Supplementary material for "Inverting Visual Representations with Convolutional Networks"

Alexey Dosovitskiy Thomas Brox University of Freiburg Freiburg im Breisgau, Germany {dosovits, brox}@cs.uni-freiburg.de

Network architectures Table 1 shows the architecture of AlexNet. Tables 2-6 show the architectures of networks we used for inverting different features. After each fully connected and convolutional layer there is always a leaky ReLU nonlinearity. Networks for inverting HOG and LBP have two streams. Stream A compresses the input features spatially and accumulates information over large regions. We found this crucial to get good estimates of the overall brightness of the image. Stream B does not compress spatially and hence can better preserve fine local details. At one points the outputs of the two streams are concatenated and processed jointly, denoted by "J". K stands for kernel size, S for stride.

Shallow features details As mentioned, in the paper, for all three methods we use implementations from the *VLFeat* library [2] with the default settings. We use the Felzen-szwalb et al. version of HOG with cell size 8. For SIFT we used 3 levels per octave, the first octave was 0 (corresponding to full resolution), the number of octaves was set automatically, effectively searching keypoints of all possible sizes.

The LBP version we used works with 3×3 pixel neighborhoods. Each of the 8 non-central bits is equal to one if the corresponding pixel is brighter than the central one. All possible 256 patterns are quantized into 58 patterns. These include 56 patterns with exactly one transition from 0 to 1 when going around the central pixel, plus one quantized pattern comprising two uniform patterns, plus one quantized pattern containing all other patterns. The quantized LBP patterns are then grouped into local histograms over cells of 16×16 pixels.

Experiments: shallow representations Figure 1 shows several images and their reconstructions from HOG, SIFT and LBP. HOG allows for the best reconstruction, SIFT slightly worse, LBP yet slightly worse. Colors are often reconstructed correctly, but sometimes are wrong, for ex-

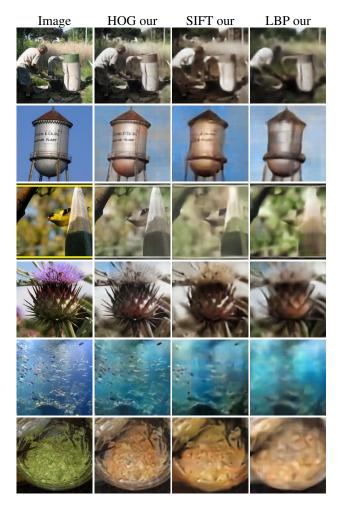


Figure 1: Inversion of shallow image representations.

layer	CO	NV1	CO	NV2	conv3	CONV4	CO	NV5	F	с6	F	с7	FC8
processing	conv1	mpool1	conv2	mpool2	conv3	conv4	conv5	mpool5	fc6	drop6	fc7	drop7	fc8
steps	relu1	norm1	relu2	norm2	relu3	relu4	relu5		relu6		relu7		
out size	55	27	27	13	13	13	13	6	1	1	1	1	1
out channels	96	96	256	256	384	384	256	256	4096	4096	4096	4096	1000

Table 1: Summary of the AlexNet network. Input image size is 227×227 .

ample in the last row. Interestingly, all network typically agree on estimated colors.

Experiments: AlexNet We show here several additional figures similar to ones from the main paper. Reconstructions from different layers of AlexNet are shown in Figure 2. Figure 3 shows results illustrating the 'dark knowledge' hypothesis, similar to Figure 8 from the main paper. We reconstruct from all FC8 features, as well as from only 5 largest ones or all except the 5 largest ones. It turns out that the top 5 activations are not very important.

Figure 4 shows images generated by activating single neurons in different layers and setting all other neurons to zero. Particularly interpretable are images generated this way from FC8. Every FC8 neuron corresponds to a class. Hence the image generated from the activation of, say, "apple" neuron, could be expected to be a stereotypical apple.

