Moral Lineage Tracing (Supplement)

Florian Jug ${ }^{1, *}$, Evgeny Levinkov ${ }^{2, *}$, Corinna Blasse ${ }^{1}$, Eugene W. Myers ${ }^{1}$, Bjoern Andres ${ }^{2}$
${ }^{1}$ Max Planck Institute of Molecular Cell Biology and Genetics, Dresden
${ }^{2}$ Max Planck Institute for Informatics, Saarbrücken

1. Proof of Lemma 2

Proof If Condition 1 in Def. 2 holds for a set $C \subseteq E$, then all inequalities (1) are satisfied by the $x \in\{0,1\}^{E}$ such that $x^{-1}(1)=C$. Otherwise, there would exist a $t \in \mathbb{N}$, a cycle Y of G_{t} and an $e \in Y$ such that $x_{e}=1$ and $\forall e^{\prime} \in Y \backslash\{e\}$: $x_{e^{\prime}}=0$. This implies $|Y \cap C|=1$, in contradiction to the assumption that $C \cap E_{t}$ is a multicut of G_{t}. Conversely, if all inequalities (1) are satisfied by an $x \in\{0,1\}^{E}$, then $C:=x^{-1}(1)$ satisfies Condition 1 in Def. 2. Otherwise, there would exist a $t \in \mathbb{N}$ for which $C \cap E_{t}$ is not a multicut of G_{t}. Thus, there would exist a cycle Y of G_{t} and an $e \in Y$ such that $Y \cap C=\{e\}$, by definition of a multicut. Hence, the inequality (1) for that cycle Y and that edge e of Y would be violated by x. The sufficiency of chordless cycles follows from (1) and is established, e.g., in [?].

If Condition 2 in Def. 2 holds for a set $C \subseteq E$, then all inequalities (2) are satisfied by the $x \in\{0,1\}^{E}$ such that $x^{-1}(1)=C$. Otherwise, there would exist $t \in \mathbb{N},\{v, w\} \in$ $E_{t, t+1}$ and a path $P \in v w$-paths $\left(G_{t}^{+}\right)$such that $x_{v w}=1$ and $x_{P}=0$. From $x_{v w}=1$ follows $\{v, w\} \in E_{t, t+1} \cap C$. From $x_{P}=0$ follows that v and w are connected by P in $\left(V_{t}^{+}, E_{t}^{+} \cap \bar{C}\right)$. Both statements together contradict the assumption. Conversely, if all inequalities (2) are satisfied by an $x \in\{0,1\}^{E}$, then $C:=x^{-1}(1)$ satisfies Condition 2 in Def. 2. Otherwise, there would exist $t \in \mathbb{N},\{v, w\} \in$ $E_{t, t+1} \cap C$ and a path $P \in v w$-paths $\left(V_{t}^{+}, E_{t}^{+} \cap \bar{C}\right)$. From this follows $x_{v w}=1$ and $x_{P}=0$, in contradiction to the assumption that (2) is satisfied.

If Condition 3 in Def. 2 holds for a set $C \subseteq E$, then all inequalities (3) are satisfied by the $x \in\{0,1\}^{E}$ such that $x^{-1}(1)=C$. Otherwise, there would exist $t \in \mathbb{N}, v_{t}, w_{t} \in V_{t}, v_{t+1}, w_{t+1} \in V_{t+1}$, a path $P \in$ v_{t+1}, w_{t+1}-paths $\left(G_{t+1}\right)$, and a cut $T \in v_{t} w_{t}$-cuts $\left(G_{t}\right)$ such that $x_{v_{t}, v_{t+1}}=0$ and $x_{w_{t}, w_{t+1}}=0$ and $x_{P}=0$ and $x_{T}=1 . P$ witnesses the existence of a $v_{t+1} w_{t+1}$-path in $\left(V, E_{t+1} \cap \bar{C}\right)$. The existence of T certifies the nonexistence of a $v_{t} w_{t}$-path in $\left(V, E_{t} \cap \bar{C}\right)$. Both statements together contradict the assumption. Conversely, if all inequalities (3) are satisfied by an $x \in\{0,1\}^{E}$, then $C:=x^{-1}(1)$ satisfies Condition 3 in Def. 2. Otherwise, there would ex-
ist $t \in \mathbb{N}, v_{t}, w_{t} \in V_{t}$ and $v_{t+1}, w_{t+1} \in V_{t+1}$ such that $\{v, w\} \in E_{t, t+1} \cap \bar{C}$ and $\left\{v_{t+1}, w_{t+1}\right\} \in E_{t, t+1} \cap \bar{C}$ and such that there exist $P \in v_{t+1} w_{t+1}$-paths $\left(V_{t+1}, E_{t+1} \cap \bar{C}\right)$ and $T \in v_{t} w_{t}-\operatorname{cuts}\left(V_{t}, E_{t} \cap \bar{C}\right)$. Hence, $x_{v_{t}, v_{t+1}}=0$ and $x_{w_{t}, w_{t+1}}=0$ and $x_{P}=0$ and $x_{T}=1$, in contradiction to the assumption that (3) is satisfied.

