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Abstract

Supervised contour detection methods usually require

many labeled training images to obtain satisfactory per-

formance. However, a large set of annotated data might

be unavailable or extremely labor intensive. In this pa-

per, we investigate the usage of semi-supervised learning

(SSL) to obtain competitive detection accuracy with very

limited training data (three labeled images). Specifically,

we propose a semi-supervised structured ensemble learn-

ing approach for contour detection built on structured ran-

dom forests (SRF). To allow SRF to be applicable to un-

labeled data, we present an effective sparse representation

approach to capture inherent structure in image patches by

finding a compact and discriminative low-dimensional sub-

space representation in an unsupervised manner, enabling

the incorporation of abundant unlabeled patches with their

estimated structured labels to help SRF perform better node

splitting. We re-examine the role of sparsity and propose a

novel and fast sparse coding algorithm to boost the over-

all learning efficiency. To the best of our knowledge, this is

the first attempt to apply SSL for contour detection. Exten-

sive experiments on the BSDS500 segmentation dataset and

the NYU Depth dataset demonstrate the superiority of the

proposed method.

1. Introduction

Contour detection is a fundamental but challenging com-

puter vision task. In recent years, although the research

of contour detection is gradually shifted from unsupervised

learning to supervised learning, unsupervised contour de-

tection approaches are still attractive, since it can be easily

adopted into other image domains without the demand of a

large amount of labeled data. However, one of the signifi-

cant limitations is the high computational cost [2, 35]. On

the other hand, the cutting-edge supervised contour detec-

tion methods, such as deep learning, rely on a huge amount

of fully labeled training data, which often requires huge hu-

man efforts and domain expertise. Semi-supervised learn-

ing (SSL) [31, 23, 18] is an alternative technique to balance

the trade-off between unsupervised learning and supervised
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Figure 1. Illustration of the proposed method. Top: At the parent

node that contains u-tokens and l-tokens with corresponding struc-

tured labels, u-tokens will help l-tokens better estimate the separat-

ing plane for the node splitting. This is achieved by mapping to-

kens into a discriminative low-dimensional subspace and estimat-

ing u-tokens’ discrete labels. Then the u-tokens are un-mapped to

the original high-dimensional space associated with the estimated

structured labels. Finally, all tokens will be propagated to child

nodes. Bottom: A general view of the node splitting behavior to

present how node splitting of SRF enables data with structured

labels in the parent node to be categorized in child nodes.

learning. However, currently there exist no reports on semi-

supervised learning based contour detection.

Supervised contour detection is often based on patch-

to-patch or patch-to-pixel classification. Contours in local

patches (denoted by sketch tokens [20]) contain rich and

well-known patterns, including straight lines, parallel lines,

curves, T-junctions, Y-junctions, etc [27, 20]. One of the

main objectives of the most recent supervised contour de-

tection methods is to classify these patterns using structure

learning [12, 13], sparse representation [24, 35], convolu-

tion neutral network (CNN) [29, 16, 36], etc. In our method,

we use unsupervised techniques to capture the patterns of

unlabeled image patches, enabling the successful training

of the contour detector with a limited number of labeled im-

ages. For notation convenience, we denote labeled patches
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as l-tokens and unlabeled patches as u-tokens.

The proposed semi-supervised structured ensemble

learning approach is built on structured random forests

(SRF) [17]. Inheriting from standard random forests (RF),

SRF is popular because its: 1) fast prediction ability for

high-dimensional data, 2) robustness to label noise [23], and

3) good support to arbitrary size of outputs. However, sim-

ilar to RF, SRF heavily relies on the number of labeled data

[18]. These properties make SRF a good candidate for SSL.

In this paper, we propose to train SRF in a novel semi-

supervised manner, which only requires a few number of la-

beled training images. By analyzing the learning behaviors

of SRF, we observe that improving the node splitting per-

formance for data with structured labels is the key for the

successful training. To this end, we incorporate abundant

u-tokens into a limited number of l-tokens to guide the node

splitting, which is achieved by finding a discriminative low-

dimensional subspace embedding using sparse representa-

tion techniques to learn a basis dictionary of the subspace

in an unsupervised manner.

