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The general E3Q3 solver introduced in the main paper
is able to quickly and reliably solve non-degenerate config-
urations of the 3Q3 problem. In this Appendix, §A.1, we
present the complete E3Q3 solver, i.e., the general E3Q3
solver supplemented with seven particular solvers covering
seven distinct degenerate configurations. Next, in §A.2 we
discuss the behavior of the E3Q3 solver in situation where
the symmetry or solutions with multiplicities are involved.
Further, in §A.3 we present a novel 3Q3 formulation of the
hand-eye calibration problem with known translation. Fi-
nally, in §A.4, we provide the full parametrization of the
projection matrix P for the new 3Q3 formulation of prob-
lem P4Pf from the main paper.

A.1. E3Q3: The complete 3Q3 solver

Let us here briefly review the 3Q3 problem formulation.

Let z,y, z be the problem unknowns, ¢;;, © = 1,2,3,
7 = 1,...,10 the problem coefficients and (with ¢; =
[ci1, iz, - - -5 Cito)),
q; = Cj - [x27y2a227xyaxz7yzaxayvza 1] (D

the three polynomials of degree 2. The problem of 3Q3 is
to find the intersections of g;, i.e., to solve the system

To solve Egs. 2, we will start by ‘hiding’ the unknown x
in the coefficient field, i.e., by considering = to be a co-
efficient for a moment. This leaves us with six monomi-
als [y2, 22, yz,v, 2,1] in unknowns ¥, z in every equation.
By splitting these monomials into two sets {32, 2%, yz},
{y, z, 1} and by rearranging them into the left- and right-
hand sides, Eqs. 2 can be rewritten as the following matrix
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equation:
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where A is a coefficient matrix

C12 €13 Ci6
A= |coa c23 c26 |, “4)
€32 €33 C36

and p11(x), . .., ps3(x) are polynomials in 2. where the up-
per index [-] denotes the maximum possible degree of the
respective polynomial p;;(z).

By using G-J elimination and, if necessary, by inter-
changing of the matrix rows, the structure of the matrix A
can be reduced into one of the following configurations:
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where e stands for a nonzero coefficient from R. All other
configurations can be transformed into one of these 8 con-
figurations either by interchanging variables y and z or by
assuming e equal to 0. In the next, we will denote these con-
figurations by Roman numerals as Cases I, I, ..., VIII, and
for each case we will derive a particular solver. Note that
Case VIII corresponds to the non-degenerate configuration
solved in §3 of the main paper.

For the degenerate configurations I through VII, we will
follow the idea of the solution for the general Case VIIIL.



This means that we will derive three equations that are lin-
ear in y and z. Such equations can be written in the form

M(z) |z| =0, 6)

where M(x) is a polynomial matrix which entries are poly-
nomials in x. As we know from elementary linear algebra,
matrix Eq. 6 has a non-trivial solution if and only if the de-
terminant of its matrix M(z) is zero. The solutions to the
unknown x can then be obtained by finding the roots of the
single variable polynomial det(M(z)) = 0. Solutions to the
unknowns y and z can be obtained from M(z) after substitut-
ing the particular solutions for z into this matrix from Eq. 6
and solving the resulting system of two linear equations.

A.1.1. Case 1

In the configuration of Case I, the matrix A takes the form

0 0 O
A=1[0 0 0 @)
0 0 0
and Eq. 3 can be rewritten as
1 2
Pl ) ph@) | |y y
phl(@) pha(z) ph@)| |z =M@) |z| =0, @®)
pil(@) pa(e) ph@)] |1 1

It can be easily inferred from the degrees of p;;(z) that the
determinant of the 3x3 polynomial matrix M(x) is a up to
degree 4 polynomial in . The solutions to the unknown
x from the original Eq. 2 can now be obtained by finding
the roots of det(M(x)) using Sturm sequences [7] in some
feasible interval.

The particular solver for Case I needs to perform 67 ad-
ditions and 144 multiplications.

