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Abstract

Face alignment, which fits a face model to an image

and extracts the semantic meanings of facial pixels, has

been an important topic in CV community. However, most

algorithms are designed for faces in small to medium pos-

es (below 45◦), lacking the ability to align faces in large

poses up to 90◦. The challenges are three-fold: Firstly, the

commonly used landmark-based face model assumes that

all the landmarks are visible and is therefore not suitable

for profile views. Secondly, the face appearance varies

more dramatically across large poses, ranging from frontal

view to profile view. Thirdly, labelling landmarks in large

poses is extremely challenging since the invisible landmarks

have to be guessed. In this paper, we propose a solution to

the three problems in an new alignment framework, called

3D Dense Face Alignment (3DDFA), in which a dense 3D

face model is fitted to the image via convolutional neutral

network (CNN). We also propose a method to synthesize

large-scale training samples in profile views to solve the

third problem of data labelling. Experiments on the chal-

lenging AFLW database show that our approach achieves

significant improvements over state-of-the-art methods.

1. Introduction

Traditional face alignment aims to locate face fiducial

points like “eye corner”, “nose tip” and “chin center”, based

on which the face image can be normalized. It is an

essential preprocessing step for many face analysis tasks,

e.g., face recognition [41], expression recognition [5] and

inverse rendering [1]. The researches in face alignment can

be divided into two categories: the analysis-by-synthesis

based [12, 42, 15] and regression based [11, 17, 27, 45].

The former simulates the process of image generation and

achieves alignment by minimizing the difference between

model appearance and input image. The latter extracts
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features around key points and regresses it to the ground

truth landmarks. With the development in the last decade,

face alignment across medium poses, where the yaw angle

is less than 45◦ and all the landmarks are visible, has been

well addressed [45, 51, 54]. However, face alignment across

large poses (±90◦) is still a challenging problem without

much attention and achievements. There are three main

challenges:

Figure 1. Fitting results of 3DDFA. For each pair of the four

results, on the left is the rendering of the fitted 3D shape with the

mean texture, which is made transparent to demonstrate the fitting

accuracy. On the right is the landmarks overlayed on the 3D face

model, in which the blue/red ones indicate visible/invisible land-

marks. The visibility is directly computed from the fitted dense

model by [21]. More results are demonstrated in supplemental

material.

Modelling: Landmark shape model [13] implicitly as-

sumes that each landmark can be robustly detected based on

its distinctive visual patterns. However, when faces deviate

from the frontal view, some landmarks become invisible

due to self-occlusion [53]. In medium poses, this problem

can be addressed by changing the semantic positions of

face contour landmarks to the silhouette, which is termed

landmark marching [55]. However, in large poses where

half of face is occluded, some landmarks are inevitably

invisible and have no image data. As a result, the landmark

shape model no longer works well.

Fitting: Face alignment across large poses is more chal-

lenging than medium poses due to the dramatic appearance
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variations when close to the profile views. The cascad-

ed linear regression [45] or traditional nonlinear model-

s [27, 50, 10] are not sophisticated enough to cover such

complicated patterns in a unified way. The view-based

framework, which adopts different landmark configurations

and fitting models for each view category [53, 49, 56, 38],

may significantly increase computation cost since every

view has to be tested.

Data Labelling: The most serious problem comes from

the data. Manual labelling landmarks on large-pose faces

is very tedious since the occluded landmarks have to be

“guessed” which is impossible for most of people. As

a result, most public face alignment databases such as

AFW [56], LFPW [22], HELEN [26] and IBUG [35] are

collected in medium poses. Existing large-pose databases

such as AFLW [25] only contains visible landmarks, which

could be ambiguous in invisible landmarks and hard to train

a unified face alignment model.

In this paper, we address all the three challenges with the

goal of improving the face alignment performance across

large poses.

1. To address the problem of invisible landmarks in large

poses, we propose to fit the 3D dense face model rather

than the sparse landmark shape model to the image. By

incorporating 3D information, the appearance varia-

tions and self-occlusion caused by 3D transformations

can be inherently addressed. We call this method 3D

Dense Face Alignment (3DDFA). Some results are

shown in Fig. 1.