Layer	Input	InSize	K	S	OutSize
convA1	HOG	$32 \times 32 \times 31$	5	2	$16\!\times\!16\!\times\!256$
convA2	convA1	$16\!\times\!16\!\times\!256$	5	2	$8 \times 8 \times 512$
convA3	convA2	$8\!\times\!8\!\times\!512$	3	2	$4 \times 4 \times 1024$
upconvA1	convA3	$4\!\times\!4\!\times\!1024$	4	2	$8 \times 8 \times 512$
upconvA2	upconvA1	$8 \times 8 \times 512$	4	2	$16\!\times\!16\!\times\!256$
upconvA3	upconvA2	$16\!\times\!16\!\times\!256$	4	2	$32\!\times\!32\!\times\!128$
convB1	HOG	$32 \times 32 \times 31$	5	1	$32 \times 32 \times 128$
convB2	convB1	$32\!\times\!32\!\times\!128$	3	1	$32\!\times\!32\!\times\!128$
convJ1	{upconvA3, convB2}	$32\!\times\!32\!\times\!256$	3	1	$32 \times 32 \times 256$
convJ2	convJ1	$32\!\times\!32\!\times\!256$	3	1	$32\!\times\!32\!\times\!128$
upconvJ4	convJ2	$32\!\times\!32\!\times\!128$	4	2	$64 \times 64 \times 64$
upconvJ5	upconvJ4	$64\!\times\!64\!\times\!64$	4	2	$128\!\times\!128\!\times\!32$
upconvJ6	upconvJ5	$128\!\times\!128\!\times\!32$	4	2	$256\!\times\!256\!\times\!3$

Table 2: Network for reconstructing from HOG features.

Layer	Input	InSize	K	S	OutSize
conv1	SIFT	$64\!\times\!64\!\times\!133$	5	2	$32\!\times\!32\!\times\!256$
conv2	conv1	$32\!\times\!32\!\times\!256$	3	2	$16\!\times\!16\!\times\!512$
conv3	conv2	$16\!\times\!16\!\times\!512$	3	2	$8 \times 8 \times 1024$
conv4	conv3	$8 \times 8 \times 1024$	3	2	$4 \times 4 \times 2048$
conv5	conv4	$4\!\times\!4\!\times\!2048$	3	1	$4 \times 4 \times 2048$
conv6	conv5	$4\!\times\!4\!\times\!2048$	3	1	$4 \times 4 \times 1024$
upconv1	conv6	$4 \times 4 \times 1024$	4	2	$8 \times 8 \times 512$
upconv2	upconv1	$8 \times 8 \times 512$	4	2	$16\!\times\!16\!\times\!256$
upconv3	upconv2	$16\!\times\!16\!\times\!256$	4	2	$32\!\times\!32\!\times\!128$
upconv4	upconv3	$32\!\times\!32\!\times\!128$	4	2	$64 \times 64 \times 64$
upconv5	upconv4	$64\!\times\!64\!\times\!64$	4	2	$128\!\times\!128\!\times\!32$
upconv6	upconv5	$128\!\times\!128\!\times\!32$	4	2	$256\!\times\!256\!\times\!3$

Table 3: Network for reconstructing from SIFT features.

Layer	Input	InSize	K	S	OutSize
convA1	LBP	$16\!\times\!16\!\times\!58$	5	2	$8 \times 8 \times 256$
convA2	convA1	$8\!\times\!8\!\times\!256$	5	2	$4 \times 4 \times 512$
convA3	convA2	$4 \times 4 \times 512$	3	1	$4 \times 4 \times 1024$
upconvA1	convA3	$4\!\times\!4\!\times\!1024$	4	2	$8 \times 8 \times 512$
upconvA2	upconvA1	$8\!\times\!8\!\times\!512$	4	2	$16\!\times\!16\!\times\!256$
convB1	LBP	$16\!\times\!16\!\times\!58$	5	1	$16 \times 16 \times 128$
convB2	convB1	$16\!\times\!16\!\times\!128$	3	1	$16\!\times\!16\!\times\!128$
convJ1	{upconvA2, convB2}	$16\!\times\!16\!\times\!384$	3	1	$16\!\times\!16\!\times\!256$
convJ2	convJ1	$16\!\times\!16\!\times\!256$	3	1	$16\!\times\!16\!\times\!128$
upconvJ3	convJ2	$16\!\times\!16\!\times\!128$	4	2	$32 \times 32 \times 128$
upconvJ4	upconvJ3	$32\!\times\!32\!\times\!128$	4	2	$64 \times 64 \times 64$
upconvJ5	upconvJ4	$64\!\times\!64\!\times\!64$	4	2	$128 \times 128 \times 32$
upconvJ6	upconvJ5	$128\!\times\!128\!\times\!32$	4	2	$256\!\times\!256\!\times\!3$

Table 4: Network for reconstructing from LBP features.

