
6. Theoretical Foundations
6.1. The rank of a matrix with infinite rows

Lemma 1 The rank of Z ∈ Zp = {T ∈ RN×p, �T�F <
∞} exists, is finite and not larger than p. Moreover, such a
matrix has p (non-negative) singular values.

Proof The proof has three steps: 1) prove that both the
row and column rank cannot exceed p, 2) sketch that these
two ranks coincide and therefore the rank operator is well
defined and 3) show that there p singular values.

1. The row rank and the column rank of Z cannot ex-
ceed p. On the one side, the rows are all p-dimensional
vectors and therefore they cannot span a space with di-
mensionality higher than p. On the other side, there
are only p columns, and therefore they cannot span a
space with dimensionality higher than p.

2. The row and column ranks coincide, and therefore we
can write rank(Z), and state 0 ≤ rank(Z) ≤ p. In-
deed, it is straightforward to extend the result for finite
matrices to any matrix in Zp.

3. Z has p singular values, that are, by definition, the
square root of the eigenvalues of the (finite) matrix
Z�Z. Since Z�Z is a symmetric non-negative definite
square matrix of size p, Z has exactly p non-negative
singular values.

6.2. The nuclear norm is the tighest convex envelope
of the rank also in Zp

Theorem 1 On the set ZM
p = {Z ∈ RN×p, �Z�F < M}

the tightest convex envelope of rank(Z) is g(Z) = 1
M �Z�∗.

Proof The proof has two steps. First, we prove that the bi-
conjugate of a real-valued function in a Hilbert space (ZM

p

is one) is the tighest convex envelope. After that, we prove
that the bi-conjugate of the rank is the nuclear norm.

We first recall the definition of the conjugate of a func-
tion:

Definition 1 Let H be a Hilbert space, with scalar product
denoted by �·, ·�. Let f �= ∞ minorized by an affine function
over H, then the conjugate of f is a function f∗ defined as:

f∗(s) := sup{�s, x� − f(x), x ∈ domf}, s ∈ H. (19)

Intuitively, domf is the set of slopes of all affine functions
minorizing f over H. From this definition it is easy to see
that f∗ also satisfies the conjugability conditions. There-
fore we can consider the following object f∗∗, referred to
as the biconjugate of the function f . Importantly, the fol-
lowing lemma proves that the biconjugate of a function is
the tighest convex envelope of the function. In other words:

Lemma 2 For a given f satisfying the conjugability condi-
tions, f∗∗ is the pointwise supremum of all the affine func-
tions on H majorized by f .

Proof If Ωf ⊂ H×R denotes the set of pairs (y, r) defining
affine functions x �→ �y, x� − r majorized by f , we have:

(y, r) ∈ Ωf ⇔ f(x) ≥ �y, x� − r ∀x ∈ H
⇔ r ≥ sup{�y, x� − f(x), x ∈ H}
⇔ r ≥ f∗(y).

Then we obtain:

sup
(y,r)∈Ωf

�y, x� − r = sup
(y,r)

{�y, x� − r, y ∈ domf∗,−r ≤ −f∗(y)}

= sup
y
{�y, x� − f∗(y), y ∈ domf∗}

= f∗∗(x),

as we wanted to prove.
The previous result corresponds to part of Theorem

X.1.3.5 of [2] extended to any Hilbert space and allows us
to write the biconjugate of a function as:

f∗∗(x) = sup
r,s

{�y, x� − r, �y, z� − r ≤ f(z), ∀z ∈ H}.
(20)

Therefore, the biconjugate of a function f is its tighest
convex envelope, and this concludes the first part of the
proof. In the second part of the proof, we shall see that
the biconjugate of the rank is the nuclear norm. First of all
we remark that both the rank and the nuclear norm are well
defined for matrices in ZM

p as proven in Lemma 1 in the
main manuscript.

The proof of the second part follows step-by-step the
proof of Theorem 1 in [1], and therefore we just sketch the
main line of reasoning. The proof starts by focusing on the
set Z1

p , since the generalization to an arbitrary M is straight-
forward. Firstly we compute the conjugate of the rank:

φ∗(Y) = sup
�X�≤1

(�Y,X� − φ(X)) , (21)

with φ(X) = rank(X). Since the scalar product is defined
as �Y,X� = Tr

�
Y�X

�
we write:

φ∗(Y) = sup
�X�≤1

�
Tr

�
Y�X

�
− Rank(X)

�
, (22)

Using von Neumann’s trace theorem, i.e.:

Tr
�
Y�X

�
≤

p�

i=1

σi(Y)σi(X), (23)



where σi denotes the i-th singular value, we get to the fol-
lowing result:

φ∗(Y) =

p�

i=1

(σi(Y)− 1)+ , (24)

where (y)+ is defined as (y)+ = max{y, 0}. The computa-
tion of φ∗∗ from φ∗ follows a similar reasoning. The main
difference is that

φ∗∗(Z) = sup
Y

�
p�

i=1

σi(Z)σi(Y)−
�

r�

i=1

σi(Y)− r

��
,

diverges for �Z� > 1, and therefore can only be com-
puted for Z ∈ Z1

p . In that case we obtain the desired result
(see (Fazel 2002) for details):

φ∗∗(Z) = �Z�∗, (25)

concluding the proof.

6.3. The derivative with respect to L1

Definition 2 (Fréchet derivative) Let V and W be two
Banach spaces, and f : U ⊂ V → W , where U is an
open set of V . f is Fréchet differentiable at x ∈ U is there

exists an bounded linear operator T : V → W such that.

lim
h→0

�f(x+ h)− f(x)− Th�W
�h�V

= 0, (26)

where � · �V and � · �W denote the norms of V and W .

Since ZM
p is a Hilbert (and therefore Banach) space, the

previous definition can be applied to our case. In particular
we introduce the following lemma:

Lemma 3 Let Φ ∈ ZM
p , Q ∈ Rm×r and L ∈ ZM

r .
The Fréchet derivative of f : ZM

r → R defined as
f(L) = �Φ− LQ��2V =

�
Φ− LQ�,Φ− LQ�� is T =

2
�
LQ�Q−ΦQ

�
seen as a linear operator ZM

r → R.

Proof The proof is straightforward from the definition.
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