2. To resolve the fitting process in 3DDFA, we propose a

cascaded convolutional neutral network (CNN) based

regression method. CNN has been proved of excellent

capability to extract useful information from images

with large variations in object detection [48] and image

classification [40]. In this work, we adopt CNN to fit

the 3D face model with a specifically designed fea-

ture, namely Projected Normalized Coordinate Code

(PNCC). Besides, Weighted Parameter Distance Cost

(WPDC) is proposed as the cost function. To the best

of our knowledge, this is the first attempt to solve the

3D face alignment with CNN.

3. To enable the training of the 3DDFA, we construct a

face database containing pairs of 2D face images and

3D face models. We further propose a face profiling

algorithm to synthesize 60k+ training samples across

large poses. The synthesized samples well simulate the

face appearances in large poses and boost the perfor-

mance of both prior and our proposed face alignment

algorithms.

The databases and the codes are released at http://

www.cbsr.ia.ac.cn/users/xiangyuzhu/.

2. Related Works

Generic Face Alignment: Face alignment in 2D aims

at locating a sparse set of fiducial facial landmarks. A

number of achievements have been made including the

classic Active Appearance Model (AAM) [12, 36, 42] and

Constrained Local Model (CLM) [16, 37, 2]. Recently, the

regression based method, which maps the discriminative

features around landmarks to the desired landmark position-

s [43, 45, 46, 10, 50, 27], has been proposed. By utilizing

the feedback characteristic that the the output (landmark

positions) of the regression has an influence on the input

(features at landmarks), the cascaded regression [17] cas-

cades a list of weak regressors to reduce the alignment error

progressively and reaches the state of the art [46, 54].

Besides traditional models, convolutional neutral net-

work (CNN) has also been employed in face alignment

recently. Sun et al. [39] firstly use CNN to regress land-

mark locations with the raw face image. Liang et al. [28]

improve the flexibility by estimating the landmark response

map. Zhang et al. [51] further combine face alignment

with attribute analysis through multi-task CNN to boost

the performance of both tasks. Although with considerable

achievements, most CNN methods only detect a sparse set

of landmarks (5 points in [39, 51, 28]) with limited descrip-

tive power of face shape.

Large Pose Face Alignment: Despite the great atten-

tions on face alignment, literature on large-pose scenario is

rather limited. The most common method is the multi-view

framework [14], which uses different landmark configura-

tions for different views. For example, TSPM [56] and CD-

M [49] employ DPM-like [18] method to align faces with

different shape models, among which the highest possibility

is chosen as the final result. However, since every view has

to be tested, the computation cost of multi-view method is

always high.

Besides 2D methods, 3D face alignment [19], which fits

a 3D morphable model (3DMM) [6] by minimizing the

difference between image and model appearance, also has

the potential to deal with large poses [6, 33]. However, it

suffers from the one-minute-per-image computation cost.

Recently, regression based 3DMM fitting, which estimates

the model parameters by regressing the features at landmark

positions [49, 24, 8, 23], has been proposed to improve the

efficiency. However, since the features at landmarks may be

self-occluded as in 2D methods, the fitting algorithm is no

longer pose-invariant.

3. 3D Dense Face Alignment (3DDFA)

In this section we introduce the 3D Dense Face Align-

ment (3DDFA) which fits 3D morphable model with cas-

caded CNN.

147

http://www.cbsr.ia.ac.cn/users/xiangyuzhu/
http://www.cbsr.ia.ac.cn/users/xiangyuzhu/


Figure 2. An overview of 3DDFA. At kth iteration, Netk takes a medium parameter p
k as input, constructs the projected normalized

coordinate code (PNCC), stacks it with the input image and sends it into CNN to predict the parameter update ∆p
k.

