4 0.4 7.5 1.0

sparse coefficient in that particle’s sparse code. This al-

lows the sampled particles in the next frame to be closer

to the target object. Moreover, the tracked region is 2 times

the size of the target, to provide for context and additional

search samples. This region determines the total number of

possible circulant shifts. As shown in Figure 4 (b), one par-

ticle (denoted in red) is quite far away from the target object

(denoted in green). However, its search region (denoted in

blue) can still cover the target object well. As a result, the

particle can still be shifted towards the target object using

our proposed model. In our implementation, both parti-

cles and the base samples of target templates have the same

search region. In addition, they are also weighted by a co-

sine window for robustness. Although enlarging the search

region increases the computational cost, it adds robustness

to the tracker against fast motion, partial occlusion, etc. To

balance efficiency and accuracy in visual tracking, we adopt

this search strategy using 2 times the size of the target. In

the experiments, we test the tracking results with different

numbers of particles, n = 10, n = 20, and n = 50. We

observe that they have very similar results. Therefore, we

set n = 20 in our experiments. In comparison, traditional

sparse trackers [4, 38], tend to use hundreds of particles for

their representation.

4.3. Image Feature Evaluation

Here, we implement the proposed CST method with two

different features: HOG (CST-HOG) and gray color (CST-

Color). We report the results in one-pass evaluation (OPE)

using the distance precision and overlap success rate in Fig-

ure 5, which shows that replacing the conventional intensity

Figure 5. Comparisons of different sparse trackers by using preci-

sion and success plots over all 50 sequences. The legend contains

the area-under-the-curve score for each tracker. Our CST method

performs favorably against the state-of-the-art trackers.

values with HOG features significantly improves the track-

ing performance by 23.4% and 14.1% in terms of precision

and success rate, respectively. Similarly, the HOG based

tracker reduces the average CLE from 86.2 to 40.4 pixels

as shown in Table 1. In summary, our results clearly sug-

gest that the HOG based image representation improves the

tracking performance, which is also demonstrated by com-

paring KCF to CSK [16]. Their results are also shown in

Figure 5 for comparison. In what follows, we employ HOG

features to represent particles.

4.4. Sparse Tracking Evaluation

We evaluate the proposed algorithm on the benchmark

with comparisons to the top 4 sparse trackers in [32],

namely SCM [45], ASLA [19], L1APG [4], and MTT [38,

39]. The details of the 4 trackers in the benchmark evalu-

ation can be found in [32]. We report the results using av-

erage OS, DP, CLE, and FPS over all sequences in Table 1,

and present the results in OPE using the distance precision

and overlap success rate in Figure 5, attribute-based evalua-

tion in Figure 6, and qualitative comparison in Figure 7. Ta-

ble 1 shows that our algorithm outperforms state-of-the-art

sparse trackers. Among the sparse trackers in the literature,

the proposed CST method achieves the best results with an

average OS of 68.2%, DP of 77.7%, and CLE of 40.4 pix-

els. Compared with the second-best method (SCM), CST

registers a performance improvement of 6.6% in average

OS and 12.8% in terms of average DP. In terms of average

CLE, CST has a 13.7 pixel improvement over SCM. More-

over, CST achieves much higher frame rate than the second-

best performing sparse tracker. Note that our tracker can be

made even faster with some code optimization.

Figure 5 contains the precision and success plots illus-

trating the mean distance and overlap precision over all 50
sequences. In both precision and success plots, our ap-

proach achieves the best results and significantly outper-

forms the best existing sparse method (SCM). In Figure 6,

we analyze tracking performance based on some tracking

attributes of the video sequences [32]. Note that the bench-

mark annotates 11 such attributes to describe different chal-
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Figure 7. Tracking results of the top 5 sparse trackers (denoted in different colors and lines) in our evaluation on 10 challenging sequences

(from left to right and top to down are basketball, singer2, car4, jogging-1, subway, david3, liquor, suv, jumping, and tiger1 respectively).

Figure 6. Overlap success plots over three tracking challenges of

fast motion, occlusion, and out-of-view. The legend contains the

AUC score for each tracker. The proposed CST method performs

favorably against the state-of-the-art trackers.

lenges prevalent in the tracking problem, e.g., occlusions or

out-of-view. These attributes are useful for analyzing the

performance of trackers in different aspects. Due to space

constraints, we present the success and precision plots of

OPE for 3 attributes in Figure 6 and more results can be

found in the supplementary material. We note that the

proposed tracking method performs well in dealing with

challenging factors including fast motion, occlusion, and

out-of-view motion.