Layer	Input	InSize	K	S	OutSize
conv1	AlexNet-CONV5	$6\!\times\!6\!\times\!256$	3	1	$6 \times 6 \times 256$
conv2	conv1	$6\!\times\!6\!\times\!256$	3	1	$6 \times 6 \times 256$
conv3	conv2	$6\!\times\!6\!\times\!256$	3	1	$6 \times 6 \times 256$
upconv1	conv3	$6\!\times\!6\!\times\!256$	5	2	$12\!\times\!12\!\times\!256$
upconv2	upconv1	$12\!\times\!12\!\times\!256$	5	2	$24\!\times\!24\!\times\!128$
upconv3	upconv2	$24\!\times\!24\!\times\!128$	5	2	$48 \times 48 \times 64$
upconv4	upconv3	$48\!\times\!48\!\times\!64$	5	2	$96 \times 96 \times 32$
upconv5	upconv4	$96\!\times\!96\!\times\!32$	5	2	$192\!\times\!192\!\times\!3$

Table 5: Network for reconstructing from AlexNet CONV5 features.

Layer	Input	InSize	K	S	OutSize
fc1	AlexNet-FC8	1000	-	—	4096
fc2	fc1	4096	-	_	4096
fc3	fc2	4096	-	_	4096
reshape	fc3	4096	-	_	$4 \times 4 \times 256$
upconv1	reshape	$4\!\times\!4\!\times\!256$	5	2	$8 \times 8 \times 256$
upconv2	upconv1	$8\!\times\!8\!\times\!256$	5	2	$16 \times 16 \times 128$
upconv3	upconv2	$16\!\times\!16\!\times\!128$	5	2	$32 \times 32 \times 64$
upconv4	upconv3	$32\!\times\!32\!\times\!64$	5	2	$64 \times 64 \times 32$
upconv5	upconv4	$64\!\times\!64\!\times\!32$	5	2	$128\!\times\!128\!\times\!3$

Table 6: Network for reconstructing from AlexNet FC8 features.

What we observe looks rather like it might be the average of all images of the class. For some classes the reconstructions are somewhat interpretable, for others – not so much.

Qualitative comparison of reconstructions with our method to the reconstructions of [1] and the results with AlexNet-based autoencoders is given in Figure 5.

Reconstructions from feature vectors obtained by interpolating between feature vectors of two images are shown in Figure 6, both for fixed AlexNet and autoencoder training. More examples of such interpolations with fixed AlexNet are shown in Figure 7.

As described in section 5.5 of the main paper, we tried two different distributions for sampling random feature activations: a histogram-based and a truncated Gaussian. Figure 8 shows the results with fixed AlexNet network and truncated Gaussian distribution. Figures 9 and 10 show images generated with autoencoder-trained networks. Note that images generated from autoencoders look much less realistic than images generated with a network with fixed AlexNet weights. This indicates that reconstructing from AlexNet features requires a strong natural image prior.

References

- [1] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In *CVPR*, 2015. 3, 5
- [2] A. Vedaldi and B. Fulkerson. Vlfeat: an open and portable library of computer vision algorithms. In *International Conference on Multimedia*, pages 1469–1472, 2010. 1

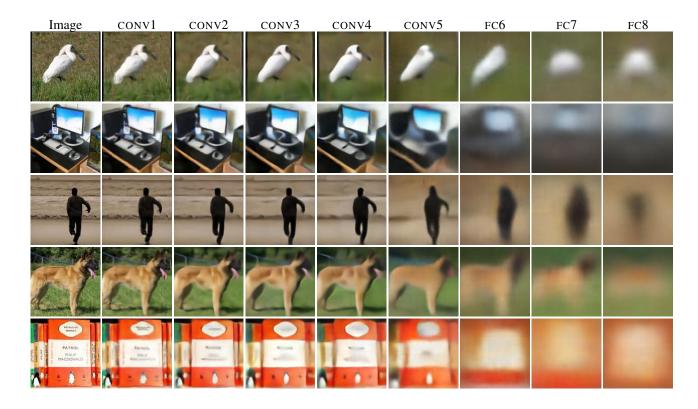


Figure 2: Reconstructions from different layers of AlexNet.