A.1.2. Case 11

In the configuration of Case II, the matrix A takes the form

00 1
A=10 0 0 9)
00 0

and Eq. 3 can be rewritten as

Pl @y + 9l @)z + 95 (@) = vz, (0)

pa @)y + v (@)z 4+ s (@) =0, (D)

P (@)y + o) ()2 + Pl (@) = 0 (12)

where p; i* ]( )y ,pg[g]( ) are linear combinations of poly-

nomlalsp[ ]( ), 7.27%231@)

Our goal is to obtain three polynomial equations that are
linear in y and z. Eqs. 11 and 12 already have the required
form. Eq. 10 contains monomial yz that needs to be elimi-
nated. Let us rewrite Egs. 11 and 12 as

po (x)y = —pib) (@) 2 — pi3) (), (13)
i ()2 = —p! [i] (@)y — pi (). (14)

By multiplying Eqgs. 13 and 14 and substituting the expres-
sion for yz from Eq. 10 we obtain
Pi ()P (2)y2
= (52 (2)z + p33 () (P () + P15 ()
= pi (@) (@)yz + 0 (@)l ()
+ i ()53 (2)2 + Pl ()P (=) (1)
Pt (@) %

2B @) @)y + Pl (@)pll) ()2

+ 5 (@) ()P () + pis) (a)psy) (x)y
+ pily) (2)pla ()2 + plalpla).

Now, Let us multiply the Eq. 10 with p;[i ) p;[; ). This results
in

o) ()piy) (a)y=

=i @pf @) (P @y +p5 @)z +p @)
(16)

By combining the right-hand sides of Eqs. 15 and 16 we
obtain an equation of the form

sPl @)y + 513 (x)z + st (x) = 0, (17)

where s[ ]( ), 5[132] (@), ..., 5[143} (z) are polynomials in 2
Finally, by stacking Eqs. 11, 12 and 17 into a matrix form
we get

(2) pha)| |y y
(z) pi(x) =M(z) |2| =0. (18)

sil@) (@) si(@)
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After finding the roots of the up to degree 6 polynomial
det(M(x)) for M(x) from Eq. 18, we obtain the solutions
to the unknown .

The particular solver for Case II needs to perform 193
additions and 391 multiplications.

A.1.3. Case III

In the configuration of Case III, the matrix A takes the form

A= (19)

o O O
O O =
o O Q



and Eq. 3 can be rewritten as

Pit @)y + 0y (@) + 0l (2) = 2 +ayz, (20)
P @)y + i) (@)z + pl (2) = 0, @1
P @)y + 95 ()7 + Pl (2) = 0, (22)
where p; 5 ]( )yerusD [§]( ) are linear combinations of poly-

nomials P[11]( ). ,p:[gg} (x) and & € R is a constant.
Again, Egs. 21 and 22 are already linear in y and z.
Eq. 20 contains two second degree monomials 3z and z2
that need to be eliminated.
Let us start by combining Egs. 21 and 22 to eliminate ei-
ther y or z from these equations. This leads to the following
two equations

/(1]

(1 (2)py (x) — piay (x)phy (2))y

+ (phs ()P (x) — @%@p[%>>—o,ea
(i (2)py) (x) — Py ()i ()2

+ (o4t (@) () — “w>“<»—o<m>

Now, let us introduce three new polynomials to simplify the
notation:

s?@o:p$<> @) il @)l (z),  @5)

i ) — po3 (2)p) (), (26)

s?@ﬂ=p£<>[ﬂw> pa (@) (). 2@7)
b

By multiplying Eqs. 23 and 24 by z we obtain
5[1 ](x)yz + s (z)z =0, (28)
5[12] (z)2% + s (z)z =0. (29)

Further, let us multiply Eq. 20 by s[ ]( ) and substitute the

expressions for s[l ] (z)yzand 5[1 ]( )22 from Egs. 28 and 29
to obtain an equation that is linear in y and z:

- 3[33] (£)z —as [3]( )z
2 1 /2
= s (@)l (2)y + 95 @)z + 95 (@) (30)
Finally, by denoting the polynomial coefficients of Eq. 30

as s[f’l] (x), 5[132]( ), and s[fg () we can stack Egs. 21, 22, and
30 into a following matrix form

Pyl (x) pha(x) pha@) | |y

[1]

22

P2 @) p@) pB@)| |2 =M@) 2| =0. 3D
i) (@) si(x)

Again, det(M(x)) is a up to degree 6 polynomial which roots
are the solutions for the unknown z.

