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Technická 2, Czech Republic

{hellej1}@cmp.felk.cvut.cz

The general E3Q3 solver introduced in the main paper

is able to quickly and reliably solve non-degenerate config-

urations of the 3Q3 problem. In this Appendix, §A.1, we

present the complete E3Q3 solver, i.e., the general E3Q3

solver supplemented with seven particular solvers covering

seven distinct degenerate configurations. Next, in §A.2 we

discuss the behavior of the E3Q3 solver in situation where

the symmetry or solutions with multiplicities are involved.

Further, in §A.3 we present a novel 3Q3 formulation of the

hand-eye calibration problem with known translation. Fi-

nally, in §A.4, we provide the full parametrization of the

projection matrix P for the new 3Q3 formulation of prob-

lem P4Pf from the main paper.

A.1. E3Q3: The complete 3Q3 solver

Let us here briefly review the 3Q3 problem formulation.

Let x, y, z be the problem unknowns, cij , i = 1, 2, 3,

j = 1, . . . , 10 the problem coefficients and (with ci =
[ci1, ci2, . . . , ci10]),

qi = ci · [x2, y2, z2, xy, xz, yz, x, y, z, 1] (1)

the three polynomials of degree 2. The problem of 3Q3 is

to find the intersections of qi, i.e., to solve the system

qi = 0, i = 1, 2, 3. (2)

To solve Eqs. 2, we will start by ‘hiding’ the unknown x
in the coefficient field, i.e., by considering x to be a co-

efficient for a moment. This leaves us with six monomi-

als [y2, z2, yz, y, z, 1] in unknowns y, z in every equation.

By splitting these monomials into two sets {y2, z2, yz},

{y, z, 1} and by rearranging them into the left- and right-

hand sides, Eqs. 2 can be rewritten as the following matrix

equation:

A











y2

z2

yz











=











p
[1]
11(x) p

[1]
12(x) p

[2]
13(x)

p
[1]
21(x) p

[1]
22(x) p

[2]
23(x)

p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)





















y

z

1











, (3)

where A is a coefficient matrix

A =





c12 c13 c16
c22 c23 c26
c32 c33 c36



 , (4)

and p11(x), . . . , p33(x) are polynomials in x. where the up-

per index [·] denotes the maximum possible degree of the

respective polynomial pij(x).
By using G-J elimination and, if necessary, by inter-

changing of the matrix rows, the structure of the matrix A

can be reduced into one of the following configurations:





0 0 0
0 0 0
0 0 0



,





0 0 1
0 0 0
0 0 0



,





0 1 •
0 0 0
0 0 0



,





0 1 0
0 0 1
0 0 0



 ,





1 • •
0 0 0
0 0 0



,





1 • 0
0 0 1
0 0 0



,





1 0 •
0 1 •
0 0 0



,





1 0 0
0 1 0
0 0 1



 ,

(5)

where • stands for a nonzero coefficient from R. All other

configurations can be transformed into one of these 8 con-

figurations either by interchanging variables y and z or by

assuming • equal to 0. In the next, we will denote these con-

figurations by Roman numerals as Cases I, II, ..., VIII, and

for each case we will derive a particular solver. Note that

Case VIII corresponds to the non-degenerate configuration

solved in §3 of the main paper.

For the degenerate configurations I through VII, we will

follow the idea of the solution for the general Case VIII.
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This means that we will derive three equations that are lin-

ear in y and z. Such equations can be written in the form

M(x)





y
z
1



 = 0, (6)

where M(x) is a polynomial matrix which entries are poly-

nomials in x. As we know from elementary linear algebra,

matrix Eq. 6 has a non-trivial solution if and only if the de-

terminant of its matrix M(x) is zero. The solutions to the

unknown x can then be obtained by finding the roots of the

single variable polynomial det(M(x)) = 0. Solutions to the

unknowns y and z can be obtained from M(x) after substitut-

ing the particular solutions for x into this matrix from Eq. 6

and solving the resulting system of two linear equations.

A.1.1. Case I

In the configuration of Case I, the matrix A takes the form

A =





0 0 0
0 0 0
0 0 0



 (7)

and Eq. 3 can be rewritten as











p
[1]
11(x) p

[1]
12(x) p

[2]
13(x)

p
[1]
21(x) p

[1]
22(x) p

[2]
23(x)

p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)





















y

z

1











= M(x)











y

z

1











= 0, (8)

It can be easily inferred from the degrees of pij(x) that the

determinant of the 3×3 polynomial matrix M(x) is a up to

degree 4 polynomial in x. The solutions to the unknown

x from the original Eq. 2 can now be obtained by finding

the roots of det(M(x)) using Sturm sequences [7] in some

feasible interval.

The particular solver for Case I needs to perform 67 ad-

ditions and 144 multiplications.

A.1.2. Case II

In the configuration of Case II, the matrix A takes the form

A =





0 0 1
0 0 0
0 0 0



 (9)

and Eq. 3 can be rewritten as

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x) = yz, (10)

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x) = 0, (11)

p
′[1]
31 (x)y + p

′[1]
32 (x)z + p

′[2]
33 (x) = 0, (12)

where p
′[1]
11 (x), . . . , p

′[2]
33 (x) are linear combinations of poly-

nomials p
[1]
11(x), . . . , p

[2]
33(x).

Our goal is to obtain three polynomial equations that are

linear in y and z. Eqs. 11 and 12 already have the required

form. Eq. 10 contains monomial yz that needs to be elimi-

nated. Let us rewrite Eqs. 11 and 12 as

p
′[1]
21 (x)y = −p

′[1]
22 (x)z − p

′[2]
23 (x), (13)

p
′[1]
32 (x)z = −p

′[1]
31 (x)y − p

′[2]
33 (x). (14)

By multiplying Eqs. 13 and 14 and substituting the expres-

sion for yz from Eq. 10 we obtain

p
′[1]
21 (x)p

′[1]
32 (x)yz

= (p
′[1]
22 (x)z + p

′[2]
23 (x))(p

′[1]
31 (x)y + p

′[2]
33 (x))

= p
′[1]
22 (x)p

′[1]
31 (x)yz + p

′[2]
23 (x)p

′[1]
31 (x)y

+ p
′[1]
22 (x)p

′[2]
33 (x)z + p

′[2]
23 (x)p

′[2]
33 (x) (15)

= p
′[1]
11 (x)p

′[1]
22 (x)p

′[1]
31 (x)y + p

′[1]
12 p

′[1]
22 (x)p

′[1]
31 (x)z

+ p
′[2]
13 (x)p

′[1]
22 (x)p

′[1]
31 (x) + p

′[2]
23 (x)p

′[1]
31 (x)y

+ p
′[1]
22 (x)p

′[2]
33 (x)z + p

′[2]
23 p

′[2]
33 .

Now, Let us multiply the Eq. 10 with p
′[1]
21 p

′[1]
32 . This results

in

p
′[1]
21 (x)p

′[1]
32 (x)yz

= p
′[1]
21 (x)p

′[1]
32 (x)

(

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)

)

.

