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The following supplementary materials are split into two
sections. In the first section we complete the proofs de-
scribed in the main paper. The second section provides ad-
ditional details relating to our experiments. In addition, we
provide demonstrations of matching using TERs in the at-
tached movie file.

1. Validity of TERs
In this section we formally define each TER type, and

prove the valid orders for each. For each TER type, we
present and prove the ordering of critical lines, and a single
valid order in one of the sections. Once we have the order
of critical lines and the valid order we can use observations
A1-A2 in order to find the remaining valid orders. As such,
we find the 6 valid orders out of a possible 12 for each re-
gion. Note that the proofs below are all case based. To do
so, we first parametrize the epipolar lines.

1.1. Parameterization

Without loss of generality, we set the coordinate system
such that `k is parallel to the x-axis, at yk < 0. The intersec-
tion of `i and `k is at the origin, that is γij = (0, 0). As such,
`i and `j are parametrized by y = mix and y = mjx, re-
spectively. Therefore, γik = ( bk

mi
, bk) and γjk = ( bk

mj
, bk).

Finally for y > 0, `j is left of `i, that is y
mj

< y
mi

. See
Figs. 8-12.

Given a point αu = (xu, yu), the critical lines are de-
fined as follows:

ci : y = mix+ bi

cj : y = mjx+ bj

ck : y = yu

cij : y = mijx, where mij =
(

yu

xu

)
cik : y = mikx+ bik, where mik =

(
yk−yu
yk
mi

−xu

)

cjk : y = mjkx+ bjk, where mjk =

(
yk−yu
yk
mj

−xu

)
To find the order of critical lines, we calculate the inter-

section of each critical line with the x-axis, given by the set
β = {βi, βj , βij , βik, βjk}:

ci : βi = xu − yu

mi

cj : βj = xu − yu

mj

ck : Parallel to x-axis

cij : βij = 0

cik : βik =
(xu− yu

mi
)yk

(yk−yu)

cjk : βjk =
(xu− yu

mj
)yk

(yk−yu)

In regionsR3,R4, andR5, we need to consider the lines
parallel to the epipolar lines (see Fig. 3). With that in mind,
we also define the following:

γik = ( yk

mi
, yk)

ˆ̀
j = mjx+ (1− mj

mi
)yk

γ̂jk = ( 1
mi
− 1

mj
)yk

Note that αu is to the right of `i if xu > yu

mi
, otherwise αu is

the left of `i. Similarly, αu is to the right of `j if xu > yu

mj
.

Finally, αu is to the right of ˆ̀j if xu > yu

mj
− ( 1

mi
− 1

mj
)yk.

1.2. The β ordering conditions

We next present the conditions that define the ordering of
the set β along the x-axis. Since β depends on the location
of αu = (xu, yy) with respect to each of the lines. These
conditions can be easily verified visually (using Figs. 8-12)
or algebraically using the definitions for β and the line given
above.

1



1. βi < βj
This is true given our setup as for y > 0, y

mj
< y

mi
.

2. βi > 0, that is, xu − yu

mi
> 0 iff

xu >
yu

mi
(xu is right of `i)

3. βj > 0, that is, xu − yu

mj
> 0 iff

xu >
yu

mj
(xu is right of `j)

4. βik > 0, that is,
(xu− yu

mi
)yk

(yk−yu)
> 0

iff one of these cases holds:

(i) xu > yu

mi
(xu is right of `i) and yu > yk

(ii) xu < yu

mi
(xu is left of `i) and yk > yu.