3.1. 3D Morphable Model

Blanz et al. [6] propose the 3D morphable model (3DM-

M) which describes the 3D face space with PCA:

S = S+Aidαid +Aexpαexp, (1)

where S is a 3D face, S is the mean shape, Aid is the prin-

ciple axes trained on the 3D face scans with neutral expres-

sion and αid is the shape parameter, Aexp is the principle

axes trained on the offsets between expression scans and

neutral scans and αexp is the expression parameter. In this

work, the Aid and Aexp come from BFM [31] and Face-

Warehouse [9] respectively. The 3D face is then projected

onto the image plane with Weak Perspective Projection:

V (p) = f ∗Pr∗R∗(S+Aidαid+Aexpαexp)+t2d, (2)

where V (p) is the model construction and projection func-

tion, leading to the 2D positions of model vertexes, f is

the scale factor, Pr is the orthographic projection matrix
(

1 0 0
0 1 0

)

, R is the rotation matrix constructed from

rotation angles pitch, yaw, roll and t2d is the translation

vector. The collection of all the model parameters is p =
[f, pitch, yaw, roll, t2d,αid,αexp]

T .

3.2. Network Structure

The purpose of 3D face alignment is estimating p from a

single face image I. Unlike existing CNN methods [39, 28]

which apply different networks for different fitting stages,

3DDFA employ a unified network structure across the cas-

cade. In general, at iteration k (k = 0, 1, ...,K), given

an initial parameter pk, we construct a specially designed

feature PNCC with pk and train a convolutional neutral

network Netk to predict the parameter update ∆pk:

∆pk = Netk(I, PNCC(pk)). (3)

Afterwards, a better medium parameter pk+1 = pk +∆pk

becomes the input of the next network Netk+1 which has

the same structure as Netk. Fig. 2 shows the network

structure. The input is the 100 × 100 × 3 color image

stacked by PNCC. The network contains four convolu-

tion layers, three pooling layers and two fully connect-

ed layers. The first two convolution layers share weights

to extract low-level features. The last two convolution

layers do not share weights to extract location sensitive

features, which is further regressed to a 256-dimensional

feature vector. The output is a 234-dimensional pa-

rameter update including 6-dimensional pose parameters

[f, pitch, yaw, roll, t2dx, t2dy], 199-dimensional shape pa-

rameters αid and 29-dimensional expression parameters

αexp.

3.3. Projected Normalized Coordinate Code

The special structure of the cascaded CNN has three

requirements of its input feature: Firstly, the feedback

property requires that the input feature should depend on

the CNN output to enable the cascade manner. Secondly,

the convergence property requires that the input feature

should reflect the fitting accuracy to make the cascade con-

verge after some iterations [57]. Finally, the convolvable

property requires that the convolution on the input feature

should make sense. Based on the three properties, we

(a) NCC (b) PNCC

Figure 3. The Normalized Coordinate Code (NCC) and the Pro-

jected Normalized Coordinate Code (PNCC). (a) The normalized

mean face, which is also demonstrated with NCC as its texture

(NCCx = R, NCCy = G, NCCz = B). (b) The generation of

PNCC: The projected 3D face is rendered by Z-Buffer with NCC

as its colormap.

design our features as follows: Firstly, the 3D mean face

is normalized to 0− 1 in x, y, z axis as Equ. 4. The unique

3D coordinate of each vertex is called its Normalized Coor-
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dinate Code (NCC), see Fig. 3(a).

NCCd =
Sd −min(Sd)

max(Sd)−min(Sd)
(d = x, y, z), (4)

where the S is the mean shape of 3DMM in Equ. 1. Since

NCC has three channels as RGB, we also show the mean

face with NCC as its texture. Secondly, with a model

parameter p, we adopt the Z-Buffer to render the projected

3D face colored by NCC as in Equ. 5, which is called

the Projected Normalized Coordinate Code (PNCC), see

Fig. 3(b):

PNCC = Z-Buffer(V3d(p),NCC)

V3d(p) = f ∗R ∗ S+ [t2d, 0]
T (5)

S = S+Aidαid +Aexpαexp,

where Z-Buffer(ν, τ ) renders an image from the 3D mesh ν

colored by τ and V3d(p) is the current 3D face. Afterwards,

PNCC is stacked with the input image and transferred to

CNN. Regarding the three properties, PNCC fulfills the

feedback property since in Equ. 5, p is the output of CNN

and NCC is a constant. Secondly, PNCC provides the 2D

locations of visible 3D vertexes on the image plane. When

CNN detects that each NCC superposes its corresponding

image pattern during testing, the cascade will converge.