(16)

By combining the right-hand sides of Eqs. 15 and 16 we

obtain an equation of the form

s
[3]
11(x)y + s

[3]
12(x)z + s

[4]
13(x) = 0, (17)

where s
[3]
11(x), s

[3]
12(x), . . . , s

[4]
13(x) are polynomials in x

Finally, by stacking Eqs. 11, 12 and 17 into a matrix form

we get











p
[1]
21(x) p

[1]
22(x) p

[2]
23(x)

p
[2]
31(x) p

[1]
32(x) p

[2]
33(x)

s
[3]
11(x) s

[3]
12(x) s

[4]
13(x)





















y

z

1











= M(x)











y

z

1











= 0. (18)

After finding the roots of the up to degree 6 polynomial

det(M(x)) for M(x) from Eq. 18, we obtain the solutions

to the unknown x.

The particular solver for Case II needs to perform 193

additions and 391 multiplications.

A.1.3. Case III

In the configuration of Case III, the matrix A takes the form

A =





0 1 α
0 0 0
0 0 0



 (19)



and Eq. 3 can be rewritten as

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x) = z2 + αyz, (20)

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x) = 0, (21)

p
′[1]
31 (x)y + p

′[1]
32 (x)z + p

′[2]
33 (x) = 0, (22)

where p
′[1]
11 (x), . . . , p

′[2]
33 (x) are linear combinations of poly-

nomials p
[1]
11(x), . . . , p

[2]
33(x) and α ∈ R is a constant.

Again, Eqs. 21 and 22 are already linear in y and z.

Eq. 20 contains two second degree monomials yz and z2

that need to be eliminated.

Let us start by combining Eqs. 21 and 22 to eliminate ei-

ther y or z from these equations. This leads to the following

two equations

(p
′[1]
31 (x)p

′[1]
22 (x)− p

′[1]
21 (x)p

′[1]
32 (x))y

+ (p
′[2]
33 (x)p

′[1]
22 (x)− p

′[2]
23 (x)p

′[1]
32 (x)) = 0, (23)

(p
′[1]
31 (x)p

′[1]
22 (x)− p

′[1]
21 (x)p

′[1]
32 (x))z

+ (p
′[1]
31 (x)p

′[2]
23 (x)− p

′[1]
21 (x)p

′[2]
33 (x)) = 0. (24)

Now, let us introduce three new polynomials to simplify the

notation:

s
[2]
1 (x) = p

′[1]
31 (x)p

′[1]
22 (x)− p

′[1]
21 (x)p

′[1]
32 (x), (25)

s
[3]
2 (x) = p

′[2]
33 (x)p

′[1]
22 (x)− p

′[2]
23 (x)p

′[1]
32 (x), (26)

s
[3]
3 (x) = p

′[1]
31 (x)p

′[2]
23 (x)− p

′[1]
21 (x)p

′[2]
33 (x). (27)

By multiplying Eqs. 23 and 24 by z we obtain

s
[2]
1 (x)yz + s

[3]
2 (x)z = 0, (28)

s
[2]
1 (x)z2 + s

[3]
3 (x)z = 0. (29)

Further, let us multiply Eq. 20 by s
[2]
1 (x) and substitute the

expressions for s
[2]
1 (x)yz and s

[2]
1 (x)z2 from Eqs. 28 and 29

to obtain an equation that is linear in y and z:

− s
[3]
3 (x)z − α s

[3]
2 (x)z

= s
[2]
1 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)). (30)

Finally, by denoting the polynomial coefficients of Eq. 30

as s
[3]
11(x), s

[3]
12(x), and s

[4]
13(x) we can stack Eqs. 21, 22, and

30 into a following matrix form











p
[1]
21(x) p

[1]
22(x) p

[2]
23(x)

p
[2]
31(x) p

[1]
32(x) p

[2]
33(x)

s
[3]
11(x) s

[3]
12(x) s

[4]
13(x)





















y

z

1











= M(x)











y

z

1











= 0. (31)

Again, det(M(x)) is a up to degree 6 polynomial which roots

are the solutions for the unknown x.

The particular solver for Case III needs to perform 206

additions and 377 multiplications.

A.1.4. Case IV

In the configuration of Case IV, the matrix A takes the form

A =





0 1 0
0 0 1
0 0 0



 (32)

and Eq. 3 can be rewritten as

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x) = z2, (33)

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x) = yz, (34)

p
′[1]
31 (x)y + p

′[1]
32 (x)z + p

′[2]
33 (x) = 0, (35)

where p
′[1]
11 (x), . . . , p

′[2]
33 (x) are linear combinations of poly-

nomials p
[1]
11(x), . . . , p

[2]
33(x).

In this case, only Eq. 35 is linear in y and z. This means

that we need to eliminate the degree 2 monomials z2 and

yz from Eqs. 33 and 34 and use these equations to construct

two new polynomial equations that are linear in y and z.

To construct the first equation, let us multiply Eq. 35 by

z and substitute the left hand sides of Eqs. 33 and 34 for

monomials z2 and yz, respectively. This leads to the fol-

lowing equation:

p
′[1]
31 (x)yz + p

′[1]
32 (x)z2 + p

′[2]
33 (x)z

= p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)) (36)

+ p
′[1]
32 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x))

+ p
′[2]
33 (x)z = 0.

Eq. 36 is linear in y and z. Let us denote the polynomial

coefficients of Eq. 36 w.r.t. the monomials y, z, and 1 as

s
[2]
11(x), s

[2]
12(x), and s

[3]
13(x).

To obtain the second equation, we can multiply the

Eq. 35 by y to obtain an equation for p
′[1]
31 (x)y2:

p
′[1]
31 (x)y2

= −p
′[1]
32 (x)yz − p

′[2]
33 (x)y (37)

= −p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

− p
′[2]
33 (x)y = 0.

Now let us state a trivial identity

p
′[1]
31 (x)yzz = p

′[1]
31 (x)z2y. (38)

Let us recursively substitute the left-hand sides of Eqs. 33

and 34 for the monomials z2 and yz, respectively, into the

left-hand side of Eq. 38:

p
′[1]
31 (x)yzz

= p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))z (39)

= p
′[1]
31 (x)p

′[1]
21 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

+ p
′[1]
31 (x)p

′[1]
22 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x))

+ p
′[1]
31 (x)p

′[2]
23 (x)z.



Analogously, let us substitute the left-hand sides of Eqs. 33

and 34 into the right-hand side of Eq. 38. Further, let us

substitute the expression from Eq. 37 for the polynomial

p
′[1]
31 (x)y2. After recursively performing these substitutions,

the right-hand side of Eq. 38 will read

p
′[1]
31 (x)z2y

= p
′[1]
31 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x))y (40)

= p
′[1]
11 (x)

(

−p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))+

−p
′[2]
33 (x)y

)

+ p
′[1]
31 (x)p

′[1]
12 (x)

(

p
′[1]
21 (x)y + p

′[1]
22 (x)z

+ p
′[2]
23 (x)

)

+ p
′[1]
31 (x)p

′[2]
13 (x)y.

By combining the right-hand sides of Eqs. 39 and 40 and by

denoting the polynomial coefficients of the final polynomial

as s
[3]
21(x), s

[3]
22(x), and s

[4]
23(x) we end up with the second

new polynomial equation linear in y and z:

s
′[3]
21 (x)y + s

′[3]
22 (x)z + s

′[4]
23 (x) = 0. (41)

Finally, we can stack Eqs. 35, 36 and 41 into a matrix

form











p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)

s
[2]
11(x) s

[2]
12(x) s

[3]
13(x)

s
[3]
21(x) s

[3]
22(x) s

[4]
23(x)





















y

z

1











= M(x)











y

z

1











= 0, (42)

This time, det(M(x)) leads to a up to degree 7 polynomial.