The particular solver for Case III needs to perform 206
additions and 377 multiplications.

<

—_
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A.1.4. Case IV

In the configuration of Case IV, the matrix A takes the form

0 1 0
A=10 0 1 (32)

0 0 O

and Eq. 3 can be rewritten as

P @y + b @)z 105 (@) =22 (33)
P (@)y + P (2)2 + pify () = y2, 34)
Pi @)y + 95 @)z + 9 (@) =0, (39)
where p; 5 ]( )y ,p?,[ ]( ) are linear combinations of poly-

nomlalsp[n}( ), - ,pg( ).

In this case, only Eq. 35 is linear in y and z. This means
that we need to eliminate the degree 2 monomials 2% and
yz from Eqs. 33 and 34 and use these equations to construct
two new polynomial equations that are linear in y and z.

To construct the first equation, let us multiply Eq. 35 by
z and substitute the left hand sides of Eqs. 33 and 34 for
monomials 22 and yz, respectively. This leads to the fol-
lowing equation:

pil (@)= + pi) (2)2% + Pl (z)z

—pm(Xw1@w+ﬂm@V+p2(D (36)
+ @) 1 @)y + P (@) + PN ()
+ @)z = 0.

Eq. 36 is linear in y and 2. Let us denote the polynomial
coefficients of Eq. 36 w.r.t. the monomials y, 2, and 1 as
2 3
s (), 513 (). and s (z).
To obtain the second equation, we can multiply the
Eqg. 35 by y to obtain an equation for pg[ll ] (2)y?:

P @)y
= —pliy) (2)yz — pl3 (2)y 37
= 5 (@) (0 @)y + P (2)z + 33 (@)
—~ Pz (2)y = 0.
Now let us state a trivial identity
i @)yzz = pii ()22, (38)

Let us recursively substitute the left-hand sides of Egs. 33
and 34 for the monomials z2 and yz, respectively, into the
left-hand side of Eq. 38:

P (x)yzz
= i (@) () @)y + Dy @)z + D3 (2)2 (39)
“me;cm@£<>y+p£%>z+p”%@>
+p5}x V(@) @)y + ph ()2 + piE ()
(

22
/[2]

()P}
—|—p31 (x)ng T)z.



Analogously, let us substitute the left-hand sides of Egs. 33
and 34 into the right-hand side of Eq. 38. Further, let us

substitute the expression from Eq. 37 for the polynomial
10/3[11 ]( )y?. After recursively performing these substitutions,

the right-hand side of Eq. 38 will read

P (2)2%y
_ /(1] /[1] /2] 40
=p3 (@) (p11 @)y + Py’ (2)z + p13 (2))y (40)
1 1 2
= pip (@) (—ph @) R @)y + v @)z + P (@) +
/2 M 1 1
-p [3]( )Y ) +p3[ ]( )p/1[2]( ) (plg[1]( )y + pgz](l’)z
2
+ 9l (@) +pi @ @)y,
By combining the right-hand sides of Eqgs. 39 and 40 and by
denoting the polynomial coefficients of the final polynomial

as 5[231] (x), 5[22] (z), and s[;g (z) we end up with the second
new polynomial equation linear in y and z:

s (2)y + sag) ()2 + shy) () = 0. 41)

Finally, we can stack Eqs. 35, 36 and 41 into a matrix
form

pil@) Pa(e) ph@) | |y y

sB@) @) sB@)| 2| =u@) |z| =0, “2)

s5l@) sha(x) sh(@)] |1 1

This time, det(M(x)) leads to a up to degree 7 polynomial.
By finding its roots we find the solutions for the unknown
T.

The particular solver for Case IV needs to perform 308
additions and 596 multiplications.