PNCC fulfills the convergence property. Note that the in-

visible region is automatically ignored by Z-Buffer. Finally,

PNCC is smooth in 2D space, the convolution indicates the

linear combination of NCCs on a local patch. It fulfills the

convolvable property.

3.4. Cost Function

The performance of CNN can be greatly impacted by the

cost function, which is difficult to design in 3DDFA since

each dimension of the CNN output (model parameter) has

different influence on the 3DDFA result (fitted 3D face). In

this work, we discuss two baselines and propose a novel

cost function. Since the parameter range varies significant-

ly, we conduct z-score normalization before training.

3.4.1 Parameter Distance Cost (PDC)

Take the first iteration as an example. The purpose of CNN

is predicting the parameter update ∆p to move the initial

parameter p0 closer to the ground truth pg . Intuitively, we

can minimize the distance between the ground truth and the

current parameter with the Parameter Distance Cost (PDC):

Epdc = ‖∆p− (pg − p0)‖2. (6)

Even though PDC has been used in 3D face alignment [57],

there is a problem that each dimension in p has different

influence on the resultant 3D face. For example, with the

same deviation, the yaw angle will bring a larger alignment

error than a shape PCA coefficient, while PDC optimizes

them equally.

3.4.2 Vertex Distance Cost (VDC)

Since 3DDFA aims to morph the 3DMM to the ground truth

3D face, we can optimize ∆p by minimizing the vertex

distances between the fitted and the ground truth 3D face:

Evdc = ‖V (p0 +∆p)− V (pg)‖2, (7)

where V (·) is the face construction and weak perspective

projection as Equ. 2. This cost is called the Vertex Distance

Cost (VDC) and the derivative is provided in supplemen-

tal material. Compared with PDC, VDC better models

the fitting error by explicitly considering the semantics of

each parameter. However, we observe that VDC exhibits

pathological curvature [29]. The directions of pose parame-

ters always exhibit much higher curvatures than the PCA

coefficients. As a result, optimizing VDC with gradient

descend converges very slowly due to the “zig-zagging”

problem. Second-order optimizations are preferred but they

are expensive and hard to be implemented on GPU.

3.4.3 Weighted Parameter Distance Cost (WPDC)

In this work, we propose a simple but effective cost function

Weighted Parameter Distance Cost (WPDC). The basic idea

is explicitly modeling the importance of each parameter:

Ewpdc = (∆p− (pg − p0))TW(∆p− (pg − p0))

where W = diag(w1,w2, ..., wn)

wi = ‖V (pd(i))−V (pg)‖/
∑

wi

pd(i)i = (p0 +∆p)i

pd(i)j = p
g
j , j ∈ {1, . . . , i− 1, i+ 1, . . . , n},

(8)

where W is the importance matrix whose diagonal is the

weight of each parameter, pd(i) is the i-deteriorated param-

eter whose ith component comes from the predicted param-

eter (p0 +∆p) and the others come from the ground truth

parameter pg , ‖V (pd(i)) − V (pg)‖ models the alignment

error brought by miss-predicting the ith model parameter,

which is indicative of its importance. For simplicity, W is

considered as a constant when computing the derivative. In

the training process, CNN firstly concentrate on the parame-

ters with larger ‖V (pd(i))−V (pg)‖ such as scale, rotation

and translation. As pd(i) is closer to pg , the weights of

these parameters begin to shrink and CNN will optimize

less important parameters but at the same time keep the

high-priority parameters sufficiently good. Compared with

VDC, the WPDC remedies the pathological curvature issue

and is easier to implement without the derivative of V (·).
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4. Face Profiling