By finding its roots we find the solutions for the unknown

x.

The particular solver for Case IV needs to perform 308

additions and 596 multiplications.

A.1.5. Case V

In the configuration of Case V, the matrix A takes the form

A =





1 α β
0 0 0
0 0 0



 (43)

and Eq. 3 can be rewritten as

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x) = y2 + αz2 + βyz, (44)

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x) = 0, (45)

p
′[1]
31 (x)y + p

′[1]
32 (x)z + p

′[2]
33 (x) = 0, (46)

where p
′[1]
11 (x), . . . , p

′[2]
33 (x) are linear combinations of poly-

nomials p
[1]
11(x), . . . , p

[2]
33(x) and α, β ∈ R are constants.

Again, we already have two equations that are linear in

y and z, Eqs. 45 and 46. In the next, we will use Eq. 44 to

construct the third equation.

Analogous to Case III, Eqs. 45 and 46 can be combined

to eliminate either y or z, resulting in the following two

equations:

(p
′[1]
31 (x)p

′[1]
22 (x)− p

′[1]
21 (x)p

′[1]
32 (x))y

+ (p
′[2]
33 (x)p

′[1]
22 (x)− p

′[2]
23 (x)p

′[1]
32 (x)) = 0, (47)

(p
′[1]
31 (x)p

′[1]
22 (x)− p

′[1]
21 (x)p

′[1]
32 (x))z

+ (p
′[1]
31 (x)p

′[2]
23 (x)− p

′[1]
21 (x)p

′[2]
33 (x)) = 0. (48)

Now, let us introduce three new polynomials to simplify the

notation:

s
[2]
1 (x) = p

′[1]
31 (x)p

′[1]
22 (x)− p

′[1]
21 (x)p

′[1]
32 (x), (49)

s
[3]
2 (x) = p

′[2]
33 (x)p

′[1]
22 (x)− p

′[2]
23 (x)p

′[1]
32 (x), (50)

s
[3]
3 (x) = p

′[1]
31 (x)p

′[2]
23 (x)− p

′[1]
21 (x)p

′[2]
33 (x). (51)

By multiplying Eq. 47 by y and by z, respectively, and

Eq. 48 by z, we obtain

s
[2]
1 (x)y2 + s

[3]
2 (x)y = 0, (52)

s
[2]
1 (x)yz + s

[3]
2 (x)z = 0, (53)

s
[2]
1 (x)z2 + s

[3]
3 (x)z = 0. (54)

Further, let us multiply Eq. 44 by the polynomial s
[2]
1 (x) and

substitute the expressions for the polynomials s
[2]
1 (x)y2,

s
[2]
1 (x)yz, and s

[2]
1 (x)z2 from Eqs. 52, 53, and 53, respec-

tively, to obtain the third polynomial equation that is linear

in y and z:

− s
[3]
2 (x)y − αs

[3]
3 (x)z − βs

[3]
2 (x)z

= s
[2]
1 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)). (55)

Finally, by denoting the polynomial coefficients of Eq. 55 as

s
[3]
11(x), s

[3]
12(x), and s

[4]
13(x), we can stack Eqs. 45, 46, and

55 into a following matrix form











p
[1]
21(x) p

[1]
22(x) p

[2]
23(x)

p
[2]
31(x) p

[1]
32(x) p

[2]
33(x)

s
[3]
11(x) s

[3]
12(x) s

[4]
13(x)





















y

z

1











= M(x)











y

z

1











= 0, (56)

The solutions to the unknown x can now be obtained by

finding the roots of the up to degree 6 polynomial det(M(x))
from Eq. 56.

The particular solver for Case V needs to perform 213

additions and 393 multiplications.

A.1.6. Case VI

In the configuration of Case VI, the matrix A takes the form

A =





1 α 0
0 0 1
0 0 0



 (57)



and Eqs. 3 can be rewritten as

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x) = y2 + αz2, (58)

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x) = yz, (59)

p
′[1]
31 (x)y + p

′[1]
32 (x)z + p

′[2]
33 (x) = 0, (60)

where p
′[1]
11 (x), . . . , p

′[2]
33 (x) are linear combinations of poly-

nomials p
[1]
11(x), . . . , p

[2]
33(x) and α ∈ R is a constant.

In this case, only Eq. 60 is linear in y and z, i.e., we need

to eliminate the degree 2 monomials z2 and yz from Eqs. 58

and 59 and use them to construct two new polynomial equa-

tions, both linear in y and z.

To obtain the first new equation, let us multiply Eq. 60

by y and by z to obtain the expressions for p
′[1]
31 (x)y2 and

p
′[1]
32 (x)z2, respectively,

p
′[1]
31 (x)y2

= −p
′[1]
32 (x)yz − p

′[2]
33 (x)y (61)

= −p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

− p
′[2]
33 (x)y,

p
′[1]
32 (x)z2

= −p
′[1]
31 (x)yz − p

′[2]
33 (x)z (62)

= −p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

− p
′[2]
33 (x)z.

Now, let us multiply Eq. 58 by the polynomial

p
′[1]
31 (x) p

′[1]
32 (x) and substitute the expressions for p

′[1]
31 (x)y2

and p
′[1]
32 (x)z2 from Eqs. 61 and 62 into this equation:

p
′[1]
31 (x)p

′[1]
32 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)) (63)

= p
′[1]
32 (x)

(

−p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

− p
′[2]
33 (x)y

)

+ αp
′[1]
31 (x)

(

−p
′[1]
31 (x)(p

′[1]
21 (x)y

+ p
′[1]
22 (x)z + p

′[2]
23 (x))− p

′[2]
33 (x)z

)

.

Eq. 63 is linear in y and z. Let us denote the polynomial

coefficients of Eq. 63 w.r.t. the monomials y, z, and 1 as

s
[3]
11(x), s

[3]
12(x), and s

[4]
13(x).

To obtain the second new equation, let us first derive

three equations that, after ‘hiding’ x in the coefficient field,

contain only monomials z2, z, y, and 1. Eq. 62 already has

this special form. The second equation that contains only

this set of monomials can be obtained by substituting Eq. 61

to Eq. 58 multiplied by p
′[1]
31 (x). This leads to the following

equation:

αp
′[1]
31 (x)z2

= p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)) (64)

+ p
′[2]
33 (x)y + p

′[1]
31 (p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)).

The third equation containing monomials z2, z, y, and
1 only can be obtained by expressing the polynomial

p
′[1]
32 (x)y2z in two different ways. First, let us multi-

ply Eq. 59 by p
′[1]
32 (x)y and substitute the expressions for

p
′[1]
32 (x)z2, y2, and yz from Eqs. 62, 58, and 59, respec-

tively:

p
′[1]
32 (x)y2

z

= p
′[1]
32 (x)(p

′[1]
21 (x)y2 + p

′[1]
22 (x)yz + p

′[2]
23 (x)y)

= p
′[1]
21 (x)p

′[1]
32 (x)

(

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)− αz

2
)

+ p
′[1]
22 (x)p

′[1]
32 (x)

(

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)

)

+ p
′[2]
23 (x)p

′[1]
32 y

= p
′[1]
21 (x)p

′[1]
32 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)) (65)

+ αp
′[1]
21 (x)

(

p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

+ p
′[2]
33 (x)z

)

+ p
′[2]
23 (x)p

′[1]
32 y

+ p
′[1]
22 (x)p

′[1]
32 (x)

(

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)

)

.