A.1.5. Case V

In the configuration of Case V, the matrix A takes the form

1 B
A= |0 0 (43)
0 0

[N o]

and Eq. 3 can be rewritten as

P @y +p5 @)z + 5 (x) = 4 + az? + Byz, (@4)
ot )y + pay) ()2 + p () = 0, (45)

P (@) + P ()2 + P (x) = 0, (46)

where p; 5 ]( )yerusD [§]( ) are linear combinations of poly-

nomials P[n]( ), ,p%( ) and «, 8 € R are constants.

Again, we already have two equations that are linear in
y and z, Eqgs. 45 and 46. In the next, we will use Eq. 44 to
construct the third equation.

Analogous to Case III, Egs. 45 and 46 can be combined
to eliminate either y or z, resulting in the following two
equations:

() (@)phy () — pat) ()i (2))y
+ (953 ()P () — p@()?@»
(1 (2)py (x) — piay () sy (2))
+ (P (2)p3 (x) — pyy ()i (x)) = 0. (48)

Now, let us introduce three new polynomials to simplify the
notation:

—
5

0, 47

8
I\

D@ (@) — p @)phl (@), @9)
(@)l () — o (@)pi) (x),  (50)
Sl (a) = pil (@) (@) — P ()P (x). (51

By multiplying Eq. 47 by y and by z, respectively, and
Eq. 48 by z, we obtain

s @)y + 5 @)y =0, (52)
5[12] (x)yz + 5[23] (x)z =0, (53)
5[12] (x)2% + 8[33] ()2 =0. (54)

Further, let us multiply Eq. 44 by the polynomial 3[12] (z) and
substitute the expressions for the polynomials 3[12] (7)y?,
5[12] (x)yz, and 3[12] (x)2?% from Egs. 52, 53, and 53, respec-
tively, to obtain the third polynomial equation that is linear
in y and z:

— 5 (@)y — s (2)2 — Bst(2)z

= s (@)L @)y + ) ()2 + p3 (). (55)

Finally, by denoting the polynomial coefficients of Eq. 55 as
5[131] (z), 5[12}( ), and s[fg] (z), we can stack Egs. 45, 46, and
55 into a following matrix form

Pl (@) pha(z) PR @) | [y y
@) pl@) pB@)| || =u@) [2| =0, (56)
sil(z) si(z) sii@)] |1 1

The solutions to the unknown x can now be obtained by
finding the roots of the up to degree 6 polynomial det(M(z))
from Eq. 56.

The particular solver for Case V needs to perform 213
additions and 393 multiplications.

A.1.6. Case VI

In the configuration of Case VI, the matrix A takes the form

A= 67

O O =
o O R
o~ O



and Egs. 3 can be rewritten as

W@y + b @)z + 95 () = > + az?, (58)

P11

Py + 5w + 500 = v, (59)

P @)y + vl (@)= + 93 () = 0, (60)
where py; /1] (),..., p3[§] (z) are linear combinations of poly-
nomials p[ ]( ), ... ,p%( ) and o € R is a constant.

In this case, only Eq. 60 is linear in y and z, i.e., we need
to eliminate the degree 2 monomials 22 and yz from Eqs. 58
and 59 and use them to construct two new polynomial equa-
tions, both linear in y and z.

To obtain the first new equation, let us multi ]ply Eq. 60

by v and by z to obtain the expressions for p31 x)y? and
[1]( )22, respectively,
Py ()y?
= —pip (@)yz — Pl (@)Y (61)
)G -+ @)z + pE)
/(2]
— P33 (2)Y,
P (m)z2
= —p31 V@)= — i (2)2 (62)
—piy) (2) () (2)y + Py ()2 + pif3 ()
/[2]
— Pz (7)2.

Now, let us multiply Eq. 58 by the polynomial
p/3[11 ] (x) plg[zl] (x) and substitute the expressions for pgll ] (2)y?

and pj, ()22 from Eqgs. 61 and 62 into this equation:

i @i @)l @)y + Pl @)z + 9 @) 63)
= (@) (~p @) e @)y + o @)z + ] (@)

= @) + il @) (—p @ @ @)y
+ 9 @)z + i (@) — ) (2)2)

Eq. 63 is linear in y and 2. Let us denote the polynomial

coefficients of Eq. 63 w.r.t. the monomials y, 2z, and 1 as
3 4

st (), st (@), and 513 (x).