In Figure 7, we show a qualitative comparison among

the sparse trackers on 10 challenging sequences. The SCM

tracker performs well in handling scale change (basketball

and car4). However, it drifts when the target undergoes

heavy occlusion (jogging-1) and fast motion (jumping and

tiger1). L1APG is the most similar sparse method to CST,

as they both solve an ℓ1 minimization problem but with dif-

ferent optimization techniques (APG vs. ADMM). It fails

to handle fast motion (jumping and tiger1), and background

clutter (singer2), where using only grayscale intensity is

less effective in discriminating targets from the cluttered

background. MTT and ASLA do not perform well with

partial occlusion (suv and subway). Overall, the proposed

CST tracker performs very well in tracking objects on these

challenging sequences. In addition, we compare the center

location error frame-by-frame on the 10 sequences, which

shows that our method performs well against existing track-

ers. Due to the space limitation, the results can be found in

the supplementary material.

Discussion: The above results clearly demonstrate the ef-

fectiveness and efficiency of our proposed CST tracker.

Here, we highlight the following conclusions among the ex-

isting sparse trackers. (1) The circulant structure of target

templates can improve tracking performance. L1APG and

CST-Color have similar objective functions with grayscale

intensity features. The differences are that the L1APG

solves the ℓ1 minimization problem in the spatial domain,

while we construct the circulant matrix as target templates

and solve the problem in the Fourier domain. Compared

with the L1APG tracker, CST registers a 4.8% and 2.7%
improvement in average DP and OS, respectively, while
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Figure 8. Precision and success plots over all 50 sequences us-

ing OPE among 29 trackers in [32]. The proposed CST method

performs favorably against the state-of-the-art trackers.

maintaining a very comparable runtime. (2) The circulant

structure of target templates can make the HOG feature fea-

sible in sparse trackers, and improve tracking performance

significantly. In traditional sparse trackers, it is computa-

tionally infeasible to adopt HOG features due to the high

computational cost. For example, given a target object with

50 × 50 pixels, if we adopt the HOG feature with 31 bins

and vectorize the image patch, the resulting representation

has 77, 500 dimensions. As a result, the trivial templates

have 77, 500 elements, which certainly increases complex-

ity substantially. However, owing to the circulant struc-

ture used in CST, the optimization can be solved efficiently

by using 2D image patches with multiple channels in the

Fourier domain. Moreover, comparing CST-HOG and CST-

Color shows that HOG can significantly improve tracking

performance. (3) Compared with the KCF tracker, our CST

trackers register a 3.7% and 3.4% improvement in terms of

average DP and OS, respectively. This is arguably due to

the proposed sparse model with particle filtering, which can

better handle partial occlusion and fast motion.

4.5. Comparison with StateoftheArt

We evaluate our CST tracker on the tracking benchmark

with comparisons to 29 trackers, whose details can be found

in [32]. We report the precision and success plots in Fig-

ure 8, thus, illustrating the mean distance and overlap pre-

cision over all 50 sequences. In both precision and success

plots, CST registers the best performance among all track-

ers and significantly outperforms the best existing sparse

tracking method (SCM).

For a more thorough evaluation, we also include in

the comparison the following very recent trackers with

their corresponding (DP, OS, FPS) results: MEEM (83.5%
, 57.6%, 6.2) [35], TGPR (71.4% , 51.5%, 0.36) [12],

RPT (81.9% , 57.9%, 3.1) [23], MUSTer (86.5%, 64.1%,

0.34) [17], and DSST (73.7%, 55.4%, 32.7) [11]. Among

these trackers, the proposed CST is better than TGPR, and

achieves comparable performance as DSST. The MUSTer,

MEEM, and RPT methods achieve better performance than

our CST method. Compared with the best existing MUSTer

tracker, sparse trackers still have room for improvement;

however, our proposed tracker is much faster. Moreover, the

short-term and long-term strategy used in MUSTer [17], as

well as, the multiple expert framework proposed in MEEM

[35] are generic schemes that can be adopted in sparse

trackers to further improve their precision. For example,

CST can exploit a combination of short-term and a long-

term dictionaries to obtain much better performance.

5. Conclusion

In this paper, we propose a novel circulant sparse ap-

pearance model for object tracking under the particle filter

framework. Due to the circulant structure property of target

templates, the proposed tracker can make use of HOG fea-

ture, and effectively refine sampled particles to dramatically

reduce the number of particles needed for tracking. More-

over, the optimization can be efficiently solved in Fourier

domain. Experimental results compared with several state-

of-the-art methods on challenging sequences demonstrate

the effectiveness and robustness of the proposed algorithm.
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