All the discriminative models rely on the training data,

especially for CNN which has thousands of parameters to

train. Therefore, massive labelled faces across large poses

are crucial for 3DDFA. However, few of released face align-

ment database contains large-pose samples [56, 22, 26, 35]

since labelling standardized landmarks on profile is very

challenging. In this section, we demonstrate that labelled

profile faces can be well simulated from existing training

samples with the help of 3D information. Inspired by the

recent breakthrough in face frontalization [55, 21] which

generates the frontal view of faces, we propose to invert this

process to generate the profile view of faces from medium-

pose samples, which is called face profiling. The basic idea

is predicting the depth of face image and generating the

profile views with 3D rotation.

4.1. 3D Image Meshing

The depth estimation of a face image can be conducted

on the face region and external region respectively, with

different requirements of accuracy. On the face region, we

fit a 3DMM through the Multi-Features Framework [33]

(MFF), see Fig. 4(b). With the ground truth landmarks as

a solid constraint throughout the fitting process, the MFF

can always converge to a very good result. Few failed

samples can be easily adjusted manually. On the external

region, we follow the 3D meshing method proposed by Zhu

et al. [55] to mark some anchors beyond the face region and

estimate their depth, see Fig. 4(c). Afterwards the whole

image is tuned into a 3D object through triangulation, see

Fig. 4(c)4(d).

(a) (b) (c) (d)

Figure 4. 3D Image Meshing. (a) The input image. (b) The fitted

3D face through MFF. (c) The depth image from 3D meshing. (d)

A different view of the depth image.

4.2. 3D Image Rotation

When the depth information is estimated, the face image

can be rotated in 3D space to generate the appearances in

larger poses (Fig. 5). It can be seen that the external face

region is necessary for a realistic profile image. Differen-

t from face frontalization, with larger rotation angles the

self-occluded region can only be expanded. As a result,

we avoid the troubling invisible region filling which may

produce large artifacts [55].

(a) (b) (c) (d)

Figure 5. 2D and 3D view of the image rotation. (a) The original

yaw angle yaw0. (b) yaw0+20◦. (c) yaw0+30◦. (d) yaw0+40◦.

In this work, we enlarge the yaw of the depth image at

the step of 5◦ until 90◦. Through face profiling, we not

only obtain the face appearances in large poses and but also

augment the dataset to a large scale, which means the CNN

can be well trained even given a small database.

5. Implementation Details

5.1. Initialization Regeneration

With a huge number of parameters, CNN tends to overfit

the training set and the networks at deeper cascade might

receive training samples with almost zero errors. Therefore

we cannot directly adopt the cascade framework as in 2D

face alignment. Asthana et al. [3] demonstrates that the

initializations at each iteration can be well simulated with

statistics. In this paper, we also regenerate the pk but with

a more sophisticated method. We observe that the fitting

error highly depends on the ground truth face posture (FP).

For example, the error of a profile face is mostly caused

by a small yaw angle and the error of an open-mouth face is

always caused by a close-mouth expression parameter. As a

result, it is reasonable to model the perturbation of a training

sample with a set of similar-FP samples. In this paper, we

define the face posture as the ground truth 2D landmarks

without scale and translation:

FP = Pr ∗Rg ∗ (S+Aidα
g
id+Aexpα

g
exp)landmark, (9)

where Rg,αg
id,α

g
exp represent the ground truth pose, shape

and expression respectively and the subscript landmark
means only landmark points are selected. Before train-

ing, we select two folds of samples as the validation set.

For each training sample, we construct a validation sub-

set {v1, ..., vm} whose members share similar FP with the

training sample. At iteration k, we regenerate the initial

parameter by:

pk = pg − (pg
vi
− pk

vi
), (10)
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where pk and pg are the initial and ground truth parameter

of a training sample, pk
vi

and pg
vi

come from a validation

sample vi which is randomly chosen from the correspond-

ing validation subset. Note that vi is never used in training.