To obtain the second new equation, let us first derive
three equations that, after ‘hiding’ x in the coefficient field,
contain only monomials 22 2, y, and 1. Eq. 62 already has
this special form. The second equation that contains only
this set of monomials can be obtained by substituting Eq. 61
to Eq. 58 multiplied by pili’ (). This leads to the following
equation:

apy (x)*
1 /2
= p) (@) (2)y + 7' (0)z + 933 (2))  (64)

+ i (@)y + ol W @)y + P ()2 + P (2)).

The third equation containing monomials 22z, y, and
1 only can be obtained by expressing the polynomial
[]( )y?z in two different ways. First, let us multi-
ply Eq. 59 by pg[z]( )y and substitute the expressions for
[ ]( ) s y , and yz from Eqgs. 62, 58, and 59, respec-
tlvely

pas (@ )y z

—p32 (ac)(p21 (x)y +p22 (w )yz—i—p;[;](m)y)

x)p' () (Pn (x)y +p12 ( )z +p’1[§] (z) — azz)
+P/2[21](17)P32 (x )(p/z[ll]( )y+p2[21]( )z—|—p’[2]( ))
/[2
(ac) 32 ?/

]
= o @p @@ @)y +pla @)z + P @) 69
+apf (@) (p @) ) @)y + i @)z + ) (@)

+ 93 (0)2) + 3 (@)pisly

+ iy @0 (@) (o @)y + P @)z + @) -
The polynomial pé[zl] (x)y?z can also be expressed by mul-
tiplying Eq. 58 by p'3[21] (2)z and by substituting expressions
for p;)[;] (x)2? and yz from Egs. 62 and 59, respectively:

ps[z] ( )

Yy z
- ,,32 (@@ @z + 1) (@) + 3 (2)2 — az”)
= pit (@)p! (@) (o (@)y + P (@)= + P (@)
+ o3 @)~ @ Gl @)y + o) @)z + 9 (@)
— i @)2) + P @) ()2
+az () @) @)y + P @)z + b () + 9l (2)2)
= pit (@)p5 (@) (o1’ (@)y + P (@)= + Pl (@) (66)
+ o3 (@)~ @) Gl @)y + o) @)z + 9 (@)
i @)2) + o @)l (@) 2+

+ aply (@) (@) (v (2)y + v (2)2
/2] /(1], /(2] /(2] /1], /(1] 2
+ Pa3 () + apsy pa3’ (2)2 + (apss’ (z) + apsy pas (2))2”.
By combining right-hand sides of Eqgs.65 and 66 we obtain
the equation

(ap @) + aplfiph) @) 22 = fiy, 2. DB, 67)

where f1(y, z, 1)[334l= stands for a polynomial with mono-
mials y, z, and 1, with coefficients being polynomials of de-
gree 3, 3, and 4 in x. Analogously, we can denote Eq. 62

and 64 as
il (@)22 = faly, 2, 1)2230= (68)
api(2)22 = faly, z,1)>23e, (69)

Notice that the three polynomial Eqs. 67, 68, and 69 to-
gether with the initial Eq. 60 can be stacked into a matrix



form as
@) fi2(@) f3@) fl@)| |22 22
EOREAOREAOROI T IR E s
@) £ £3@) £ @] z

0 pyi(e) pha(e) pha(e)||1 1

where M'(z) is a 4 x 4 polynomial matrix which entries are
polynomials in . The solutions to the unknown « can be al-
ready obtained by finding the roots of the 8! degree single
variable polynomial det(M'(x)). However, since the com-
putation of the determinant of a 4 x4 polynomial matrix is
indeed more complicated than that of a 33 matrix, we will
continue to simplify the system by eliminating z2.