In order to solve the sparse coding problem efficiently,

we also propose a novel and fast algorithm to boost the over-

all learning efficiency. In addition, we demonstrate the max-

margin properties of SRF, enabling us to use max-margin

learning to dynamically estimate the structured labels for

u-tokens inside tree nodes. For better illustration, we ex-

plain the idea in Figure 1. In the experimental section, we

show the vulnerability of other supervised methods to a lim-

ited number of labeled images and demonstrate that, with

only 3 labeled images, our newly developed contour detec-

tor even matches or outperforms these methods which are

fully trained over hundreds of labeled images.

2. Related Works

Recently, most advanced contour detection methods are

based on strong supervision. Ren et al. use sparse code

gradients (SCG) [35] to estimate the local gradient contrast

for gPb, which slightly improves the performance of gPb.

Maire et al. [24] propose to learn a reconstructive sparse

transfer dictionary to address contour representation. These

methods indicate the strong capability of sparse represen-

tation techniques to capture the contour structure in image

patches. In the ensemble learning family, Lim et al. [20]

propose sketch tokens, a mid-level feature representation, to

capture local contour structure, and train a RF classifier to

discriminate the patterns of sketch tokens. Dollár et al. [13]

propose a structured edge (SE) detector that outperforms

sketch tokens by training a SRF classifier instead. Several

variants of SRF are also successfully applied to image patch

classification [29, 12, 25, 3, 22, 33]. Recently, CNN has

shown its strengths in contour detection [29, 16, 4], and its

success is attributed to the complex and deep networks with

new losses to capture contour structure. One major draw-

back of CNN, as well as other supervised learning methods,

is its high demand of labeled data.

Semi-supervised learning (SSL) has been studied to alle-

viate the aforementioned problems [8, 18, 23, 31]. Leistner

et al. [18] treat unlabeled data as additional variables to be

jointly optimized with RF iteratively. Liu et al. [23] instead

use unlabeled data to help the node splitting of RF and ob-

tain improved performance. However, it is difficult for these

methods to avoid the curse of dimensionality. By contrast,

this paper takes advantage of several properties of SRF to

achieve an accurate contour detector with very few labeled

training images. We address several critical problems to

successfully learn SRF in a semi-supervised manner with-

out much sacrificing the training and testing efficiency by 1)

estimating the structured labels for u-tokens lying on a com-

plex and high-dimensional space, and 2) preventing noises

of extensively incorporated u-tokens from misleading the

entire learning process of SRF.

3. SSL Overview in Contour Detection

SSL uses a large number of unlabeled data DU = {x ∈
X} to augment a small number of labeled data DL =
{(x, y) ∈ X × Y} and learns a prediction mapping func-

tion f : X 7→ Y . In the scenario of contour detection, we

denote x as a token, and y as its corresponding structured

label of a certain pattern.

Contour detection performance of supervised methods is

not only determined by the number of l-tokens in DL, but

also affected by the number of labeled images, from which

l-tokens are sampled [12]. This is because the limited in-

formation in l-tokens sampled from a few labeled images

is severely biased, which can not lead to a general classi-

fication model. On the contrary, sufficient u-tokens in DU

sampled from many unlabeled images contain abundant in-

formation that is easy to acquire. We apply SSL to take

advantage of u-tokens to improve the supervised training

of our contour detector. However, u-tokens always have

large appearance variations, so it is difficult to estimate their

structured labels in the high-dimensional space Y .

We propose to estimate the structure labels of u-tokens

by transferring existing structured labels of l-tokens. Be-

cause the patterns of the structured labels are limited and

shared from images to images, which can be categorized

into a finite number of classes (e.g., straight lines, paral-

lel lines, and T-junctions), the structured labels of l-tokens

from a few images are sufficient to approximate the struc-

tured labels of massive u-tokens from many images. We

demonstrate this in Figure 2.

4. SSL via Structured Ensemble Learning

In this section we describe the proposed semi-supervised

ensemble learning approach for contour detection. The

method is built on the structured random forests (SRF),
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(a) Mean patterns of 200 images (b) Mean patterns of 3 images

Figure 2. Examples of mean patterns calculated by clustering the

structured labels of tokens sampled from 200 images and 3 images

into 150 classes [20]. The patterns calculated from 3 images are

almost identical to the patterns calculated from 200 images.

which has a similar learning procedure as the standard

random forest (RF) [6]. The major challenge of training

SRF is that structured labels usually lie on a complex and

high-dimensional space, therefore direct learning criteria

for node splitting in RF is not well defined. Existing solu-

tions [17, 12] can only handle fully labeled data, and are not

applicable in our case that contains both unlabeled and la-

beled data. We will start by briefly introducing SRF and an-

alyze several favorable properties of SRF for SSL, and then

present the proposed SSL based contour detection method.

