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1. Graphs for all body joints
Performance graphs from main paper (with corresponding figure numbering) shown for all body joints.
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Figure 3. Annotation accuracy and coverage when iterating on YouTube Pose Subset. Accuracy of annotation and coverage (% of
frames with annotation) across the video increases as the system iterates. Accuracy is measured as the percentage of estimated annotations
falling within d = 20 pixels from ground truth (approx wrist width is 15 pixels). Results are averaged over videos with ground truth from
the YouTube Pose Subset dataset.
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Figure 7. Component evaluation on YouTube Pose Subset. The graphs show the improvement from each stage of our algorithm. Notice
how each stage leads to a very significant increase in accuracy. Accuracy is shown (averaged over left and right body parts) as the allowed
distance from manual ground truth is increased.

1



B
B

C
 P

o
se

M
P

II
 C

o
o

ki
n

g
Yo

u
Tu

b
e 

Po
se

0 20 40
0

20

40

60

80

100
Average

A
c
c
u
ra

c
y
 (

%
)

Distance from GT (px)

 

 

Pfister et al [32]
Chen & Yuille [10]
Yang & Ramanan [48]
Cherian et al [11]
Personalized ConvNet

0 20 40
0

20

40

60

80

100
Head

A
c
c
u
ra

c
y
 (

%
)

Distance from GT (px)
0 20 40

0

20

40

60

80

100
Wrists

A
c
c
u
ra

c
y
 (

%
)

Distance from GT (px)
0 20 40

0

20

40

60

80

100
Elbows

A
c
c
u
ra

c
y
 (

%
)

Distance from GT (px)
0 20 40

0

20

40

60

80

100
Shoulders

A
c
c
u
ra

c
y
 (

%
)

Distance from GT (px)

B
B

C
 P

o
se

M
P

II
 C

o
o

ki
n

g
Yo

u
Tu

b
e 

Po
se

0 10 20
0

20

40

60

80

100
Average

A
c
c
u
ra

c
y
 (

%
)

Distance from GT (px)

 

 

Pfister et al [32]
Chen & Yuille [10]
Yang & Ramanan [48]
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Yang & Ramanan [48]
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Figure 9. Comparison to the state of the art. Accuracy of pose estimation evaluated on three datasets. Accuracy is averaged over left and
right body parts and shown as allowed distance from manual ground truth d is increased. Please refer to main paper for method references.
Note: for the MPII Cooking performance graphs we compare methods trained/initialized with the FLIC dataset apart from Robrbach et
al. [37] which is trained with MPII Cooking training material.

2. Sub-component evaluations
Graphs showing personalization sub-component evaluations.
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Figure S1. Coverage and accuracy under different initialization methods on YouTube Pose Subset. The graphs show the improvement
from each stage of our algorithm under two different initialization methods. The first is initialized using the ConvNet [32] and the separate
arm detectors (WITH ARM), the second uses only the ConvNet to initialize (WITHOUT ARM). Accuracy curves are produced by training
a random forest body part detector (as described in the main paper) from current annotations, and evaluating it on all ground truth frames
from YouTube Pose Subset.
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Figure S2. Puppet evaluator response on YouTube Pose Subset. For each iteration of our system, the number of per body joint
annotations removed by our puppet evaluator are counted. These are expressed as a percentage of the total per body joint annotations prior
to applying the puppet evaluator, but after removing some annotations with our annotation agreement measure. The puppet evaluator is
shown to remove additional annotations which pass the agreement measure. The graphs demonstrate, on average, a reduction in removed
annotation as our system iterates.

3. Boosting a generic ConvNet on FLIC
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Figure S3. Improvement when training with automatically annotated videos. Performance of a generic ConvNet pose estimator [32]
trained on the FLIC training set (Generic) is compared against a boosted version produced by fine-tuning with 20 additional automatically
annotated YouTube Pose videos (Boosted). Comparison is performed on the FLIC test set. An improvement in performance is observed
for all body joints, particularly for the elbows.

4. Experimental details

ConvNet. We use the publicly available ConvNet of Pfister et al. [3] both for initialization and for fine-tuning. The available model is
pre-trained on the FLIC dataset [5] using the 3987 training video frames. Empirically, for our initialization, we found using body joint
estimates with 80% confidence or above produce very good precision.
Arm model training. The second initialization method is for arm pose estimates using the generic pose estimator of Yang and Ra-
manan [6]. 15 arm pose models are trained on the MPII dataset [2] (by clustering all arm poses into 15 clusters using k-means, and
retaining the nearest 150 poses to the cluster centroid for training), making it possible to detect up to 225 different poses. Note, there is no
overlap between the MPII dataset [2] used for training and the MPII cooking dataset [4] used for testing. Each model is trained to have
high precision (at least 90% detection accuracy) by setting their confidence threshold so as not to fire on pose clusters that they weren’t
trained on. We use the LSP extended dataset [1] to learn these thresholds.
Parameters. After temporal propagation, annotations are only retained if temporal agreement of overlapping annotation is below 20 pixels
and overlapping annotation stems from at least three different frames. All videos are scaled to contain a person with width between the
shoulders of approximately 100 pixels.
Joint offsets. There exists consistent body joint offsets between manual ground truth annotations on FLIC and those on BBC Pose or MPII
Cooking. Therefore, to ensure a fair comparison between all models, pose estimates from those models trained/initialized from FLIC are
adjusted by these offsets.
Personalized ConvNet average accuracy on training annotation. Here we report average training error (using all automatically gen-
erated annotations as ground truth) of the personalized ConvNet on BBC Pose (98%), YouTube Pose Subset (91%) and MPII Cooking
(90%). Interestingly, after training, we found the personalized ConvNet predictions have higher precision than the generated annotation.



5. YouTube Pose dataset pose tracking output
Example video frames and pose tracking output for the YouTube Pose dataset.

Figure S4. YouTube Pose dataset and pose estimates. Example frames from videos in the YouTube Pose dataset are shown in each row
along with pose estimates (as stick figures) from the personalized ConvNet. Note the variety of poses, clothing, backgrounds and camera
angles.



Figure S5. More YouTube Pose dataset and pose estimates. Example frames from videos in the YouTube Pose dataset are shown in
each row along with pose estimates (as stick figures) from the personalized ConvNet.
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Figure S6. YouTube Pose category distribution. Distribution of video categories in the 50 video YouTube Pose dataset.

Figure S7. Failure cases. Example frames with erroneous pose estimates from personalized ConvNets. There are two main causes of
failure: (i) heavy occlusion (including self-occlusion), and (ii) poses which our automated annotation system could not propagate, due to
either optical flow error or very few initial annotations.
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