The polynomial p
′[1]
32 (x)y2z can also be expressed by mul-

tiplying Eq. 58 by p
′[1]
32 (x)z and by substituting expressions

for p
′[1]
32 (x)z2 and yz from Eqs. 62 and 59, respectively:

p
′[1]
32 (x)y2

z

= p
′[1]
32 (x)(p

′[1]
11 (x)yz + p

′[1]
12 (x)z2 + p

′[2]
13 (x)z − αz

3)

= p
′[1]
11 (x)p

′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

+ p
′[1]
12 (x)

(

−p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

− p
′[2]
33 (x)z

)

+ p
′[1]
13 (x)p

′[1]
32 (x)z

+ αz
(

p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)) + p

′[2]
33 (x)z

)

= p
′[1]
11 (x)p

′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)) (66)

+ p
′[1]
12 (x)

(

−p
′[1]
31 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x))

− p
′[2]
33 (x)z

)

+ p
′[1]
13 (x)p

′[1]
32 (x)z+

+ αp
′[1]
31 (x)p

′[1]
21 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z

+ p
′[2]
23 (x)) + αp

′[1]
31 p

′[2]
23 (x)z + (αp

′[2]
33 (x) + αp

′[1]
31 p

′[1]
22 (x))z2.

By combining right-hand sides of Eqs.65 and 66 we obtain

the equation
(

αp
′[2]
33 (x) + αp

′[1]
31 p

′[1]
22 (x)

)

z2 = f1(y, z, 1)
[3,3,4]x , (67)

where f1(y, z, 1)
[3,3,4]x stands for a polynomial with mono-

mials y, z, and 1, with coefficients being polynomials of de-

gree 3, 3, and 4 in x. Analogously, we can denote Eq. 62

and 64 as

p
′[1]
32 (x)z2 = f2(y, z, 1)

[2,2,3]x , (68)

αp
′[1]
31 (x)z2 = f3(y, z, 1)

[2,2,3]x . (69)

Notice that the three polynomial Eqs. 67, 68, and 69 to-
gether with the initial Eq. 60 can be stacked into a matrix



form as


















f
[2]
11 (x) f

[3]
12 (x) f

[3]
13 (x) f

[4]
14 (x)

f
[1]
21 (x) f

[2]
22 (x) f

[2]
23 (x) f

[3]
24 (x)

f
[1]
31 (x) f

[2]
32 (x) f

[2]
33 (x) f

[3]
34 (x)

0 p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)





































z2

y

z

1



















= M
′(x)



















z2

y

z

1



















= 0, (70)

where M′(x) is a 4× 4 polynomial matrix which entries are

polynomials in x. The solutions to the unknown x can be al-

ready obtained by finding the roots of the 8th degree single

variable polynomial det(M′(x)). However, since the com-

putation of the determinant of a 4×4 polynomial matrix is

indeed more complicated than that of a 3×3 matrix, we will

continue to simplify the system by eliminating z2.

By a proper combination of the coefficients of the mono-

mial z2 in Eqs. 68 and 69, i.e., polynomials p
′[2]
32 (x) and

αp
′[2]
31 (x), we can eliminate x from these coefficients and

we can derive an equation of the form

γz2 = γ1f2(y, z, 1)
[2,2,3]x + γ2f3(y, z, 1)

[2,2,3]x (71)

= f4(y, z, 1)
[2,2,3]x ,

where γ, γ1, γ2 ∈ R are constants and f4(y, z, 1)
[2,2,3]x is

a linear combination of polynomials f2(y, z, 1)
[2,2,3]x and

f3(y, z, 1)
[2,2,3]x . Now we can rewrite the coefficient of z2

from Eq. 67 as a combination of coefficients of z2 in Eqs. 68

and 71 as

(αp
′[2]
33 (x) + αp

′[1]
31 p

′[1]
22 (x)) = a[1](x)p

′[1]
32 (x) + βγ, (72)

where a[1](x) is a linear polynomial in x and β ∈ R is a con-

stant. Now, we can eliminate the monomial z2 from Eq.67

by substituting a proper combination of Eqs. 68 and 71:

f1(y, z, 1)
[3,3,4]x = a[1](x)f2(y, z, 1)

[2,2,3]x (73)

+ βf4(y, z, 1)
[2,2,3]x .

Eq. 73 is the third polynomial equation linear in y and

z, with polynomial coefficients s
[3]
21(x), s

[3]
22(x) and s

[4]
23(x)

w.r.t. y, z, and 1.

Finally, Eqs. 60, 63 and 73 can be stacked into a matrix

form











p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)

s
[3]
11(x) s

[3]
12(x) s

[3]
13(x)

s
[3]
21(x) s

[3]
22(x) s

[4]
23(x)





















y

z

1











= M(x)











y

z

1











= 0, (74)

After finding the roots of the up to degree 8 polynomial

det(M(x)) from Eq. 74, we obtain the solutions to the un-

known x.

The particular solver for Case VI needs to perform 562

additions and 1156 multiplications.

A.1.7. Case VII

In the configuration of Case VII, the matrix A takes the form

A =





1 0 α
0 1 β
0 0 0



 (75)

and Eqs. 3 can be rewritten as

p
′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x) = y2 + αyz, (76)

p
′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x) = z2 + βyz, (77)

p
′[1]
31 (x)y + p

′[1]
32 (x)z + p

′[2]
33 (x) = 0, (78)

where p
′[1]
11 (x), . . . , p

′[2]
33 (x) are linear combinations of poly-

nomials p
[1]
11(x), . . . , p

[2]
33(x) and α, β ∈ R are constant.

Analogous to Case VI, only Eq. 78 is linear in y and z,

i.e., we need to eliminate the degree 2 monomials z2 and

yz from Eqs. 76 and 77 and use them to construct two new

polynomial equations, both linear in y and z.

To obtain the first new equation, let us first multiply the

Eq. 78 by y and z, respectively, to obtain expressions for

polynomials p
′[1]
31 (x)y2 and p

′[1]
32 (x)z2:

p
′[1]
31 (x)y2 = −p

′[1]
32 (x)yz − p

′[2]
33 (x)y, (79)

p
′[1]
32 (x)z2 = −p

′[1]
31 (x)yz − p

′[2]
33 (x)z. (80)

Now, let us multiply Eq. 76 and 77 by polynomials p
′[1]
31 (x)

and p
′[1]
32 (x), respectively, and substitute the expressions for

p
′[1]
31 (x)y2 and p

′[1]
32 (x)z2 from Eqs. 79 and 80 into the re-

sulting two equations:

−p
′[1]
32 (x)yz − p

′[2]
33 (x)y + αp

′[1]
31 (x)yz

= p
′[1]
31 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)), (81)

−p
′[1]
31 (x)yz − p

′[2]
33 (x)z + βp

′[1]
32 (x)yz

= p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)). (82)

Further, let us multiply Eqs. 81 and 82 by polynomials

(βp
′[1]
32 − p

′[1]
31 (x)) and (p

′[1]
32 (x)− αp

′[1]
31 ), respectively, and

add the two resulting equations:

0 = (βp
′[1]
32 (x)− p

′[1]
31 (x)) (83)

·
(

p
′[1]
31 (x)(p

′[1]
11 (x)y + p

′[1]
12 (x)z + p

′[2]
13 (x)) + p

′[2]
33 (x)y

)

+ (p
′[1]
32 (x)− αp

′[1]
31 (x))

·
(

p
′[1]
32 (x)(p

′[1]
21 (x)y + p

′[1]
22 (x)z + p

′[2]
23 (x)) + p

′[2]
33 (x)z

)

.