5. βjk > 0, that is,
(xu− yu

mj
)yk

(yk−yu)
> 0

iff one of these cases hold:

(i) xu > yu

mj
(xu is right of `j) and yu > yk

(ii) xu < yu

mj
(xu is left of `j) and yk > yu

6. βik > βi that is,

(xu− yu
mi

)yk

(yk−yu)
> (xu − yu

mi
)

Through algebraic manipulations we get:

(xu − yu

mi
)yu

(yk − yu)
> 0

iff one of these cases holds:

(i) yk < yu < 0 and xu > yu

mi
(xu is right of `i)

(ii) yu > 0 and xu < yu

mi
(xu is left of `i)

(iii) yk > yu and xu < yu

mi
(xu is left of `i)

7. βjk > βj that is,

(xu− yu
mj

)yk

(yk−yu)
> (xu − yu

mj
)

Through algebraic manipulations we get:

(xu − yu

mj
)yu

(yk − yu)
> 0

iff one of these cases holds:

(i) yk < yu < 0 and xu > yu

mj
(xu is right of `j)

(ii) yu > 0 and xu < yu

mj
(xu is left of `j)

(iii) yk > yu and xu < yu

mj
(xu is left of `j)

8. βj > βik that is:

xu − yu

mj
>

(xu− yu
mi

)yk

(yk−yu)

Through algebraic manipulations we get that:

yu
γ̂jk − βj
(yk − yu)

> 0

iff one of these cases holds:

(i) yk < yu < 0 and xu < yu

mj
− ( 1

mi
− 1

mj
)yk

(xu is left of ˆ̀j)

(ii) yu > 0 and xu > yu

mj
− ( 1

mi
− 1

mj
)yk

(xu is right of ˆ̀j)

(iii) yu < yk and xu > yu

mj
− ( 1

mi
− 1

mj
)yk

(xu is right of ˆ̀j)

9. βik < βjk, that is:

(xu− yu
mi

)yk

(yk−yu)
<

(xu− yu
mj

)yk

(yk−yu)

Through algebraic manipulations we get that

yu(−γ̂jk)
yk − yu

< 0

As y
mj

< y
mi

when y > 0, γ̂jk must be negative, there-
fore this rule holds iff either of these cases hold:

(i) yu < yk

(ii) yu > 0

1.3. Geometric Observations

In addition to the conditions on β order, we use two basic
geometric observations to prove the order in which a line
passing through a section crosses each epipolar line and αu.

1. Define the points pa1 and pa2 as two points on a line
`a. Consider the line `b which intersects `a, at ˜̀a × ˜̀

b

(where x̃ is the homogenous coordinate of x). If pa1
and pa2 are on opposite sides of `b, the intersection of
the two lines must be between pa1 and pa2 along `a.

2. Given a point p between two parallel lines `a and ˆ̀
a.

Let `b be a line passing through p which is not parallel

to `a. The point pmust be between ˜̀
a× ˜̀

b and ˜̂
`a× ˜̀

b.



Figure 8: This figure shows the intersections of critical lines
with the x-axis given αu in R1.

1.4. Critical Line Orders for TERs

Here we formally define each region type and prove the
order of critical lines for each region using the conditions
on the order of β. The order of critical lines is defined by
the order of the points in the set β. Note that as ck is par-
allel to the x-axis and the order is cyclical, ck can be either
first or last in the order of critical lines for all regions. For
reference, we provide in Table 2, the order of critical lines
and valid orders for each of the 16 regions.

Region R1: R1 is defined as the triangular region whose
points are γij , γik, and γjk (Fig. 3). Formally:

R1 = {(xu, yu) | yk < yu < 0 &
yu
mi

< xu <
yu
mj
}.

Critical line order for R1: cjk, cj , cij , ci, cik, ck
Rules which prove order:

(i) βjk < βj : Rule 7.

(ii) βj < βij : Rule 3.

(iii) βij < βi: Rule 2.

(iv) βi < βik: Rule 6.

Region R2: R2(i, j) is defined in the paper. It is the area
comprised of `i and `j through which `k does not pass. For-
mally:

R2(i, j) = {(xu, yu) | yu > 0 > yk &
yu
mj

< xu <
yu
mi
}.

Critical line order for R2(i, j): ci, cik, cij , cjk, cj , ck Rules
which prove order:

(i) βi < βik: Rule 6.