4.1. Structured random forest

SRF is an ensemble learning technique with structured

outputs, which ensembles T independently trained decision

trees as a forest F = {Ft}
T
t=1. Robust SRF always has large

diversity among trees, which is achieved by bootstrapping

training data and features to prevent overfitting. Given a set

of training data D, starting from the root node, a decision

tree Ft attempts to propagate the data from top to bottom

until data with different labels are categorized in leaf nodes.

Specifically, for all data x ∈ Di in node i, a local weak

learner h(x, θ) = 1[xk < τ ] propagates x to its left substree

if h(·) = 1, and right substree otherwise. θ = (τ, k) is

learned by maximizing the information gain Ii:

θ⋆ = argmax
τ∈R,k∈Z

Ii. (1)

The optimization is driven by the Gini impurity or Entropy

[6]. y ∈ Y = Z
m·m is a structured label with the same

size as the training tokens. To enable the optimization of Ii
for structured labels, Dollár et al. [13] propose a mapping

Π : Y 7→ L to project structured labels into a discrete space,

l ∈ L = {1, ..., Z}, and then follow the standard way. The

training terminates (i.e., leaf nodes are reached) until a stop-

ping criteria is satisfied [6]. The most representative y (i.e.,

closet to mean) is stored in the leaf node as its structured

prediction, i.e., the posterior p(y|x).
The overall prediction function of SRF ensembles T pre-

dictions from all decision trees, which is defined as

argmax
y∈Y

p(y|x,F) =
1

T

T
∑

t=1

argmax
y∈Y

p(y|x, Ft). (2)

To obtain optimal performance, given a test image, we

densely sample tokens in multi-scales so that a single pixel

can get m×m× T × (# of scales) predictions in total. The

structured outputs force the spatial continuity. The averaged

prediction yields soft contour responses, which intrinsically

alleviate noise effects and indicate a good sign to perform-

ing SSL in SRF.

Good features play an important role in the success of

SRF. Shen et al. [29] improve the SE contour detector [13]

by replacing the widely used HoG-like features with CNN

features. In fact, this CNN classifier itself is a weak con-

tour detector used to generate better gradient features. In-

spired by this idea, we use a limited number of l-tokens from

a few labeled images to first train a weak SE contour de-

tector (denoted by Γ) [13]. Γ produces efficient detection

and provides prior knowledge for u-tokens to facilitate SSL.

We will see its further usage subsequently. In our method,

we use three color channels (Luv), two gradient magnitude

(obtained from Γ) and eight orientation channels in two

scales, and thus the total feature space is X ∈ R
m·m·13,

which is similar to the configuration in [20].

4.2. Semisupervised SRF learning

In our method, maximizing the information gain Ii is

achieved by minimizing the Gini impurity measurement G

[11], which is defined as

G(D̃i) =
Z
∑

j=1

pj(l|xk)(1− pj(l|xk)), (3)

where pj(l|xk) denotes the label empirical distribution of

class j in D̃i with respect to the k-th feature dimension.

We adopt the mapping function Π [13] to map structured

labels of l-tokens to discrete labels. D̃i = {(x, l)|(x, y) ∈
Di, l = Π(y)} denotes Di when x is with the discrete label.

Intuitively, minimizing G is to find a separating line in the

k-th feature dimension (several feature dimensions can be

used together to define a separating hyperplane [11]) to split

D̃i in the whole feature space into the left and right subtrees,

so that pj on both sides are maximized [6]. Proposition

1 proves the close relationship of the Gini impurity to the

max-margin learning.

Proposition 1. Given the hinge loss function ξ of max-

margin learning, the Gini impurity function
∑

L pj(1− pj)
is its special case.