Eq. 83 is the first new equation linear in y and z, with poly-

nomial coefficients s
[3]
11(x), s

[3]
12(x), and s

[4]
13(x) w.r.t. y, z

and 1.

To obtain the second new equation, let us first derive

three equations that, after ‘hiding’ x in the coefficient field,

contain only monomials yz, z, y, and 1; this approach is



analogous to Case VI. Eqs. 81 and 82 already have this spe-

cial form and after rearranging of the terms can be rewritten

as

(αp
′[1]
31 (x)− p

′[1]
32 (x))yz = f1(y, z, 1)

[2,2,3]x , (84)

(βp
′[1]
32 (x)− p

′[1]
31 (x))yz = f2(y, z, 1)

[2,2,3]x . (85)

where f1(y, z, 1)
[2,2,3]x and f2(y, z, 1)

[2,2,3]x stand for

polynomials with monomials y, z, and 1, with coefficients

being polynomials of degree 2, 2, and 3 in x. By a

proper combination of polynomials αp
′[1]
31 − p

′[1]
32 (x) and

βp
′[1]
32 − p

′[1]
31 (x) from Eqs. 84 and 85, we can eliminate the

variable x from the coefficient of the monomial yz and we

can derive the following equation:

γyz = γ1f1(y, z, 1)
[2,2,3]x + γ2f2(y, z, 1)

[2,2,3]x (86)

= f3(y, z, 1)
[2,2,3]x ,

where γ, γ1, γ2 ∈ R are constants and f3(y, z, 1)
[2,2,3]x is

a linear combination of polynomials f1(y, z, 1)
[2,2,3]x and

f2(y, z, 1)
[2,2,3]x . The third equation in monomials yz, z,

y, and 1 only can be obtained by expressing the polynomial
γy2z in two different ways. First, let us multiply Eq. 86 by
y and substitute the expression for y2 from Eq. 76:

γyzy

= γ1p
′[1]
31 (x)

(

p
′[1]
11 (x)y2 + p

′[1]
12 (x)yz + p

′[2]
13 (x)y

)

+ γ1p
′[2]
33 (x)y2

+ γ2p
′[1]
32 (x)

(

p
′[1]
21 (x)y2 + p

′[1]
22 (x)yz + p

′[2]
23 (x)y

)

+ γ2p
′[2]
33 (x)yz (87)

= γ1

(

p
′[1]
31 (x)p

′[1]
11 (x)p

′[1]
11 (x)y + p

′[1]
31 (x)p

′[1]
11 (x)p

′[1]
12 (x)z

+ p
′[1]
31 (x)p

′[1]
11 (x)p

′[2]
13 (x)− p

′[1]
31 (x)p

′[1]
11 (x)αyz

+ p
′[1]
31 (x)p

′[1]
12 (x)yz + p

′[1]
31 (x)p

′[2]
13 (x)y + p

′[2]
33 (x)p

′[1]
11 (x)y

+ p
′[2]
33 (x)p

′[1]
12 (x)z + p

′[2]
33 (x)p

′[2]
13 − p

′[2]
33 αyz

)

+ γ2

(

p
′[1]
32 (x)p

′[1]
21 (x)p

′[1]
11 (x)y + p

′[1]
32 (x)p

′[1]
21 (x)p

′[1]
12 (x)z

+ p
′[1]
32 (x)p

′[1]
21 (x)p

′[2]
13 (x)− p

′[1]
32 (x)p

′[1]
21 (x)αyz

+ p
′[1]
32 (x)p

′[1]
22 (x)yz + p

′[1]
32 (x)p

′[2]
23 (x)y + p

′[2]
33 (x)yz

)

= f4(yz, y, z, 1)
[2,3,3,4]x ,

where f4(yz, y, z, 1)
[2,3,3,4]x is a polynomial in monomials

yz, y, z, and 1, with coefficients being polynomials of de-
gree 2, 3, 3, and 4 in x. The polynomial γy2z can also be
expressed by multiplying Eq. 76 by γz:

γy
2
z

= γp
′[1]
11 (x)yz + γp

′[1]
12 (x)z2 + γp

′[1]
13 (x)z (88)

− αγ1

(

p
′[1]
31 (x)

(

p
′[1]
11 (x)yz + p

′[1]
12 (x)z2 + p

′[2]
13 (x)z

)

+ p
′[2]
33 (x)yz

)

− αγ2

(

p
′[1]
32 (x)

(

p
′[1]
21 (x)yz + p

′[1]
22 (x)z2

+ p
′[2]
23 (x)z

)

+ p
′[2]
33 (x)z2

)

.

Now, let us substitute the expression for z2 from Eq. 77 into
Eq. 88 to obtain an expression for γy2z that contains only
monomials yz, z, y, and 1, with polynomial coefficients in
x

γy
2
z = f5(yz, y, z, 1)

[2,3,3,4]x , (89)

where f5(yz, y, z, 1)
[2,3,3,4]x is a polynomial with mono-

mials yz, y, z, and 1, with coefficients being polynomials of

degree 2, 3, 3, and 4 in x.

By combining the right-hand sides of Eqs. 87 and 89, we

obtain an equation

p[2](x)yz = f6(y, z, 1)
[3,3,4]x , (90)

where p[2](x) is a second degree polynomial in x and

f6(y, z, 1)
[3,3,4]x is a polynomial with monomials y, z, and

1, with coefficients being polynomials of degree 3, 3, and
4 in x. Analogous to Case VI, the three polynomial
Eqs. 84, 85, and 90 together with the initial Eq. 60 can be
stacked into a matrix form as


















f
[1]
11 (x) f

[2]
12 (x) f

[2]
13 (x) f

[3]
14 (x)

f
[1]
21 (x) f

[2]
22 (x) f

[2]
23 (x) f

[3]
24 (x)

f
[2]
61 (x) f

[3]
62 (x) f

[3]
63 (x) f

[4]
64 (x)

0 p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)





































yz

y

z

1



















= M
′(x)



















yz

y

z

1



















= 0, (91)

where M′(x) is a 4× 4 polynomial matrix which entries are

polynomials in x. The solutions to the unknown x can be

already obtained by finding the roots of the up to degree 8

univariate polynomial det(M′(x)). However, since the com-

putation of the determinant of a 4×4 polynomial matrix is

indeed more complicated than that of a 3×3 matrix, we will

continue to simplify the system by eliminating yz.