5.2. Landmark Refinement

Dense face alignment method fits all the vertexes of the

face model by estimating the model parameters. If we are

only interested in a sparse set of points such as landmarks,

the error can be further reduced by relaxing the PCA con-

straint. In the 2D face alignment task, after 3DDFA we ex-

tract HOG features at landmarks and train a linear regressor

to refine the landmark locations. In fact, 3DDFA can team

with any 2D face alignment methods. In the experiment, we

also report the results refined by SDM [45].

6. Experiments

In this section, we evaluate the performance of 3DDFA

in three common face alignment tasks in the wild, i.e.,

medium-pose face alignment, large-pose face alignment

and 3D face alignment. Due to the space constraint, qualita-

tive alignment results are shown in supplemental material.

6.1. Datasets

Evaluations are conducted with three databases,

300W [34], AFLW [25] and a specifically constructed

AFLW2000-3D database.

300W-LP: 300W [34] standardises multiple alignment

databases with 68 landmarks, including AFW [56], LF-

PW [4], HELEN [52], IBUG [34] and XM2VTS [30].

With 300W, we adopt the proposed face profiling to gener-

ate 61,225 samples across large poses (1,786 from IBUG,

5,207 from AFW, 16,556 from LFPW and 37,676 from

HELEN, XM2VTS is not used), which is further expanded

to 122,450 samples with flipping. We call the database as

the 300W across Large Poses (300W-LP)

AFLW: AFLW [25] contains 21,080 in-the-wild faces

with large-pose variations (yaw from −90◦ to 90◦). Each

image is annotated with up to 21 visible landmarks. The

dataset is very suitable for evaluating face alignment per-

formance across large poses.

AFLW2000-3D: Evaluating 3D face alignment in the

wild is difficult due to the lack of pairs of 2D image and

3D model in unconstrained environment. Considering the

recent achievements in 3D face reconstruction which can

construct a 3D face from 2D landmarks [1, 44, 55, 20], we

assume that a 3D model can be accurately fitted if sufficient

2D landmarks are provided. Therefore 3D evaluation can

be degraded to 2D evaluation which also makes it possible

to compare 3DDFA with other 2D face alignment methods.

However, AFLW is not suitable for evaluating this task

since only visible landmarks lead to serious ambiguity in 3D

shape, as reflected by the fake good alignment phenomenon

in Fig. 6. In this work, we construct a database called

AFLW2000-3D for 3D face alignment evaluation, which

contains the ground truth 3D faces and the corresponding 68

landmarks of the first 2,000 AFLW samples. Construction

details are provided in supplemental material.

Figure 6. Fake good alignment in AFLW. For each sample, the

first shows the visible 21 landmarks and the second shows all the

68 landmarks. The Normalized Mean Error (NME) reflects their

accuracy. It can be seen that only evaluating visible landmarks

cannot well reflect the fitting accuracy.

6.2. Performance Analysis

Error Reduction in Cascade: To analyze the error re-

duction process in cascade and evaluate the effect of ini-

tialization regeneration. We divide 300W-LP into 97,967

samples for training and 24,483 samples for testing, without

identity overlapping. Fig. 7 shows the training and testing

errors at each iteration, with and without initialization re-

generation. As observed, the testing error is reduced due to

(a) (b)

Figure 7. The training and testing errors with (a) and without (b)

initialization regeneration.

initialization regeneration. In the generic cascade process

the training and testing errors converge fast after 2 itera-

tions. While with initialization regeneration, the training

error is updated at the beginning of each iteration and the

testing error continues to descend.

During testing, 3DDFA takes 25.24ms for each iteration,

17.49ms for PNCC construction on 3.40GHZ CPU and

7.75ms for CNN on GTX TITAN Black GPU. Note that the

computing time of PNCC can be greatly reduced if Z-Buffer

is conducted on GPU. Considering both effectiveness and

efficiency we choose 3 iterations in 3DDFA.