(ii) βik < βij : Rule 4.

Figure 9: This figure shows the intersections of critical lines
with the x-axis given αu in R2(i, j).

Figure 10: This figure shows the intersections of critical
lines with the x-axis given αu in R3(i, ĵ, k̂).

(iii) βij < βjk: Rule 5.

(iv) βjk < βj : Rule 7.

Region R3: R3(i, ĵ, k̂) is defined by the triangle whose
points are γij , γik, and γ̂jk = (ˆ̀j × ˆ̀

k) (see Fig. 3). Note
that the way in which we set up the lines, ˆ̀k is the x-axis.
Formally:

R3(i, ĵ, k̂) = {(xu, yu) | 0 > yu > yk &

yu
mj
− (

1

mi
− 1

mj
)yk < xu <

yu
mi
}.

Critical line order for R3(i, ĵ, k̂): cjk, cj , cik, ci, cij , ck.
Rules which prove order:

(i) βjk < βj : Rule 7.

(ii) βj < βik: Rule 8.

(iii) βik < βi: Rule 6.

(iv) βi < βij : Rule 2.



Figure 11: This figure shows the intersections of critical
lines with the x-axis given αu in R4(ĵ, k̂).

Figure 12: This figure shows the intersections of critical
lines with the x-axis given αu in R5(j, ĵ, k̂).

Region R4 : R4(ĵ, k̂) is defined as the area comprised of
ˆ̀
j and ˆ̀

k through which no other line passes (see Fig. 3).
Formally:

R4(ĵ, k̂) = {(xu, yu) | yu > 0 & xu <
yu
mj
− (

1

mi
− 1

mj
)yk}.

Critical line order for R4(ĵ, k̂): ci, cj , cik, cjk, cij , ck.
Rules which prove order:

(i) βi < βj : Rule 1.

(ii) βj < βik Rule 8.

(iii) βik < βjk: Rule 9.

(iv) βjk < βij : Rule 5.

Region R5: R5(j, ĵ, k̂) is defined as the open area bor-
dered by `j , ˆ̀j , and ˆ̀

k through which no other line passes
(see Fig. 3). Formally:

R5(j, ĵ, k̂) = {(xu, yu) | yu > 0 &

Figure 13: This is the same as Fig 8, only this time we
highlight an an ` ∈ L(cij , ci, αu) and its intersections.

yu
mj
− (

1

mi
− 1

mj
)yk < xu <

yu
mj
}.

Critical line order for R5(j, ĵ, k̂):ci, cik, cj , cjk, cij , ck.

(i) βi < βik: Rule 6.

(ii) βik < βj : Rule 8.

(iii) βj < βjk: Rule 7.

(iv) βjk < βij : Rule 5.

Note that all of the above orders are independent of the
location of αu in each region.

1.5. Valid Orders for TERs

We now prove the valid orders for each region. To that
end, we make use of the basic geometric observations de-
tailed above and the region definitions given. The following
proofs can be easily visually verified using the correspond-
ing Figs. 13-17, but are given here for completeness. We
define αi to be the intersection of a line ` which passes
through αu and the epipolar line `i, that is, α̃i = ˜̀× ˜̀

i

where α̃u
˜̀= 0. The points αj and αk are defined similarly.

1.5.1 Region R1 (Fig. 13)

Let L(cij , ci, αu) be the set of lines passing through αu in
the section defined by the two neighboring critical lines cij
and ci. Consider an ` ∈ L(cij , ci, αu) for αu ∈ R1, and
define β` to be the x-intercept of `.

Claim 1: The valid order given by L(cij , ci, αu) when
αu ∈ R1 is (u, i, j, k) as given by the intersections of `
with αu and each of the epipolar lines.

Proof of Claim 1:

1. As `k is parallel to the x-axis and yk < yu < 0, ge-
ometric observation (2) dictates that αu must be be-
tween αk and β`.