Let us rewrite p[2](x), the coefficient of the monomial

yz from Eq. 90, as a combination of coefficients of yz from

Eqs. 84 and 86 as

p[2](x) = a[1](x)
(

αp
′[1]
31 − p

′[1]
32 (x)

)

+ βγ, (92)

where a[1](x) is a linear polynomial in x and β ∈ R is a

constant. Now, we can eliminate yz from 90 by substituting

a proper combination of Eqs. 84 and 86 as

f6(y, z, 1)
[3,3,4]x = a[1](x)f1(y, z, 1)

[2,2,3]x (93)

+ βf3(y, z, 1)
[2,2,3]x .

Eq. 93 is the sought-for second new equation linear in y and

z, with polynomial coefficients s
[3]
21(x), s

[3]
22(x) and s

[4]
23(x)

w.r.t. y, z, and 1.

Finally, Eqs. 78, 83, and 93 can be stacked into a matrix

form










p
[1]
31(x) p

[1]
32(x) p

[2]
33(x)

s
[3]
11(x) s

[3]
12(x) s

[3]
13(x)

s
[3]
21(x) s

[3]
22(x) s

[4]
23(x)





















y

z

1











= M(x)











y

z

1











= 0, (94)



After finding the roots of the up to degree 8 polynomial

det(M(x)) from Eq. 94, we obtain the solutions to the un-

known x.

The particular solver for Case VII needs to perform 878

additions and 1807 multiplications.

A.1.8. Case VIII

For the sake of completeness, let us restate the general non-

generate case described in §3 of the main paper. This non-

degenerate case is recognized by the full rank of matrix A.

Because of this regularity of matrix A, we can multiply Eq. 3

by A
−1, resulting in





y2

z2

yz



 =





p′11(x) p′12(x) p′13(x)
p′21(x) p′22(x) p′23(x)
p′31(x) p′32(x) p′33(x)









y
z
1



 , (95)

where p′11(x), . . . , p
′
33(x) are linear combinations of poly-

nomials p11(x), . . . , p33(x). Again, p′13(x), p
′
23(x), p

′
33(x)

are quadratic polynomials in x and the remaining polyno-

mials in Eq. 95 are linear in x. The reason why we manipu-

lated Eqs. 2 into Eq. 95 is to express monomials y2, z2, and

yz as polynomial functions in y, z, and 1.

Now, let us introduce three trivial identities

y2z = yzy, (96)

yzz = z2y, (97)

yzyz = y2z2. (98)

After substituting the expressions for y2, z2, and yz from

Eq. 95 into Eqs. 96–98, we obtain the following three equa-

tions:

(p′11(x)y + p′12(x)z + p′13(x))z =

(p′31(x)y + p′32(x)z + p′33(x))y, (99)

(p′31(x)y + p′32(x)z + p′33(x))z =

(p′21(x)y + p′22(x)z + p′23(x))y, (100)

(p′31(x)y + p′32(x)z + p′33(x))·
(p′31(x)y + p′32(x)z + p′33(x)) =

(p′11(x)y + p′12(x)z + p′13(x))·
(p′21(x)y + p′22(x)z + p′23(x)). (101)

Since Eqs. 99, 100, and 101 again contain monomials y2, z2

and yz, we substitute expressions for y2, z2 and yz from

Eq. 95 into Eqs. 99–101 once more. This double substitu-

tion transforms the identities from Eqs. 96–98 into the fol-

lowing matrix equation











s
[2]
11(x) s

[2]
12(x) s

[3]
13(x)

s
[2]
21(x) s

[2]
22(x) s

[3]
23(x)

s
[3]
31(x) s

[3]
32(x) s

[4]
33(x)





















y

z

1











= M(x)











y

z

1











= 0, (102)

where the upper index [·] denotes the maximum possible

degree of the respective polynomial sij(x).
As we know from elementary linear algebra, matrix

Eq. 102 has a non-trivial solution if and only if the deter-

minant of its matrix M(x) is zero. It can be easily inferred

from the degrees of sij(x) that the determinant of the 3×3

polynomial matrix M(x) is an up to degree 8 polynomial in

x.

The solutions to the unknown x from the original Eq. 2

can now be obtained by finding the roots of the up to de-

gree 8 polynomial det(M(x)). For example, these can be

computed as the eigenvalues of its companion matrix [2],

or more efficiently, using Sturm sequences [7] in some fea-

sible interval. Solutions to the unknowns y and z can be ob-

tained from M(x) after substituting the particular solutions

for x into this matrix and solving the resulting system of

two linear equations.

A.2. Symmetry and multiplicity of solutions

Besides degenerate configurations, the E3Q3 solver can

handle configurations with symmetric solutions as well as

solutions with multiplicity. After identifying the appropri-

ate solver among the eight possible particular solvers of

§A.1, we can proceed right to the final polynomial in one

variable. This is because none of the steps of the particular

solvers up to the derivation of the single variable polyno-

mial det(M(x)) = 0 of degree at most 8 are influenced by

the symmetry or multiplicity of the solutions. The only step

that may be influenced by these configurations is the step

of finding the roots this single variable polynomial. This

step may be simplified for symmetric solutions or—on the

other hand—it may lead to some numerical issues for so-

lutions with multiplicity. However, it is worth noting that

numerical issues that may appear in the connection with so-

lutions with multiplicity are an inherent problem of numer-

ical methods for finding roots of a single variable polyno-

mials and as such is not limited to the solvers presented in

this paper. This issue had to be addressed also by the pre-

viously published methods for solving the 3Q3 problem or

its variants which are based on deriving a single variable

polynomial, e.g., by Nistér [4].

To show how to deal with symmetric solutions and with

solutions with multiplicity in the E3Q3 solver, we will con-

sider an important computer vision problem: the perspec-

tive three point absolute pose problem.

A.2.1. Perspective three point pose problem

The goal of the perspective three point pose (P3P) prob-

lem is to estimate the absolute pose of a perspective camera

w.r.t. the known 3D points from three 2D-to-3D correspon-

dences.

The P3P problem can be formulated as a 3Q3 system by

considering a tetrahedron with vertices at the three known



3D points and the unknown camera center. For a calibrated

camera, we can use the image points corresponding to the

known 3D points to compute the angle between any pair of

these points, with the camera center being the angle vertex.

Such angles are sometimes called dihedral angles. In this

formulation, to solve the P3P problem is to determine the

lengths of the three line segments joining the camera center

and the known 3D points (three legs) of the tetrahedron,

given three sides of the tetrahedron base and the dihedral

angles.

The solution to this formulation of the P3P problem can

be found by solving 3Q3 system derived from the law of

cosines

R2
xy = x2 + y2 − 2xy cos(Oxy), (103)

R2
xz = x2 + z2 − 2xz cos(Oxz), (104)

R2
yz = y2 + z2 − 2yz cos(Oyz), (105)

where Rxy, Rxz, Ryz are the known lengths of the three

sides of the base of the tetrahedron, Oxy, Oxz, Oyz are the

corresponding dihedral angles, and x, y, z are the unknown

sides of the tetrahedron. This formulation of the P3P prob-

lem was presented in [1] and solved herein. The quadratic

equations derived from the law of cosines have a specific

structure as each equation contains only monomials of de-

gree 2 in two variables. The final system has four pairs of

symmetric solutions. The specific solver [1] was intended

for this special form of 3Q3 equations only and it is based

on the problem-specific polynomial manipulations and sub-

stitutions.