Performance with Different Costs: In this experiment,

we demonstrate the performance with different costs includ-

ing PDC, VDC and WPDC. Fig. 8 demonstrates the testing
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errors at each iteration. All the networks are trained until

convergence. It is shown that PDC cannot well model the

Figure 8. The testing errors with different cost function.

fitting error and converges to an unsatisfied result. VDC

is better than PDC, but the pathological curvature problem

makes it only concentrate on a small set of parameters,

which limits its performance. WPDC explicitly models the

priority of each parameter and adaptively optimizes them

with the parameter weights, leading to the best result.

6.3. Comparison Experiments

In this paper, we test the performance of 3DDFA on three

different tasks, including the large-pose face alignment on

AFLW, 3D face alignment on AFLW2000-3D and medium-

pose face alignment on 300W.

6.3.1 Large Pose Face Alignment in AFLW

Protocol: In this experiment, we regard 300W and 300W-

LP as the training set respectively and the whole AFLW as

the testing set. The bounding boxes provided by AFLW

are used for initialization (which are not the ground truth).

During training, for 2D methods we use the projected 3D

landmarks as the ground truth and for 3DDFA we directly

regress the 3DMM parameters. During testing, we divide

the testing set into 3 subsets according to their absolute yaw

angles: [0◦, 30◦], [30◦, 60◦], and [60◦, 90◦] with 11,596,

5,457 and 4,027 samples respectively. The alignment ac-

curacy is evaluated by the Normalized Mean Error (NME),

which is the average of visible landmark error normalised

by the bounding box size [24, 49]. Note that the metric

only considers visible landmarks and is normalized by the

bounding box size instead of the common inter-pupil dis-

tance. Besides, we also report the standard deviation across

testing subsets which is a good measure of pose robustness.

Methods: Since little experiment has been conducted

on AFLW, we choose some baseline methods with released

codes, including CDM [49], RCPR [7], ESR [10] and S-

DM [47]. Among them ESR and SDM are popular face

alignment methods in recent years. CDM is the first one

claimed to perform pose-free face alignment. RCPR is a

occlusion-robust method with the potential to deal with self-

occlusion and we train it with landmark visibility computed

from 3D model [21]. Table. 1 demonstrates the comparison

results and Fig. 9 shows the corresponding CED curves.

Each method is trained on 300W and 300W-LP respectively

to demonstrate the boost from face profiling. If a trained

model is provided in the code, we also demonstrate its per-

formance. Since CDM only contains testing code, we just

report its performance with the provided alignment model.

For 3DDFA which depends on large scales of data, we only

report its performance trained on 300W-LP.

Figure 9. Comparisons of cumulative errors distribution (CED)

curves on AFLW. To balance the pose distribution, we plot the

CED curves with a subset of 12,081 samples whose absolute yaw

angles within [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦] are 1/3 each.

Results: Firstly, the results indicate that all the methods

benefits substantially from face profiling when dealing with

large poses. The improvements in [60◦, 90◦] are 44.06%
for RCPR, 40.36% for ESR and 42.10% for SDM. This

is especially impressive since the alignment models are

trained on the synthesized data and tested on real samples.

Thus the fidelity of the face profiling method can be well

demonstrated. Secondly, 3DDFA reaches the state of the

art above all the 2D methods especially beyond medium

poses. The minimum standard deviation of 3DDFA also

demonstrates its robustness to pose variations. Finally, the

performance of 3DDFA can be further improved with the

SDM landmark refinement in Section 5.2.

6.3.2 3D Face Alignment in AFLW2000-3D

As described in Section 6.1, 3D face alignment evalua-

tion can be degraded to all-landmark evaluation considering

both visible and invisible ones. Using AFLW2000-3D as

the testing set, this experiment follows the same protocol

as AFLW, except 1) Instead of the visible 21 landmarks, all

the MultiPIE-68 landmarks [34] in AFLW2000-3D are used

for evaluation. 2) With the ground truth 3D models, the

ground truth bounding boxes enclosing all the landmarks

are provided for initialization. There are 1,306 samples

in [0◦, 30◦], 462 samples in [30◦, 60◦] and 232 samples in

[60◦, 90◦]. The results are demonstrates in Table. 1 and

the CED curves are plot in Fig. 10. We do not report the

performance of provided CDM and RCPR models since

they do not detect invisible landmarks. Compared with the

results in AFLW, we can see the defect of barely evaluating

visible landmarks. For all the methods, despite with ground
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Table 1. The NME(%) of face alignment results on AFLW and AFLW2000-3D with the first and the second best results highlighted. The

bracket shows the training set. The results of provided alignment models are marked with their references.