Figure 14: This is the same as Fig 9, only this time we
highlight an ` ∈ L(cij , cjk, αu) and its intersections.

2. By definition of this section, β` > 0 (as βij = 0), and
therefore, β` is right of `j . Furthermore, as the defi-
nition of R1 requires that any points within it be left
of `j (as xu < yu

mj
), geometric observation (1) dictates

that αj be between αu and β`.

3. β` is defined to be between βij , through which `i
passes, and βi, through which ci passes. Note that ci
also passes through αu and is parallel to `i. As such,
geometric observation (2) dictates that β` must be be-
tween αu and αi

As such, the order of intersections along ` must
be αk < αu < αj < αi (up to direction).

1.5.2 Region R2(i, j) (Fig. 14)

Let L(cij , cjk, αu) be the set of lines passing through αu in
the section defined by the two neighboring critical lines cij
and cjk. Consider an ` ∈ L(cij , cjk, αu) for αu ∈ R2(i, j).
As above, define β` to be the x-intercept of `.

Claim 2: The valid order given by L(cij , cjk, αu) when
αu ∈ R2(i, j) is (u, i, j, k) as defined by the intersections
of `.

Proof of Claim 2:

1. By definition of the section, β` > 0 and therefore must
be to the right of `i (as `i intersects the origin). Fur-
thermore, the definition of R2(i, j) dictates that αu be
left of `i (xu < yu

mi
). Using geometric observation (1),

we have that αi is between αu and β`.

2. Note that cjk is defined as the line connecting αu to
the intersection of `k and `j . As such, αk must be left
of `j . Furthermore, as β` > 0, it must also be to the
right of `j . Therefore, using geometric observation (1),
we have that αj must be between αk and β`.

Figure 15: This is the same as Fig 10, only this time we
highlight an ` connecting αu and β` and its intersections.

As yu > 0, yk < 0 and β` is at the x-intercept, the order
of intersections along ` must be αu < αi < αj < αk

(up to direction).

1.5.3 Region R3(i, ĵ, k̂) (Fig. 15)

Consider an ` connecting αu and β` = (x`, 0)
where x` > 0. That is, ` passes through the section bor-
dered by cij and ck.

Claim 3: The valid order given by this section is (k, u, i, j)
as defined by the intersections of `.

Proof of Claim 3:

1. As R3(i, ĵ, k̂) defines xu < yu

mi
(αu left of `i) and

β` > 0 (β` right of `i), geometric observation (1) dic-
tates that αi is between αu and β`.

2. Using the definition of R3(i, ĵ, k̂), we also have that
0 > yu > yk, so αu is between β` and αk.

3. As the definition of our lines dictates that `j is left of
`i when y > 0, and the two lines intersect at the origin,
it follows that `j is right of `i when y < 0. As such αj

is between αi and β` along `.

We therefore have that the order of intersections along `
must be αk < αu < αi < αj (up to direction).

1.5.4 Region R4(̂j, k̂) (Fig. 16)

Consider an ` connecting αu and β` = (x`, 0) where x` >
0. That is, ` passes through the section bordered by cij and
ck.

Claim 4: The valid order given by this section is (u, j, i, k)
as defined by the intersections of `.



Figure 16: This is the same as Fig 11, only this time we
highlight an ` connecting αu and β` and its intersections.
Note that due to space restrictions, we cannot clearly show
all the intersections of `. However it is clear that αk is in-
tersected to the right of the figure.

Proof of Claim 4:

1. As R4(ĵ, k̂) defines that αu > 0 and yk < 0, geomet-
ric observation (1) dictates that β` is between αu and
αk.

2. Note that ˆ̀j is parallel to `j and intersects γik (the in-
tersection point of `i and `k). As yk < 0 and, as de-
scribed above, when y < 0 `i is left of `j , γik is left of
`j . Therefore, ˆ̀j is left of `j . As R4(ĵ, k̂) defines that
αu is left of ˆ̀

j (xu < yu

mj
− ( 1

mi
− 1

mj
)yk), αu must

also be left of `j . As αu is left of `j and β` is right of
`j (as β` > 0), geometric observation (1) dictates that
αj must be between αu and β`.

