
Supplementary Material:
FireCaffe: near-linear acceleration of deep neural network training on compute clusters

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Kurt Keutzer
DeepScale∗ and UC Berkeley

{forresti, moskewcz, kashraf, keutzer}@eecs.berkeley.edu

Appendix A: Further analysis of FireCaffe re-
sults

One of the important techniques in FireCaffe is the use of
allreduce collective operations (e.g. reduction trees) instead
of a parameter server for communicating gradient updates
in a compute cluster. In Figure 4 of the main paper, we
microbenchmarked the communication portion of our dis-
tributed DNN training implementation, and we found that
the scalability of a parameter server is much worse than
the scalability of a reduction tree. At this stage, a reason-
able question is: if we used a parameter server in FireCaffe,
would this substantially degrade the overall training time?
We address this question in Figures 1(a) and 1(b). Ob-
serve in Figure 1(a) that, as we scale beyond 16 GPUs, the
parameter server overhead dominates the overall execution
time. Fortunately, we find in Figure 1(b) that our reduction
tree approach scales much more efficiently, yielding a 47x
speedup on 128 GPUs, training GoogLeNet [14] in just 10.5
hours.

One of the strategies that we use to expose parallelism is
to increase the batch size as much as possible, on a limited
budget of epochs, or passes through the dataset. The CVPR
reviewers encouraged us to provide convergence plots to
show intuition of how changing the batch size impacts con-
vergence. We show convergence plots of NiN [10] training
with two different batch sizes (default of 256, and our pre-
ferred batch size of 1024) in Figures 2(a) and 2(b).

Appendix B: Complementary approaches to
accelerate DNN training

We discussed related work throughout the paper, but we
now provide a brief survey of additional techniques to ac-
celerate deep neural network training. Several of the fol-
lowing techniques could be used in concert with FireCaffe
to further accelerate DNN training.

Accelerating convolution on GPUs
In the DNN architectures discussed in this paper, more

than 90% of the floating-point operations in forward and
∗http://deepscale.ai

16 32 64 128
Number of GPUs used for training

0

50

100

150

H
o
u
rs

 o
f

G
o
o
g
Le

N
e
t

tr
a
in

in
g

 t
o
 a

ch
ie

v
e
 8

8
.7

%
 t

o
p
-5

 a
cc

u
ra

cy Computation

Communication (Parameter Server)

(a) using a parameter server

16 32 64 128
Number of GPUs used for training

0

50

100

150

H
o
u
rs

 o
f

G
o
o
g
Le

N
e
t

tr
a
in

in
g

 t
o
 a

ch
ie

v
e
 8

8
.7

%
 t

o
p
-5

 a
cc

u
ra

cy Computation

Communication (Reduction Tree)

(b) using a reduction tree

Figure 1. Contributions of communication and computation to
GoogLeNet training time in FireCaffe.

backward propagation reside in convolution layers, so ac-
celerating convolution is key to getting the most out of each
GPU. Recently, a number of techniques have been devel-
oped to accelerate convolution on GPUs. Unlike CPUs,
NVIDIA GPUs have an inverted memory hierarchy, where
the register file is larger than the L1 cache. Volkov and

1

http://deepscale.ai
http://deepscale.ai

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

Ac
cu

ra
cy

 (%
)

Hours

NiN batch=256 w/ 1 GPU
NiN batch=1024 w/ 32 GPUs

(a) time vs accuracy

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

Ac
cu

ra
cy

 (%
)

Epochs

NiN batch=256
NiN batch=1024

(b) epochs vs accuracy

Figure 2. Convergence plots for NiN.

Demmel [15] pioneered a communication-avoiding strat-
egy to accelerate matrix multiplication on GPUs by stag-
ing as much data as possible in registers while maximizing
data reuse. Iandola et al. [6] extended the communication-
avoiding techniques to accelerate 2D convolution; and
cuDNN [2] and maxDNN [9] extended the techniques to
accelerate 3D convolution. FireCaffe can be coupled with
current and future GPU hardware and convolution libraries
for further speedups.

Reducing communication among servers
Reducing the quantity of data communicated per batch

is a useful way to increase the speed and scalability of
DNN training. There is an inherent tradeoff here: as
gradients are more aggressively quantized, training speed
goes up, but the model’s accuracy may go down compared
to a non-quantized baseline. While FireCaffe uses 32-
bit floating-point values for weight gradients, Jeffrey Dean
stated in a recent keynote speech that Google often uses 16-
bit floating-point values for communication between servers
in DNN training [4]. Along the same lines, Wawrzynek et
al. used 16-bit weights and 8-bit activations in distributed
neural network training [16]. Going one step further, Seide
et al. used 1-bit gradients for backpropagation, albeit with a
drop in the accuracy of the trained model [12]. Finally, a re-
lated strategy to reduce communication between servers is
to discard (and not communicate) gradients whose numeri-
cal values fall below a certain threshold. Amazon presented
such a thresholding strategy in a recent paper on scaling up
DNN training for speech recognition [13]. However, Ama-
zon’s evaluation uses a proprietary dataset, so it is not clear
how this type of thresholding impacts the accuracy com-
pared to a well-understood baseline.

