
HyperDepth: Learning Depth from Structured Light Without Matching
Supplementary Material

Sean Ryan Fanello∗ Christoph Rhemann∗ Vladimir Tankovich
Adarsh Kowdle Sergio Orts Escolano David Kim Shahram Izadi

Microsoft Research

Abstract

This document accompanies the paper: HyperDepth:
Learning Depth from Structured Light Without Matching.
We first provide an analysis of the label space that aids in
understanding the design choices in our algorithm. In partic-
ular we show that our choice of using one classifier per line
does not increase the model complexity and simplifies the
recognition problem. Furthermore, we present additional
experimental results. Note that information given in this
document is not necessary to understand the content of the
main paper.

5. Label Space Analysis
In this Section we provide an analysis of the label space to

model all possible disparities with a precision of 0.05 pixels.
Considering a 1280× 1024 image I , each pixel in the image
has a particular class label c, totaling 1280 classes per line.
If we want to achieve 0.05 subpixel accuracy, we need 20
additional classes between each class i and i + 1. So in
total we have C = 1280× 20 = 25.600 possible labels per
line. The minimum depth of the tree required to model all
the labels within a line is 15, which gives us 215 = 32.768
possible assignment. For our HyperDepth algorithm we use
one classifier for each line. Therefore we need additional
1024 classifiers, which leads of 225 nodes for all classifiers.
In practice, due to imaging noise and pattern variability,
we need a higher number of nodes. Multiple trees help to
mitigate these effects.

Note that using one classifier per line simplifies the prob-
lem because less classes have to be disambiguated. Moreover
it handles repetition of the same the local structure of the pat-
tern in different lines. Lets assume that there are no repetition
involved and we can use a single tree to model the whole im-
age. The total number of labels is 1280× 1024, one for each
pixel, therefore we have 1.310.720 possible labels. To reach

∗Authors equally contributed to this work.

Figure 1. Edge Fattening Comparison. We compare our method
(middle) and Kinect (right) to the hand-labeled ground truth (left).
Our method better invalidates edges (first two rows). However in
some cases we shrink the object (bottom images).

the same subpixel accuracy (0.05), we have to increase the
label space by a factor of 20, reaching 26.214.400 possible
labels. The minimum depth of the tree required to model all
the possible labels is 25, giving 225 = 33.554.432 possible
assignments. This shows that using one single classifier for
the whole image would require the same amount of memory

1



Figure 2. Recovered Reference Pattern. Recovered Reference Pattern with the calibration procedure described in Section 2.3.

of a classifier per line. Moreover this per-image classifier has
to learn to disambiguate 26.214.400 labels, versus 25.600
for the per-scanline classifier, making the problem much
harder. This shows that our choice of using one classifier per
line does not increase the model complexity and simplifies
the recognition problem.

We also tried to group multiple adjacent lines together, i.e.
a random forest predicts the output for l consecutive lines.
However due to the high class intra-variability we noticed
worse results given the same model complexity of a classifier
per line.

We note that if the repetitions in the pattern are known
they can be exploited to reduce the label space. In particular,
let us assume that the reference pattern repeats exactly the
same structure every l lines, we reduce the output space to
1280 × 20 × l, which saves us a factor of H

l in the model
complexity, where H is the height of the image.

6. Disparity Direct Regression Analysis

One may argue that direct regression of the disparity d
may be more efficient. In the following we show that the
complexity of direct regression is higher compared to our
model. We recall that in our framework the disparity d
can be obtained via the mapping d = c − x, where c is
the continuous class label and x is the x coordinate of the
pixel that we classify. In order to predict all the possible

disparities, a direct regression has to learn this mapping as
well. Assuming we have 211 disparities in total (like in the
Kinect reference pattern), with a subpixel precision of 0.05
we have to predict 4220 possible labels. Moreover, these
disparities depend on the current x position of the pixel,
leading to a total number of labels of 211 × 20 × 1280 =
5.401.600 which requires a tree model with 23 levels. This
assumes no repetition in the reference pattern, in reality,
due to repetitions, the same structure of the pattern at the
same coordinate x can lead to two different disparities d1
and d2. In other words, there exists a class label c and a
x coordinate such that d1 = c − x and d2 = c − x with
d1 6= d2, which leads to inconsistent results. To resolve
this ambiguity, we have to consider also all the possible y
coordinates, increasing the label space from 5.401.600 to
211× 20× 1280× 1024 = 5.531.238.400, which results in
an unfeasible model complexity. This shows that leveraging
the knowledge d = c− x is more efficient than attempting
to learn directly mapping directly.

7. Edge Fattening

Let us consider Fig. 1 which illustrates the robustness
of our approach against edge fattening. We visually com-
pare the results of our method (middle columns) and Kinect
(right column) against the ground truth outline on the left
(generated by manually tracing the boundary of the hand in



the IR images). Notice that in the first two rows HyperDepth
nicely preserves the object boundaries, whereas Kinect fat-
tens and merges the fingers. This is the case because our
invalidation is are based on probabilities, which lead to more
invalidation on object boundaries. A failure cases for our
approach is shown in the bottom row where we shrink the
object contours too much.

8. Additional Evaluations
In Fig. 2, we show the IR reference pattern recovered

via the calibration procedure described in Section 2.3. We
also provide additional evaluations for the object scanning
scenario. We followed the same protocol of Section 3.3.
Results are depicted in Fig. 3. HyperDepth and PatchMatch
reconstructions show higher level of details. Notice that for
some objects RealSense F200 was not able to recover the
whole structure. For example the ”head” object was too shiny
and most of the depthmaps were invalidated. The ”phone”
object instead was very dark and, in order to reconstruct it,
we had to place the RealSense F200 camera at a very short
distance (20 cm away), which gives an advantage to this
sensor.



Figure 3. Object Scanning - Additional Results. We show here additional comparisons for the object scanning task. The same sensors of
Section 3.3 have been compared.