3. As `j is left of `i for y > 0 and αu is left of `j (as
above), αu must also be left of `i. Therefore, as β` is
right of `i (as β` > 0), geometric observation (1) is
used to determine that αi is between αu and β`.

4. Given (2) and (3), we know that αi and αj must be
above the x-axis. Therefore, as we know that `j is left
of `i above y > 0, we know that αi is between αj and
β`.

We therefore have that the order of intersections along `
must be αu < αj < αi < αk (up to direction).

1.5.5 Region R5(j, ĵ, k̂) (Fig. 17)

Consider an ` connecting αu and β` = (x`, 0) where x` >
0. That is, ` passes through the section bordered by cij and
ck.

Claim 5: The valid order given by this section is (u, j, i, k)
as defined by the intersections of `.

Figure 17: This is the same as Fig 12, only this time we
highlight an ` connecting αu and β` and its intersections.
Note that due to space restrictions, we cannot clearly show
all the intersections of `. However it is clear that αk is in-
tersected to the right of the figure.

Proof of Claim 5:

1. As R5(j, ĵ, k̂) defines that αu > 0 and yk < 0, geo-
metric observation (1) dictates that β` is between αu

and αk.

2. As R5(j, ĵ, k̂) defines that xu < yu

mj
(αu is left of `j)

and β` is right of `j (as β` > 0), geometric observation
(1) is used to determine that αj is between αu and β`.

3. As our lines are set up in such a way that `j is left of `i
for y > 0 and αu is left of `j (as above), αu must also
be left of `i. Therefore, as β` is right of `i (as β` > 0),
geometric observation (1) is used to determine that αi

is between αu and β`.

4. Given (2) and (3), we know that αi and αj must be
above the x-axis. Therefore, as we know that `j is left
of `i above y > 0, we know that αi is between αj and
β`.

As such, the order of intersections along ` must
be αu < αj < αi < αk (up to direction). Note that the
order we showed to be valid for this region was also shown
to make R4(ĵ, k̂) valid. However, as the order of critical
lines between the two regions is different, not all orders
will be shared.

Now that we have the order of the critical lines, and one
valid order for each region, we can use observations A1-A2
from Sec. 3.3, in order to find the remainder of the valid
orders for each region (see Table 2).

In this section, we proved: (i) the critical line order using
any αu within each region and (ii) the valid orders for each
region given any αu in that region. Given these two claims,
it follows that each point within a region has the same 6
valid orders.



# Region Critical Line Order Valid Orders
1 R1 cjk, cj , cij , ci, cik, ck (i, u, j, k), (i, j, u, k), (i, u, k, j), (i, k, u, j), (k, i, u, j), (j, i, u, k)
2 R2(i, j) ci, cik, cij , cjk, cj , ck (u, j, k, i), (u, j, i, k), (u, i, j, k), (u, i, k, j), (j, u, i, k), (i, u, j, k)
3 R2(i, k) cj , ci, cij , cik, cjk, ck (u, k, j, i), (u, k, i, j), (u, i, k, j), (u, i, j, k), (k, u, i, j), (i, u, k, j)
4 R2(j, k) cik, cjk, cij , cj , ci, ck (u, k, i, j), (u, k, j, i), (u, j, k, i), (u, j, i, k), (k, u, j, i), (j, u, k, i)

5 R3(i, ĵ, k̂) cjk, cj , cik, ci, cij , ck (u, i, j, k), (u, i, k, j), (j, u, k, i), (k, u, j, i), (j, u, i, k), (k, u, i, j)

6 R3(j, î, k̂) cij , cj , cjk, ci, cik, ck (u, j, i, k), (u, j, k, i), (i, u, k, j), (k, u, i, j), (i, u, j, k), (k, u, j, i)