So far in this section, we have discussed strategies for
compressing or quantizing data to communicate in dis-
tributed DNN training. There has also been a series of
studies on applying dimensionality reduction to DNNs once
they have been trained. Jaderberg et al. [7] and Zhang et
al. [17] both use PCA to compress the weights of DNN
models by up to 5x, albeit with a substantial reduction in the

model’s classification accuracy. Han et al. [5] use a combi-
nation of pruning, quantization, and Huffman encoding to
compress the weights of pretrained models by 35x with no
reduction in accuracy. Thus far, these algorithms have only
been able to accelerate DNNs at test time.

Appendix C: Frequently Asked Questions
about FireCaffe

1. I use Caffe. Will my DNN models and network definitions
work with FireCaffe?
Yes.

2. What are some good DNN architectures to use with
FireCaffe?
We offer intuition and analysis of this in Section 5 of the
main paper, but here we offer a short summary of what you
need to know. As a general rule, DNN architectures with
fewer parameters train faster in FireCaffe. We have found
that NiN [10] and AlexNet [8] provide similar accuracy on
ImageNet and other popular data benchmarks. However,
NiN has 8x fewer parameters and therefore incurs 8x less
communication cost than AlexNet. If you were planning to
use AlexNet, we recommend trying NiN for faster training.

3. I want to design my own DNN architectures that
will scale well nicely in FireCaffe while producing good
accuracy on my problem. What design tradeoffs should I
consider?
If you’re designing your own DNN architectures, do your
best to economize on parameters. Also, reducing the
convolution and pooling strides may improve accuracy;
this doesn’t require additional parameters and doesn’t hurt
training scalability.

4. Is it better to use FireCaffe with one server that con-
tains many GPUs, or is it better to distribute the GPUs
distributed over many servers?
FireCaffe is compatible with both of these scenarios. Fire-
Caffe can even run across many servers that each contain

2

many GPUs. To avoid stragglers during backpropagation,
we prefer running FireCaffe on a collection of identical
GPUs (e.g. all Titan X or all K80; but preferrably not
a mixture of K80 and Titan X). For optimal speed and
utilization, FireCaffe prefers a low-latency interconnect
such as Infiniband between servers.

5. How does FireCaffe handle the storage and loading of
training data?
As in Caffe, FireCaffe can ingest LMDB databases [3] of
training data. This data format is agnostic to the type of
data (e.g. images, audio, text), so long as each training data
item consists of a vector (e.g. pixels, audio waveform, text
trigram) and a label (e.g. dog or cat). We store the LMDB
database of training data on a distributed filesystem that
is accessable to all workers. During DNN training, each
worker is responsible for loading its own training data from
the distributed filesystem.

6. Does FireCaffe use nondeterministic techniques such as
Hogwild [11]?
No. Given a specific seed for the random number generator,
FireCaffe produces repeatable numerical results, just like
ordinary Caffe. In fact, for a model with Dropout dis-
abled, FireCaffe will give you the exact same numerics as
ordinary Caffe. With Dropout enabled, FireCaffe handles
randomization in a slightly different way than Caffe, but
the numerics are still deterministic for FireCaffe with a
constant number of GPUs.

7. How did FireCaffe get its name?
Asanovic and Patterson presented a roadmap for
warehouse-scale computing in the year 2020, which
they call FireBox [1]. The grand vision is that a typical
large-scale commercial datacenter will have extremely
low latency connections within and across racks, likely
using photonic networking hardware. Low-latency network
hardware is crucial not only for today’s mainstream appli-
cations like distributed databases and search engines, but
also for emerging applications such as deep neural network
training at large scale. We have designed FireCaffe with
FireBox-style warehouse-scale computing in mind.

References
[1] K. Asanovic and D. Patterson. FireBox: a hardware build-

ing block for 2020 warehouse-scale computers. In USENIX
FAST, 2014. 3

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cuDNN: efficient primitives
for deep learning. arXiv:1410.0759, 2014. 2

[3] H. Chu. MDB: A memory-mapped database and backend for
openldap. In LDAPCon, 2011. 3

[4] J. Dean. Keynote: Large scale deep learning. In GPU Tech-
nology Conference, 2015. 2

[5] S. Han, H. Mao, and W. J. Dally. A deep neural network
compression pipeline: Pruning, quantization, huffman en-
coding. arXiv:1510.00149, 2015. 2

[6] F. N. Iandola, D. Sheffield, M. Anderson, P. M.
Phothilimthana, and K. Keutzer. Communication-
minimizing 2d convolution in gpu registers. In ICIP, 2013.
2

[7] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up
convolutional neural networks with low rank expansions.
arXiv:1405.3866, 2014. 2

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
NIPS, 2012. 2

[9] A. Lavin. maxDNN: an efficient convolution kernel for deep
learning with maxwell gpus. arXiv:1501.06633, 2015. 2

[10] M. Lin, Q. Chen, and S. Yan. Network in network.
arXiv:1312.4400, 2013. 1, 2

[11] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent. In
NIPS, 2011. 3

[12] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochas-
tic gradient descent and its application to data-parallel dis-
tributed training of speech dnns. In INTERSPEECH, 2014.
2

[13] N. Strom. Scalable distributed dnn training using commodity
gpu cloud computing. In INTERSPEECH, 2015. 2

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. arXiv:1409.4842, 2014. 1

[15] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In Supercomputing, 2008. 2

[16] J. Wawrzynek, K. Asanovic, B. Kingsbury, D. Johnson,
J. Beck, and N. Morgan. Spert-ii: A vector microprocessor
system. Computer, 1996. 2

[17] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient
and accurate approximations of nonlinear convolutional net-
works. arXiv:1411.4229, 2014. 2

3