By a proper combination of the coefficients of the mono-
mial 22 in Eqgs. 68 and 69, i.e., polynomials pgg] () and
apg[f] (), we can eliminate x from these coefficients and
we can derive an equation of the form

v2% =y fa(y, 2, 1) 4y fa(y, 2,1)1228 (71)
— fuly, 1),

where 7v,71,72 € R are constants and f4(y, z,1)>23= is
a linear combination of polynomials f(y, z,1)[*%3l= and
f3(y, 2,1)[223l: Now we can rewrite the coefficient of 22
from Eq. 67 as a combination of coefficients of 22 in Egs. 68
and 71 as

(api(@) + apiy ) (@) = W (@)pih) () + By, (72)

where al!l(z) is a linear polynomial in z and 8 € R is a con-
stant. Now, we can eliminate the monomial z2 from Eq.67
by substituting a proper combination of Eqs. 68 and 71:

fiy, 2, )B4 = all(2) fo(y, 2, 1)225 - (73)
+ Bfaly, 2 1)B2%.

Eq. 73 is the third polynomial equation linear in y and
z, with polynomial coefficients s[ ]( ), 5[22}( ) and s[;g (x)
w.r.t. y, z, and 1.

Finally, Egs. 60, 63 and 73 can be stacked into a matrix
form

] ) p(@) | [y y

silz) @) sB@)||z] =Ma) |z| =0, (74)
]
1

s5l(x) sha(x) shi(x)

—_
—_

After finding the roots of the up to degree 8 polynomial
det(M(z)) from Eq. 74, we obtain the solutions to the un-
known z.

The particular solver for Case VI needs to perform 562
additions and 1156 multiplications.

A.1.7. Case VII

In the configuration of Case VII, the matrix A takes the form

1 0 «
A=10 1 8 (75)
0 0O
and Egs. 3 can be rewritten as
Pl @)y + Py ()2 +p3 (1) = +ayz, - (76)
Por (2)y + o @)z + 9y (1) = 2° 4 Byz, (1)
Pt @)y + 95 (@)= + pi3 () = 0, (78)
where p; it ]( )y ey p;[ ]( ) are linear combinations of poly-
nomials pi} (z), ... ,p%( ) and o, B8 € R are constant.

Analogous to Case VI, only Eq. 78 is linear in y and z,
i.e., we need to eliminate the degree 2 monomials 22 and
yz from Eqs. 76 and 77 and use them to construct two new
polynomial equations, both linear in y and z.

To obtain the first new equation, let us first multiply the
Eq. 78 by y and z, respectlvel]y to obtam expressions for
polynomials p3[1]( )y? andp

Pyl (a)y? = ’[”<x>yz—p;f§]<x>y, (79)
()22 = —pil @)yz — pll@)2. (80)

Now, let us multiply Eq. 76 and 77 by polynomials p;f} ] (x)
and p3[2}( ), respectively, and substitute the expressions for

p:,,[l]( )y? and p;,[gl] (x)2?% from Egs. 79 and 80 into the re-

sulting two equations:

— Py ()yz — pay (2)y + aphy (z)y=

)
= pi (@) @)y + P ()2 + pl5 (2),  (81)
—piy (2)yz — Py (= >z+/3p’[” ()yz
= piy (2) (31 (2)y + Py ()2 + Pz (). (82)

Further, let us multiply Eqgs. 81 and 82 by polynomials
(Bp;) — pii)(x)) and (p;(x) — apfly)), respectively, and
add the two resulting equations:
0 = (8P (x) — P4y () (83)

(P @@ @y + P8 @)z + 0 (@) + i @)y)

+ (P (z) — apyy) (x))
- (@ G @ + B @)z + 9 (@) + i @)2) -

Eq. 83 is the first new equation linear in y and z, with poly-
nomial coefficients 3[131] (z), 5[132]( ), and s[é] (z) wrt. y, 2
and 1.