7 R3(k, î, ĵ) cik, cj , cij , ci, cjk, ck (u, k, i, j), (u, k, j, i), (i, u, j, k), (j, u, i, k), (i, u, k, j), (j, u, k, i)

8 R4(ĵ, k̂) ci, cj , cik, cjk, cij , ck (u, i, j, k), (u, i, k, j), (u, j, i, k), (u, k, i, j), (i, j, u, k), (i, k, u, j)

9 R4(̂i, k̂) cij , cik, cjk, ci, cj , ck (u, j, i, k), (u, j, k, i), (u, i, j, k), (u, k, j, i), (j, i, u, k), (j, k, u, i)

10 R4(̂i, ĵ) cj , cik, cij , cjk, ci, ck (u, k, i, j), (u, k, j, i), (u, i, k, j), (u, j, k, i), (k, i, u, j), (k, j, u, i)

11 R5(j, ĵ, k̂) ci, cik, cj , cjk, cij , ck (u, i, j, k), (u, i, k, j), (u, j, i, k), (j, u, k, i), (k, u, j, i), (k, i, u, j)

12 R5(k, k̂, ĵ) cjk, cij , cj , ci, cij , ck (u, i, k, j), (u, i, j, k), (u, k, i, j), (k, u, j, i), (j, u, k, i), (j, i, u, k)

13 R5(i, î, k̂) cij , cik, ci, cjk, cj , ck (u, j, i, k), (u, j, k, i), (u, i, j, k), (i, u, k, j), (k, u, i, j), (k, j, u, i)

14 R5(k, k̂, î) cij , cj , ci, cjk, cik, ck (u, j, k, i), (u, j, i, k), (u, k, j, i), (k, u, i, j), (i, u, k, j), (i, j, u, k)

15 R5(j, ĵ, î) cik, cj , cij , cik, ci, ck (u, k, j, i), (u, k, i, j), (u, j, k, i), (j, u, i, k), (i, u, j, k), (i, k, u, j)

16 R5(i, î, ĵ) cj , cik, cij , ci, cjk, ck (u, k, i, j), (u, k, j, i), (u, i, k, j), (i, u, j, k), (j, u, i, k), (j, k, u, i)

Table 2

2. Experimental Results

Here we present a summary of experiments from all
datasets split into two tables. Table 3 shows the results
of experiments in which three initial correspondences were
given (Test 5, Sec. 5.2). Table 4 shows results of exper-
iments in which only one point was given and initial cor-
respondence was selected using nearest neighbors (Test 6,
Sec. 5.2). Table 5 shows results relating to incorrect initial-
izations and dead ends (Test 6, Sec. 5.2).

We present the results in a similar manner in Tables 3,4.
Each dataset corresponds to a location, given by the letters
a-i, and different image sets taken at each location at dif-
ferent times, given by the numbers 1-5. The number of
images and the number of points to be matched vary be-
tween datasets. We tested our method a number of times
on each dataset, each with a different combination of ini-
tial points summarized in the # combinations column. For
each dataset we also present the percent of the tests in which
dead ends were encountered. Note that, as described in test
5, Sec. 5.2, when encountering dead ends, we deduce that
we do no better than matching without TERs. As such, the
rest of the columns present results from the remainder of
the data, which has no dead ends. We present the percent
correct matching with and without the use of TERs over all
data in each dataset. As we searched for matches for differ-
ent points per dataset, improvements in matching may not
have been consistent from point to point. In the ”% Points
Improved” column we present the percentage of the points
which had improved matching when using TERs. We also

Figure 18: Four sample images from dataset a1.

present the difference in the percent of correct matching be-
tween matching with and without TERs. We present the
results only for the points for which using TERs changed
the matching results.

We present here a number of images from each lo-
cation as reference (Figs. 18- 26). Additional ex-
amples are shown in the video clip provided at:
https://youtu.be/viH0jlL5gMA.