Proof. Since l(wTx) ≥ 0, if l(wTx) ≤ 1, then we have:

ξ(D̃i) =
1

|D̃i|

∑

(x,l)∈D̃i

Z
∑

j=1

1[l = j] max(0, 1− l(wTx))

=
Z
∑

j=1

pj(1− l(wTx)),

where pj =
∑

(x,l)∈D̃i
1[l=j]

|D̃i|
. Because pj ∝ l(wTx), the

Proposition holds. A generalized theorem is given in [18].
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Incorporate Unlabeled Data It is well-known that a lim-

ited number of labeled data always lead to biased max-

margin estimation. We incorporate u-tokens into the lim-

ited number of l-tokens to improve the max-margin estima-

tion of weak learners in every node. However, p(l|xu) of

u-tokens is unavailable for computing Gini impurity. One

solution to address this problem [23] is to apply a kernel

density estimator to obtain p(xu|l) and use the Bayes rule

to obtain p(l|xu). In this approach, a proper selection of

bandwidth is not trivial. In addition, it can not handle struc-

ture labels and the high-dimensional space, on which u-

tokens lie. In our method, we propose to map tokens into

a more discriminate low-dimensional subspace associated

with discrete labels using a learned mapping S , and find a

hyperplane w to estimate p(l|xu). In this scenario, the goal

is to calculate the bases of the subspace. The data corre-

lation in the subspace is consistent with that in the origi-

nal space so that the estimated p(l|xu) will not mislead the

weak learners. In Section 5, we demonstrate that this goal

can be achieved using sparse representation techniques.

SRF Node Splitting Behaviors During the training stage of

SRF, tokens with various patterns are chaotic in the top level

nodes, and weak learners produce coarse splitting results;

while at the bottom level nodes, the splitting becomes more

subtle. For example, suppose l ∈ {0, 1}, the weak learner

in the root node intends to split foreground and background

tokens into the left and right subtrees, respectively. The top

level nodes tend to split the straight line and broken line

patterns, whereas weak learners tend to split 40 degree and

30 degree straight lines in the bottom level nodes, in which

patterns are more pure. Considering this property, we pro-

pose a novel dynamic structured label transfer approach to

estimate the structured labels for u-tokens.

4.3. Dynamic structured label transfer

Because it is challenging to directly estimate high-

dimensional structured labels for u-tokens, in our method,

we transfer existing structured labels of l-tokens to u-tokens.

An important concern is to prevent inaccurate structured la-

bel estimation for u-tokens from destroying the learning of

SRF. Suppose we have mapped tokens in node i into a low-

dimensional subspace using S , we first search for a max-

margin hyperplane w using a linear wighted binary support

vector machine trained over l-tokens with discrete labels in

this node (so the number of discrete labels Z=2 in our case).

In this way, for an u-token xu, we can estimate its discrete

label (i.e., p(l|xu)) through sigmoid
(

wTS(xu)
)

.

To estimate its structured label, we adopt the nearest

search to find the best match in the candidate pool of l-

tokens with the same discrete label as xu. The structured

label transfer function H : X 7→ Y is defined as

y⋆ = H(xu) = argmin
(x,y)∈DL

i

dist(S(x),S(xu)),
(4)

where dist(·, ·) is the cosine metric. In Section 5.2, we will

see that S generates very sparse low-dimensional represen-

tation for tokens so that the steps of finding the hyperplane

and performing the nearest search are computationally effi-

cient. Finally we can easily map u-tokens associated with

structure labels back to their original space, and all tokens

in node i are propagated to child nodes.

The brute-force searching at the top level nodes may

yield inaccurate structured label estimation for u-tokens due

to the chaotic patterns and coarse discrete labels. In addi-

tion, it might lead to unnecessary computations because of

redundant structured labels in one class. To tackle these

problems, we dynamically update the transferred structured

labels during the training of SRF. At the root node, we

transfer initial structured labels to u-tokens. As the tree

goes deeper, weak learners gradually purify the candidate

pool by decreasing the token volume and pattern variety.

Therefore, the dynamically estimated structured labels of u-

tokens will become more reliable in the bottom level nodes.

Since the number of u-tokens is much larger than that of l-

tokens, some bottom level nodes might contain less or no

l-tokens. We treat u-tokens with high probability as l-tokens

when a node does not contain enough l-tokens, less than 10
in our case. In addition, we randomly pick a subset instead

of the entire candidate pool to perform the nearest search in

each individual node.

5. Sparse Token Representation

This section discusses the approach of finding the sub-

space mapping S mentioned in Section 4.2. We first de-

scribe how to learn a token dictionary to construct the bases

of the low-dimensional subspace, and then present a novel

and fast sparse coding algorithm to accelerate the computa-

tion of S .