Figure 3: Left to right: input image, reconstruction from fc8, reconstruction from 5 largest activations in FC8, reconstruction from all FC8 activations except 5 largest ones.

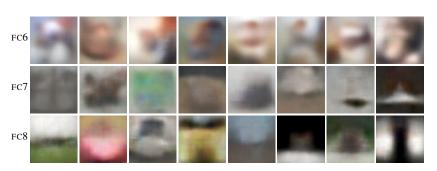


Figure 4: Reconstructions from single neuron activations in the fully connected layers of AlexNet. The FC8 neurons correspond to classes, left to right: kite, convertible, desktop computer, school bus, street sign, soup bowl, bell pepper, soccer ball.

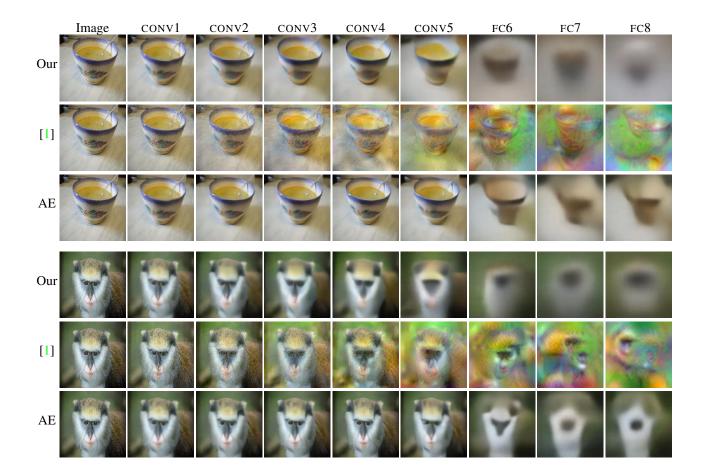


Figure 5: Reconstructions from different layers of AlexNet with our method and [1].

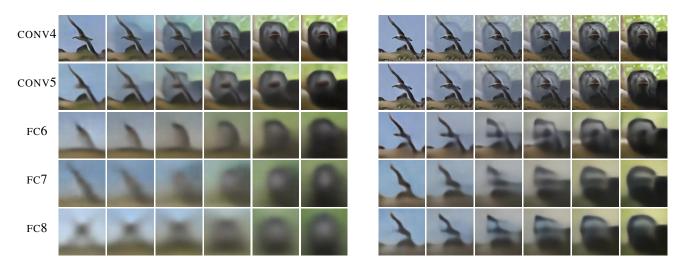


Figure 6: Interpolation between the features of two images. Left: AlexNet weights fixed, right: autoencoder.

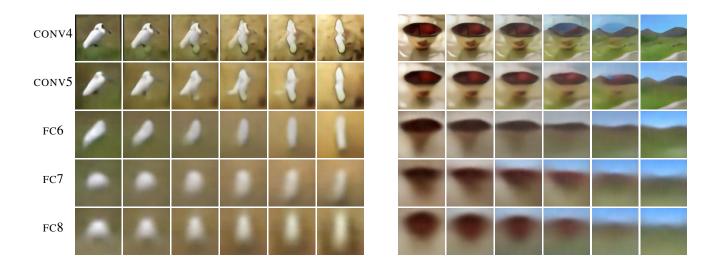


Figure 7: More interpolations between the features of two images with fixed AlexNet weights.

Figure 8: Images generated from random feature vectors of top layers of AlexNet with the simpler truncated Gaussian distribution (see section 5.5 of the main paper).

Figure 9: Images generated from random feature vectors of top layers of AlexNet-based autoencoders with the histogrambased distribution (see section 5.5 of the main paper).

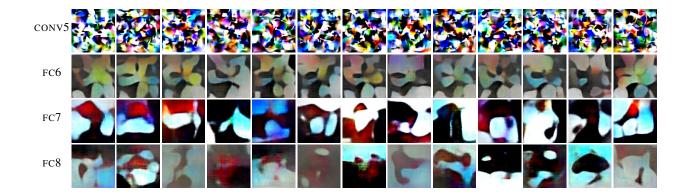


Figure 10: Images generated from random feature vectors of top layers of AlexNet-based autoencoders with the simpler truncated Gaussian distribution (see section 5.5 of the main paper).