In the next, we show how to solve this problem using the

proposed E3Q3 solver.

A.2.1.1 Symmetric solutions

Le us start by reshaping the system of Eqs. 103–105 into

the matrix equation from Eq. 3, where the matrix A takes a

special form

A =





1 0 0
0 1 0
1 1 −2 cos(Oyz)



 . (106)

This form ensures that the matrix A is regular for

cos(Oyz) ̸= 0 and thus we can use the general E3Q3 solver

from §A.1.8 to solve the P3P problem.

Because of the peculiar form of the matrix A, the E3Q3

solver will arrive to an univariate polynomial in x that will

take the following form:

a8x
8 + a6x

6 + a4x
4 + a2x

2 + a0, (107)

i.e., the odd order terms of the octic polynomial will van-

ish. This polynomial has four pairs of symmetric solutions.

Note that the univariate polynomial resulting from the P3P

problem will always have the form of Eq. 107, independent

of the concrete values of, or any possible noise in, the input

coefficients.

As we can see, in the case of the P3P problem, it is trivial

to detect this special form of the final univariate polynomial.

Here, we can use the substitution w = x2 and by consider-

ing the octic polynomial to be a quartic in w, the roots can

be found in a closed form. However, the E3Q3 solver can

compute the roots of Eq. 107 using the Sturm sequences

and recover the symmetric solutions without any problems

even if the special form of the polynomial is quite ignored,

possibly performing a few more operations than necessary.

A.2.1.2 Solutions with multiplicity

However, numerical issues may arise for problems with

solutions with multiplicity. For example, let us consider

an instance of the P3P problem where the base of the

tetrahedron is an equilateral triangle with sides Rxy =
Rxz = Ryz = 2

√
3 and the dihedral angles are equal to

cos(Oxy) = cos(Oxz) = cos(Oyz) =
20
32 . For the variable

x, this problem has one pair of symmetric solutions (4,−4)
with multiplicity three and one pair of symmetric solutions

(1,−1) of multiplicity one.

Here, instead of one solution 4 with multiplicity three,

the standard numerical methods, such as the Sturm se-

quences or the method based on the eigenvalues of the com-

panion matrix, will find three different solutions xi = 4+ϵi
for some small ϵi. This numerical error may further accu-

mulate and it may lead to larger errors in y and z. Unfor-

tunately, barring the use of some ad hoc numerical limits

imposed on the size of ϵi, such a situation is hard to detect.

In certain situations, it may be even impossible to com-

pute the remaining variables y and z at all. This second

problem appears when, after the substitution of the variable

x from a solution with multiplicity into Eq. 6, the matrix

M(x) vanishes or has rank 1. Again, this situation is hard

to detect, since for solutions corrupted by some numerical

error ϵi, the matrix M(x) does not vanish entirely, but only

up to some error that depends on ϵi.

Even though the numerical issues of solutions with mul-

tiplicity are hard to detect, at least there are several ways to

mitigate the problem of vanishing M(x). First of all, one can

avoid the problem altogether by running the E3Q3 solver

three times, each time ’hiding’ a different variable in Eq. 3,

thus avoiding the need for extracting y and z as linear so-

lutions to Eq. 6. This effectively translates into running the

original E3Q3 solver for three different permutations of the

input coefficient vectors ci, see Eq. 2. The main drawback

of this approach, besides the increased computational bur-

den, is the fact that since the variables x, y, and z are com-

puted separately, the orders of the particular solutions for

these variables do not necessarily correspond. To obtain the



solutions to the original problem, one needs to test all the

permutations of the particular solutions just to keep those

satisfying the original problem in Eq. 2.

A better approach is to avoid the solutions with multi-

plicity altogether. This can be done by transforming the

original problem, e.g., by taking a random linear combina-

tion of the original variables x, y, and z and by substituting

them by new variables x′, y′ and z′. After this transforma-

tion, we will once again obtain a 3Q3 system, however, the

probability that such a system will have solutions with mul-

tiplicity is very low.

To present an example of this approach, let us once again

consider the P3P problem instance from the beginning of

this section, where all individual variables x, y, and z have

one pair of symmetric solutions (4,−4) with multiplicity

three and one pair of symmetric solutions (1,−1) of multi-

plicity one,

{[4, 4, 4], [−4,−4,−4], [4, 4, 1], [−4,−4,−1],

[4, 1, 4], [−4,−1,−4], [1, 4, 4], [−1,−4,−4]} . (108)

Further, for solutions x = 4 and x = −4 the matrix

M(x) vanishes. Thus, solving the univariate polynomial in

Eq. 107 using standard methods may cause numerical prob-

lems, resulting in three different solutions xi = 4 + ϵi with

ϵi ≈ 10−5. To avoid this problem, let us consider the fol-

lowing very simple linear combination of the original vari-

ables x, y, and z and substitute them for three new variables

x′, y′ and z′:

x′ = x+ 2y + 3z, (109)

y′ = 3x+ y + z, (110)

z′ = x+ 2y + 2z. (111)

The original variables can be express using Eqs 109–111 as

x =
2

5
y′ − 1

5
z′, (112)

y = −x′ − 1

5
y′ +

8

5
z′, (113)

z = x′ − z′. (114)

After substituting Eqs. 112–114 into Eqs. 103–105, we ob-

tain a 3Q3 system that has four pairs of symmetric solu-

tions:

{[24, 20, 20], [−24,−20,−20],

[21, 11, 17], [−21,−11,−17],

[18, 17, 14], [−18,−17,−14],

[15, 17, 14], [−15,−17,−14]}. (115)

After this simple linear transformation, we obtained a 3Q3

system that has four distinct pairs of symmetric solutions for

x′ and, as we can easily test, the matrix M(x′) doesn’t van-

ishes for these solutions. Thus, this simple substitution was

sufficient to run the E3Q3 solver and solve this P3P instance

without any numerical problems up to the numerical accu-

racy set in the Sturm sequences implementation. The solu-

tions to the original variables can be now easily obtained by

substituting solutions for x′, y′ and z′ into Eqs. 112–114.

A.3. Hand-eye calibration problem

The third problem for which we propose a 3Q3 formulation

is the problem of hand-eye calibration (HEC) with known

translation. The HEC problem [5, 6] appeared for the first

time in the connection with cameras mounted on robotic

systems. Since then, it arose in many other fields ranging

from medical applications to automotive industry. The HEC

task is to find a rigid transformation X from the coordinate

system connected with the robot’s gripper to the coordinate

system of a rigidly attached camera.

In this section, we will consider a variation of the HEC

problem where the rotation of the gripper w.r.t. the robot

global coordinate system is not known, however its trans-

lation can be measured. This variation was recently solved

using the Gröbner basis method by Kukelova et al. [3], who

formulated the problem using quaternions as a system of

seven equations in seven unknowns with 16 solutions. The

final Gröbner basis solver needs to perform G-J elimina-

tion of a 187×203 matrix and to compute eigenvalues for

a 16×16 matrix. Here, we will show that this variation of

the HEC problem can be formulated as a much simpler 3Q3

system, again using Cayley’s parametrization of rotations.