5.1. Sparse token dictionary

Sparse representation has been proven to be effective to

represent local image patches [24, 35, 21]. In our method,

we pursue a compact set of the low-level structural primi-

tives to describe contour patterns by learning a token dic-

tionary. Specifically, any token x can be represented by

a linear combination of K bases in a dictionary M =
[m1, ...,mV ] containing V bases (K ≪ V ). A sparse code

c is calculated to select the K bases. Given a set of training

tokens X = [x1, ..., xn], the dictionary M , as well as the

associated C = [c1, ..., cn], is learned by minimizing the

reconstruction error [1]:

argmin
M,C

‖X −MC‖2F ,

s.t. ∀i, ‖mi‖2 = 1 and ∀j, ||cj ||0 ≤ K,

(7)

where ‖ · ‖0 is ℓ0-norm, ‖cj‖0 =
∑

i 1[cji 6= 0], to ensure

that a sparse code c only has K nonzero entries. ‖ · ‖F is
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Figure 3. Illustration of the sparse token representation. We empirically set V=256 and K=3 when training Mf and Mb separately, in

which 1 × 105 training tokens are used for each. The overall dictionary is M = [Mb,Mf ] ∈ R
(m·m·4)×512 and the sparsity is set as

K=6. Left: Examples of some bases with the RGB channels (left) and the contour channel (right). Middle: Average sparse code (512
dimensional vectors) values of foreground tokens (top) and background tokens (bottom) from test images. We can see foreground tokens

tend to select bases (i.e., assigning high weights to bases) belonging to Mf , while background tokens tend to select bases belonging to Mb.

Right: Reconstruction representation of input images (top) with the RGB channels (middle) and the contour channel (bottom). Contours

are well preserved and background noises are greatly suppressed.

Algorithm 1 Fast sparse coding

Input: A target data x ∈ R
d, a dictionary M ∈ R

d×V , and

a sparsity value K

Output: A sparse code c ∈ R
V

1: for v = [1, 2, ..., V ] do

2: Obtain the score sv for mv:

s⋆v = argmin
sv

‖x−mvsv‖
2
2

= (mT
v mv)

−1
√

mT
v yy

Tmv

(5)

3: end for

4: Construct a small size dictionary matrix Ms ∈ R
d×K

using the K bases associated with the first K largest

scores in [s1, ..., sV ]
5: Solve a constrained leasts-squares problem:

c⋆s = argmin
cs

‖x−Mscs‖
2
2 + λ‖cs‖

2
2

= (MT
s Ms + λI)−1MT

s x, cs ∈ R
K .

(6)

6: Obtain a sparse code c by filling its K entries with c⋆s
indexed by s

7: return The sparse code c

the Frobenius norm. Inspired by [24], we adopt MI-KSVD,

a variant of the popular K-SVD, to solve Eqn. (7) for bet-

ter sparse reconstruction [5]. However, the dictionary M is

learned in an unsupervised manner, so it is not task-specific

and its learning performance can be influenced by large

appearance variances in tokens from different images. In

particular, we observe that the cluttered background tokens

(i.e., tokens contain no annotated contour inside) may cause

unnecessary false positives. To ameliorate these problems,

we introduce the prior label knowledge as an extra feature

in the dictionary to improve its learning performance.

Specifically, for an RGB token, we apply Γ (Section 4.1)

to generate its corresponding contours as the prior label

knowledge, i.e., a patch with detected contours. In this way,

the new featured token x will have 4 channels, which is rep-

resented as x = [x(r), x(g), x(b), x(e)]T ∈ R
m·m·4, where

x(e) is the contour channel corresponding to the RGB chan-

nels (x(r), x(g), and x(b)). We model background with Mb

and foreground with Mf , respectively. Figure 3 illustrates

how the dictionary represents the structure in tokens.

In our method, both u-tokens and l-tokens are used as

the training data for dictionary learning, which are sam-

pled from unlabeled and labeled images, respectively. Fore-

ground tokens are extracted if they straddle any contours

indicated by the ground truth. The rest are background to-

kens. Because the ground truth of u-tokens is unavailable,

we use the probability outputs of Γ to help us sample high

confident foreground and background u-tokens.