AFLW Dataset (21 pts) AFLW2000-3D Dataset (68 pts)

Method [0, 30] [30, 60] [60, 90] Mean Std [0, 30] [30, 60] [60, 90] Mean Std

CDM [49] 8.15 13.02 16.17 12.44 4.04 - - - - -

RCPR [7] 6.16 18.67 34.82 19.88 14.36 - - - - -

RCPR(300W) 5.40 9.80 20.61 11.94 7.83 4.16 9.88 22.58 12.21 9.43

RCPR(300W-LP) 5.43 6.58 11.53 7.85 3.24 4.26 5.96 13.18 7.80 4.74

ESR(300W) 5.58 10.62 20.02 12.07 7.33 4.38 10.47 20.31 11.72 8.04

ESR(300W-LP) 5.66 7.12 11.94 8.24 3.29 4.60 6.70 12.67 7.99 4.19

SDM(300W) 4.67 6.78 16.13 9.19 6.10 3.56 7.08 17.48 9.37 7.23

SDM(300W-LP) 4.75 5.55 9.34 6.55 2.45 3.67 4.94 9.76 6.12 3.21

3DDFA 5.00 5.06 6.74 5.60 0.99 3.78 4.54 7.93 5.42 2.21

3DDFA+SDM 4.75 4.83 6.38 5.32 0.92 3.43 4.24 7.17 4.94 1.97

Figure 10. Comparisons of cumulative errors distribution (CED)

curves on AFLW2000. To balance the pose distribution, we plot

the CED curves with a subset of 696 samples whose absolute yaw

angles within [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦] are 1/3 each.

truth bounding boxes the performance in [60◦, 90◦] and the

standard deviation are obviously reduced. We think for 3D

face alignment which depends on both visible and invisible

landmarks [1, 55] , evaluating all the landmarks are neces-

sary.

6.3.3 Medium Pose Face Alignment

Even though not aimed at advancing face alignment in

medium poses, we are also interested in the performance of

3DDFA in this popular task. The experiments are conducted

on 300W following the common protocol in [54], where we

use the training part of LFPW, HELEN and the whole AFW

for training (3,148 images and 50,521 after augmentation),

and perform testing on three parts: the test samples from

LFPW and HELEN as the common subset, the 135-image

IBUG as the challenging subset, and the union of them as

the full set (689 images in total). The alignment accuracy

are evaluated by standard landmark mean error normalised

by the inter-pupil distance (NME). It can be seen in Tabel. 2

that even as a generic face alignment algorithm, 3DDFA

still demonstrates competitive performance on the common

set and state-of-the-art performance on the challenging set.

Table 2. The NME(%) of face alignment results on 300W, with the

first and the second best results highlighted.

Method Common Challenging Full

TSPM [56] 8.22 18.33 10.20

ESR [10] 5.28 17.00 7.58

RCPR [7] 6.18 17.26 8.35

SDM [45] 5.57 15.40 7.50

LBF [32] 4.95 11.98 6.32

CFSS [54] 4.73 9.98 5.76

3DDFA 6.15 10.59 7.01

3DDFA+SDM 5.53 9.56 6.31

7. Conclusions

In this paper, we propose a novel method, 3D Dense Face

Alignment (3DDFA), which well solves the problem of face

alignment across large poses. Different from traditional

methods, 3DDFA skips the 2D landmark detection and s-

tarts from 3DMM fitting with cascaded CNN to handle the

self-occlusion problem. A face profiling algorithm is also

proposed to synthesize face appearances in profile view,

providing abundant samples for training. Experiments show

the state-of-the-art performance in AFLW, AFLW2000-3D

and 300W.
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