First, let us define the set of rigid transformations

SE(3) =

{

T

∣

∣

∣

∣

T =

(

RT tT

0
⊤ 1

)

, RT∈SO(3), tT ∈ R
3

}

.(116)

Further, let us suppose that transformations A, B ∈ SE(3)
capture the motions, i.e., the change of coordinate frames

between two poses, of camera and robot, respectively, and

that these transformations are known. Algebraically, the

HEC problem can be formulated as a matrix equation

AX = XB, (117)

where X ∈ SE(3) is the unknown hand-eye transformation.

Eq. 117 can be decomposed to a matrix and a vector equa-

tion

RARX = RXRB, (118)

RAtX + tA = RXtB + tX. (119)

It was shown in [5] that single Eq. 117 is not enough to solve

for X. At least two Eqs. 117 for two motions with different

rotation axes are required. In the next, we will assume that

we have performed two such camera and gripper motions
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Figure 1: HEC problem, numerical stability: Log10 of (a)

the relative translation and (b) rotation errors on the noise-

free data for E3Q3-HEC (blue) and Kukelova12 (red).

A
1,A2 and B

1,B2, respectively, however, for various techni-

cal reasons, were unable to measure the gripper rotations R1
B

and R
2
B
.

As noted in [3], the vector part of Eq. 117 does not de-

pend on the unknown gripper rotations R1
B

and R2
B

while con-

taining all the problem’s unknowns, RX and tX, at the same

time. In [3], the problem was solved as a system of two

Eqs. 117 in seven unknowns resulting from the two motions

A
i, Bi, i = 1, 2, using quaternions to represent the unknown

rotation RX. Here, we suggest to use the Cayley parametriza-

tion to obtain an even simpler 3Q3 system.

Let us parametrize the unknown rotation RX using three

new variables x = [x, y, z]
⊤

as RX(x) = 1
k
R
′
X
(x). Using

this parametrization, the two Eqs. 119 can be rewritten as

R
i
A
tX + t

i
A
= 1

k
R
′
X
(x)ti

B
+ tX, i = 1, 2. (120)

To transform these equations into polynomials, we need to

multiply them by the denominator k. Next, we substitute

vector ktX with a vector of three new unknowns t̂X. Now,

we have six polynomial equations, three for every Eq. 119,

in six unknowns x, y, z, and t̂X:

R
i
A
t̂X+(1+x2+yy+z2)ti

A
= R

′

X
(x)ti

B
+t̂X, i = 1, 2. (121)

Since the system of Eqs. 121 depends on t̂X linearly, three

of these equations can be used to eliminate t̂X from the re-

maining three equations, e.g., using G-J elimination. After

the elimination, we end up with a 3Q3 system in the un-

knowns x, y, and z. Once the 3Q3 problem is solved by

E3Q3, we can resubstitute ktX back to Eqs. 120 and com-

pute tX by solving this system of, now linear, equations.

Experiments. In order to gauge the numerical stabil-

ity and noise sensitivity of the proposed algorithm E3Q3-

HEC, we performed several experiments on synthetic data

and compared the results with the state-of-the-art method

Kukelova12 [3].

In the synthetic scenes used in both experiments, the

camera observed a 16×16 planar calibration grid placed

into the working space of a simulated robotic arm. For each

scene, a random yet feasible transformation X was gener-

ated and the robot was instructed to perform two random
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Figure 2: HEC problem, noise experiment: (a) Relative

translation and (b) rotation errors in the presence of image

noise for E3Q3-HEC (blue) and Kukelova12 (red).

motions R1
B

and R
2
B

such that the camera rigidly connected

with its gripper was still able to observe the calibration grid.

Finally, we recovered the camera poses using [8] and com-

puted the corresponding camera motions A1 and A
2.

Figures 1(a–b) show the results of the numerical stability

experiment on a dataset of 10K synthetic scenes with noise-

free image correspondences. The relative translation error

was measured as
∥

∥tX − tXgt

∥

∥ /
∥

∥tXgt

∥

∥ and rotation error as

the rotation angle in the angle-axis representation of the rel-

ative rotation RXR
−1
Xgt

. Both E3Q3-HEC and Kukelova12 per-

formed comparably well, however, Kukelova12 failed on

2% of the scenes.

In the image noise experiment, we corrupted the im-

age correspondences with varying amount of noise prior

to the camera pose recovery. The results are plotted using

boxplot function in Figures 2(a–b). Again, Kukelova12

sometimes fails even on noise-free data. On average, E3Q3-

HEC slightly outperforms Kukelova12 for all noise levels.

A.4. P4Pf—parametrization of P

Let us recall the P4Pf problem stated in the main paper,

§5.1: given four 3D scene points Xi = [xi, yi, zi, 1]
⊤

,

i = 1, . . . , 4, and four corresponding image points ui =

[ui, vi, 1]
⊤

, i = 1, . . . , 4, the task is to recover the unknown

rotation R, translation t, and focal length f = 1
w

.

Each of the 2D to 3D point correspondences results in a

matrix equation:





0 −1 vi
1 0 −ui

−vi ui 0









r11 r12 r13 t1
r21 r22 r23 t2
wr31 wr32 wr33 wt3













xi

yi
zi
1









= 0.

(122)

In the main paper, §5.1, we have shown how the third

rows of matrix Eq. 122 for i = 1, . . . , 4 can be used to

parametrize the first two rows of the projection matrix P

with the new unknowns γ1, γ2, and γ3.

Here, we will use the remaining two equations from

Eq. 122 to parametrize the third row of P. For this, we have

to distinguish the following two cases: if |ui| ≤ ϵ, for some



small predetermined threshold ϵ, we will use the equation

corresponding to the first row of Eq. 122; if |vi| ≤ ϵ, we

will use the equation corresponding to the second row. In

all other cases—and these are by far the most common—

we can pick one of the two equations arbitrarily, e.g., let’s

choose the equation corresponding to the second row:

(p11 xi + p12 yi + p13 zi + p14)

− ui (p31 xi + p32 yi + p33 zi + p34) = 0. (123)

Eq. 123 contains unknowns p31, p32, p33, and p34 from

the third row of P and unknowns p11, p12, p13, and p14
from the first row of P, which we already parametrized

by γ1, γ2, and γ3. Again, the four 2D-3D corre-

spondences give us four specific linear equations in the

form of Eq. 123. Using the parametrization of v =

[p11, p12, p13, p14, p21, p22, p23, p24]
⊤

as

v = γ1 n1 + γ2 n2 + γ3 n3 + n4, (124)

derived in the main paper, we can stack the four Eqs. 123

and reshape them into one matrix equation

B [p31, p32, p33, p34]
⊤
= C [γ1, γ2, γ3, 1]

⊤
, (125)

with two coefficient matrices B, C ∈ R
4×4. If the points

X1,X2,X3 and X4 are non-planar, the matrix B has full

rank and we can rewrite Eq. 125 as

[p31, p32, p33, p34]
⊤
= B

−1
C [γ1, γ2, γ3, 1]

⊤
. (126)

Eqs. 126 gives us a parametrization of the third row of P

in the three unknowns γ1, γ2, γ3, and a coefficient matrix

D = B
−1

C, D ∈ R
4×4.
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