5.2. Subspace mapping using fast sparse coding

As we mentioned in Section 4.2, we use the mapping

function S to provide a compact and discriminative low-

dimensional representation for a token x. Given a learned

dictionary M in Section 5.1, the subspace representation of

x is defined as

S(x) = c⋆ = argmin
c

‖x−Mc‖2, s.t. ‖c‖0 ≤ K. (8)

It is well-known that solving Eqn. (8) is NP-hard (ℓ0-norm).

One typical algorithm to solve this problem is orthogonal
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Original image GroundTruth gPb-owt-ucm SCG SemiContour SemiContour-Seg DC

Figure 4. Experimental results on BSDS500. The first two columns show the original image and ground truth. The next three columns

show results of comparative methods and our SemiContour. SemiContour produces more clean background and stronger responses on high

confident contours as indicated by ground truth. The last two columns show the segmentation results of SemiContour-Seg and DC [14].

Our method produces more consistent segmentation due to less false positive contour detection.

matching pursuit (OMP) [26]. Many other algorithms of-

ten relax it to the tractable ℓ1-norm minimization problem.

Yang et al. [37] show that ℓ1-norm provides better classifi-

cation meaningful information than ℓ0-norm. The main rea-

son is that, unlike ℓ0-norm that only selects the dictionary

bases, ℓ1-norm also assigns weights to the selected bases to

determine their contributions. Usually, high weights are of-

ten assigned to the bases similar to the target data [34]. In

this paper, we propose a novel and fast sparse coding algo-

rithm, which is scalable to a large number of target data.

Based on the above observation, we approximate the

computation of sparse coding by two steps: 1) basis selec-

tion, which measures the similarity score of each basis to

the target data individually and then selects the bases with

large scores; 2) reconstruction error minimization, which

aims to assign weights to selected bases. The details are

summarized in Algorithm 1. Given a target data, we first

compute a sequence of scores with respect to each basis

(steps 1 to 3). Next we select K bases associated with the

first K largest scores to construct a small size dictionary Ms

(step 4). Then we solve a constrained least-squares problem

to obtain the coefficient cs and assign weights to the se-

lected bases (step 5). The regularization parameter λ is set

to a small value, 10−4. Finally, the value of cs is mapped to

c as the final sparse code (steps 6 to 7).

Unlike many existing methods, our proposed algorithm

decouples the sparse coding optimization to problems with

analytical solutions, which do not need any iteration. There-

fore, our algorithm is faster than others that directly solve

ℓ0-norm or ℓ1-norm problems.

6. Experimental Results

In this section, we first evaluate the performance of

the proposed method for contour detection on two public

datasets, and then compare the efficiency of the proposed

sparse coding solver with several state-of-the-arts.

6.1. Contour detection performance

We test the proposed approach on the Berkeley Seg-

mentation Dataset and Benchmark (BSDS500) [2] and the

NYUD Depth (NYUD) V2 Dataset [30]. We measure

the contour detection accuracy using several criteria: F-

measures with fixed optimal threshold (ODS) and per-

image threshold (OIS), precision/recall (PR) curves, and av-

erage precision (AP) [2]. In all experiments, we use tokens

with a size of m=12 based on an observation that a larger

size (e.g., m=30) will significantly reduce the sparse rep-

resentation performance, while a smaller size (e.g., m=5)

can hardly represent rich patterns. This token size is also

adopted by SRF to train T=10 trees. The skeleton opera-

tion is applied to the output contour images of the proposed

SemiContour using the non-maximal suppression for quan-

titative evaluation.

Training Image Settings: We randomly split training im-

ages into a labeled set and an unlabeled set1. We use a fair

and relative large number of training tokens for all compar-

ative methods, i.e., 1× 105 for background and foreground.

Tokens (including l-tokens and u-tokens) are evenly sam-

pled from each image in both sets. Γ is trained over the la-

beled set to sample u-tokens from the unlabeled set. Three

tests are performed and average accuracies are reported as

the final results.

BSDS500: BSDS500 [2] has been widely used as a bench-

mark for contour detection methods, including 200 training,

100 validation, and 200 test images. Our method uses 3 la-

beled training images in the labeled set; the rest 197 images

are included in the unlabeled set. Table 1 and Figure 5(a)

1To compensate for possible insufficient foreground l-tokens, we dupli-

cated images in the labeled set by histogram matching.