Figure 21: Four sample images from dataset d1.

Figure 22: Four sample images from dataset e1.

Figure 19: Four sample images from dataset b2.

Figure 20: Four sample images from dataset c5.



Figure 23: Four sample images from dataset f1.

Figure 24: Four sample images from dataset g1.

Figure 25: Four sample images from dataset h1.

Figure 26: Four sample images from location i.



Dataset # Images # Points # Combinations % Dead End % Matches % Matches % Points Average
Without TERs With TER Improved Diff. %

a1 5 4 40 0 22.5 22.5 0
a2 5 5 50 0.4 13.6 15.3 60 4.6
a3 6 9 162 2.0 7.7 8.2 33 4.5
a4 10 2 185 31.9 19.9 19.9 0
b1 7 1 35 22.9 29.6 45.4 100 15.7
b2 6 5 100 0.4 15.8 16.0 20 5.0
c1 6 3 60 9.4 20.6 26.5 100 5.9
c2 7 4 137 9.1 8.9 9.9 75 1.8
c3 6 4 80 0.9 14.0 15.2 100 1.2
c4 6 2 40 1.3 23.5 24.3 100 0.8
c5 8 5 269 3.7 12.5 13.8 100 1.3
d1 6 1 18 50.0 33.3 48.2 100 14.8
e1 6 4 80 4.1 4.8 6.7 25 29.6
f1 7 6 209 2.8 10.6 12.2 83 2.3
g1 8 4 203 21.3 11.7 12.9 75 2.2
h1 9 2 157 37.3 12.4 22.6 100 10.3
h2 6 4 74 5.4 10.8 12.5 50 7.1
i1 7 3 101 16.5 11.2 11.9 67 1.5

Table 3: This table presents the results of test 5, in which three initial correspondences are given manually. See details
regarding columns in Sec. 2 above.

Dataset # Images # Points # Combinations % Dead End % Matches % Matches % Points Average
Without TERs With TER Improved Diff. %

a1 5 4 20 2.5 7.3 6.9 25 -6.3
a2 5 5 25 1.6 3.8 3.6 20 -5.0
a3 6 9 52 4.3 2.9 3.3 22 6.7
a4 10 2 14 32.1 13.9 13.9 0
b1 7 1 7 85.7 0 16.7 100 16.7
b2 6 5 30 4.0 6.7 6.9 20 3.3
c1 6 3 18 13.0 8.9 11.1 100 2.2
c2 7 4 24 20.8 0 1.6 25 16.7
c3 6 4 24 5.2 4.8 4.8 0
c4 6 2 12 8.3 0 0 0
c5 8 5 37 10.8 6.5 6.7 40 3.3
d1 6 1 6 66.7 10.0 30.0 100 20.0
e1 6 4 23 13.0 0.4 0.7 50 1.2
f1 7 6 42 7.9 5.3 5.7 67 0.7
g1 8 4 32 22.7 0 0 0
h1 9 2 16 40.6 14.1 35.2 50 37.5
h2 6 4 24 12.5 3.9 3.9 0
i1 7 3 21 17.5 4.3 7.1 33 25.0

Table 4: This table presents the results of test 6, in which nearest neighbors to a single given point are used to select the three
initial correspondences.See details regarding columns in Sec. 2 above.



# Images # Experiments With Sq Errors # Dead Ends # Dead Ends Given Sq Errors % Dead Ends Given Sq Errors
5 19 4 4 21.05
6 116 73 59 50.86
7 60 57 48 80.00
8 42 49 34 80.95
9 29 39 28 96.55

10 9 9 9 100.00
12 19 24 19 100.00

Table 5: This table presents data from test 6 relating to incorrect matches selected for the initial set. For datasets containing
different number of images, we present the number of experiments in which the initial set Sq was initialized incorrectly, the
overall number of dead ends, the number of dead ends in experiments which had errors in the initial set, and the percentage
of the time in which dead ends were reached given errors in the initial set.