256



Table 1. Contour detection results on BSDS500. In the first col-

umn, from top to down, the first block is the human annotations;

the second block is unsupervised methods; the third block is su-

pervised methods; the fourth block is our methods. For supervised

methods (third block), we show the performance using both 3 and

200 training images (shown in (·)).

ODS OIS AP

Human .80 .80 -

Canny [7] .60 .64 .58

Felz-Hutt [15] .61 .64 .56

Normalized Cuts [10] .64 .68 .48

Mean Shift [9] .64 .68 .56

Gb [19] .69 .72 .72

gPb-owt-ucm [2] .73 .76 .70

ISCRA [28] - (.72) - (.75) - (.46)

Sketch Tokens [20] .64(.73) .66(.75) .58(.78)

SCG [35] .73(.74) .75(.76) .76(.77)

SE [13] .66(.74) .68(.76) .69(.78)

SE-Var [12] .69(.75) .72(.77) .74(.80)

SemiContour .73 .75 .78

SemiContour-Seg .74 .77 .76

Table 2. Contour detection results of SemiContour on BSDS500

that is trained with different number of labeled training images.

# of Labeled Images ODS OIS AP

3 .728 .747 .776

10 .732 .753 .782

20 .734 .755 .784

50 .736 .758 .787

compare our method with several other methods2.

In order to compare with supervised methods, we pro-

vide the performance with 3 as well as with all 200 labeled

training images (comparative results with 200 images are

obtained from the authors’ original papers). As we can

see, the proposed SemiContour method produces similar re-

sults as supervised methods using 200 training images, but

outperforms all the unsupervised methods and supervised

methods with 3 labeled training images. The performance

of all supervised approaches except SCG significantly de-

creases with only 3 labeled training images. Specifically,

compared with the SE-Var (an improved version of SE), our

method exhibits 4-point higher ODS and 4-point higher AP.

The gPb-owt-ucm and SCG, which merely replaces the lo-

cal contrast estimation of the former that does not rely on

many labeled images, exhibit close performance to ours, but

our PR curve still shows higher precision with the same re-

call rates. In terms of efficiency, our method is hundreds of

times faster than these two. For a 420 × 320 image, Semi-

Contour runs within 0.89s, while gPb-owt-ucm and SCG

require 240s and 280s, respectively. Several qualitative ex-

ample results are shown in Figure 4. In addition, we also

2We carefully check every step when re-training their model and keep

the other parameters default.
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Figure 5. Precision/recall curves on BSDS500 and NYUD.
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Figure 6. The comparative performance by varying tolerance

thresholds (maximized pixel distance allowed when matching the

estimated contours to ground-truth). SemiContour slightly under-

performs SCG and gPb-owt-ucm at stringent thresholds due to

some skewed localizations. However, it outperforms both, espe-

cially in AP measurement, with the slack thresholds, which means

that SemiContour is less likely to miss real contours.

show the experimental results of the proposed method us-

ing a different number of labeled images in Table 2.

We find that the estimated structured labels of u-tokens

sometimes might cause skewed localization at exact contour

position. However, our method is less likely to miss real

contours, as shown in Figure 6. Precise contour localization

is necessary but less important in applications such as object

detection and scene understanding.

We also test the performance of using the proposed

SemiCoutour method for segmentation. After contour de-

tections using SemiContour, multiscale-UCM [3] is applied

onto the generated contour images to generate the segmen-

tation results (denoted as SemiContour-Seg in our experi-

ments). We compare SemiContour-Seg with several state-

of-the-art methods. The results are shown in Figure 4 and

Table 3. SemiContour-Seg also improves the contour detec-

tion performance as shown in Table 1.

Table 3. Segmentation results on BSDS500. Evaluation criteria is

described in [2]. Note that we only use three labeled image to train

the proposed SemiContour method.

Cover PRI

ODS OIS ODS OIS

red-spectral [32] .56 .62 .81 .85

gPb-owt-ucm [2] .59 .65 .83 .86

DC [14] .58 .63 .82 .85

SemiContour-Seg .59 .64 .83 .85
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Table 4. Contour detection results on NYUD. In the first column,

from top to bottom, the first block is unsupervised method, the

second block is supervised methods, and the third block is our

method. For supervised methods (second block), we show the per-

formance using both 10 and 381 training images (shown in (·)).

ODS OIS AP

gPb-owt-ucm [2] .63 .66 .56

Siberman [30] - (.65) - (.66) - (.29)

SE-Var [13] .66(.69) .68(.71) .68(.72)

SemiContour .68 .70 .69

Table 5. Cross-dataset generalization results. The first column in-

dicates the training/testing dataset settings that we used. Semi-

Contour outperforms SE-Var on both settings.

ODS OIS AP

NYUD/BSDS
SE-Var .73 .74 .77

SemiContour .73 .75 .78

BSDS/NYUD
SE-Var .64 .66 .63

SemiContour .65 .66 .63

NYUD: NYUD contains 1449 RGB-D images. We follow

[13] to perform the experiment setup. The dataset is splited

into 381 training, 414 validation, and 654 testing images.

To conduct RGB-D contour detection, we treat the depth

image as an extra feature channel, and thus the dictionary

basis has five channels, and the feature channels for SRF

are increased by 11 [13]. We use 10 images in the labeled

set with the rest 371 images in the unlabeled set. The com-

parison results are shown in Table 4 and Figure 5(b). We

can observe that SemiContour with only 10 training images

produces superior results than supervised methods trained

with 10 images, and also provides competitive results with

supervised methods trained using all 381 labeled data.

6.2. Crossdataset generalization results

One advantage of the proposed SemiContour is that it

can improve the generalization ability of contour detec-

tion by incorporating unlabeled data from the target dataset

domain. To validate this, we perform a cross-dataset ex-

periment on BSDS500 and NYUD. The two datasets ex-

hibit significant visual variations. NYUD contains vari-

ous indoor scenes under different lighting conditions, and

BSDS500 contains outdoor scenes. We use one dataset as

the labeled set and another as the unlabeled set. The rest

experiment setup is the same as SE-Var [12]. We compare

SemiContour with SE-Var in Table 53.

These experiments validate the strong generalization

ability and the robustness of the proposed SemiContour

method, which indicates a strong noise resistance of the

3Later on, we conducted an extra experiment to augment 200 labeled

training images of BSDS with 100 unlabeled images of NYUD to improve

the testing results of BSDS. Our method achieves (.752ODS, .786OIS,

.792AP), compared with SE-Var’s results (.743ODS, .763OIS, .788AP),

both with totally 1 million training tokens.
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Figure 7. Runtime comparison results. The dictionary size is 576×
512 and the sparsity K=6. Our method significantly outperforms

the others as the number of target data increases.

method even when we incorporate u-tokens from a differ-

ent image domain.

6.3. Efficiency of the proposed fast sparse coding

The running time of our novel sparse coding algorithm

is determined by the steps of basis selection and reconstruc-

tion error minimization. The former step needs O(d·V )
to compute V scores and O(V ·K) to select the K bases,

and the latter reconstruction error minimization step needs

O(d·K2) with a d×K dictionary. Therefore, the total time

complexity is max
(

O(d·V ), O(d·K2)
)

, usually O(d·V )
because K is much smaller than V in practice.

We compare our fast sparse coding solver with several

algorithms in Figure 7. Most of existing sparse coding

algorithms suffer from computational expensive iterations.

We only choose several popular ones to compare with our

algorithm, including OMP [26], Batch-OMP [26] and its

faster version (Batch-OMP-fast). All of these comparative

algorithms contain highly optimized implementations and

our algorithm is a simple Matlab implementation. We ob-

serve that our fast sparse coding algorithm obtains the same

results as the others in terms of the final contour detec-

tion accuracy, but it is significantly faster than the others.

Since the computation of each target data is independent,

an additional benefit is that the proposed algorithm can be

easily parallelized. All algorithms are tested on an Intel

i7@3.60GHz×6 cores and 32GB RAM machine.

7. Conclusions

In this paper, we present a novel semi-supervised struc-

tured ensemble learning method for contour detection.

Specifically, our approach trains an effective contour de-

tector based on structured random forests (SRF). We take

advantage of unlabeled data to conduct better node splitting

of SRF using sparse representation techniques, whose pro-

cedures are embedded in the overall SRF training. In order

to increase the scalability of sparse coding to extensive tar-

get data, we have proposed a fast and robust sparse coding

algorithm. Compared with many existing literatures, our

method provides superior testing results.
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