To obtain the second new equation, let us first derive
three equations that, after ‘hiding’ x in the coefficient field,

contain only monomials yz, z, y, and 1; this approach is



analogous to Case VI. Egs. 81 and 82 already have this spe-
cial form and after rearranging of the terms can be rewritten
as

(apfy) (@) = p3) (2))yz = f1(9.2, 1), 84)
(8083 (@) = i @)z = oy, )2 85)

where f1(y,2,1)%%3= and fa(y, z,1)>23 stand for
polynomials with monomials ¥, z, and 1, with coefficients
being polynomials of degree 2, 2, and 3 in z. By a
(Y
proper combination of polynomials aps;’ — psy' (z) and
Bp] 32 pgl]( ) from Eqs. 84 and 85, we can eliminate the
variable x from the coefficient of the monomial yz and we
can derive the following equation:

vyz =1 iy, 2, DB s fo(y, 2, 1)223 - (86)
= fS(ya Z, 1)[272)3] )

where ,71,72 € R are constants and f3(y, z,1)>23= is
a linear combination of polynomials fi(y, z,1)[*%3l= and
f2(y, z,1)[223l= The third equation in monomials yz, z,
y, and 1 only can be obtained by expressing the polynomial
~vy? 2z in two different ways. First, let us multiply Eq. 86 by
y and substitute the expression for 32 from Eq. 76:

Tyzy
= yipfy (@) (P (@)y” + 213 (@)yz + E (2)y)
+ 711’33 (m)y
+ 70y (@) (1) @)y + o) @)z + v ()

+72P33 ( ) (87)

=v1@m(@mw(mn()y+pm(mﬁV@M@@V

1 2 1
+p31( )pl1[1]( )p/l[&}]( ) — p3[1](:v)p,1[1](m)ayz
1 2 2 1
+p31< s @)yz + o @)p @)y + pi (2)pl} @)y
2 2 2
+ p33 ( )p12 (z)z +p;[3](5”)p/1[3] —p;[g]ayz)

+ 92 (P @l @p 1 @)y + 2 @l (@)p (2)2

+ o (@)p (@)p) (2) — ol (2)pi (w)yz
+ p;[z](x)Pz[z]( )yz—f—pg[Ql]( )pzs (z )y+p[2]( )yz)
= f4(yz7 y? Z7 1)[2,373’4]T7
where f4(yz,v, z,1)334 is a polynomial in monomials
yz,Yy, 2, and 1, with coefficients being polynomials of de-
gree 2, 3, 3, and 4 in x. The polynomial yy?z can also be
expressed by multiplying Eq. 76 by ~yz:
2
Y =z
= W @yz + 99 (@)= + vp'l[i]( )z (88)
— (p31 @) (P @z + 2l (@)2" + 0 (2)2)
+ P4 (@)y2) — ava () (@) (W @)z + ) (2)2°

erz[s]( )% )+p33](x) )

Now, let us substitute the expression for z2 from Eq. 77 into
Eq. 88 to obtain an expression for yy2z that contains only
monomials yz, z,y, and 1, with polynomial coefficients in
x

v’z = fs(yz,y, z, 1)B334 (89)

where f5(yz,y,z,1)[2334= is a polynomial with mono-

mials yz, y, z, and 1, with coefficients being polynomials of
degree 2, 3, 3, and 4 in z.

By combining the right-hand sides of Eqgs. 87 and 89, we
obtain an equation

P (@)yz = foly, z,1)B34 (90)

where pl?l(x) is a second degree polynomial in z and
fo(y, z,1)334= is a polynomial with monomials y, z, and
1, with coefficients being polynomials of degree 3, 3, and
4 in x. Analogous to Case VI, the three polynomial
Egs. 84, 85, and 90 together with the initial Eq. 60 can be
stacked into a matrix form as

@) fi3@) 13 @) 1

) fis (x) z)| |yz Yz
[2] [3]
@) 5@ @ @)y || o, on
@) 8@ 8@ @ z
0 pii(x) pli(x) Pi(a)| |1 1

where M'(z) is a4 x 4 polynomial matrix which entries are
polynomials in z. The solutions to the unknown x can be
already obtained by finding the roots of the up to degree 8
univariate polynomial det(M'(x)). However, since the com-
putation of the determinant of a 4 x4 polynomial matrix is
indeed more complicated than that of a 33 matrix, we will
continue to simplify the system by eliminating yz.

Let us rewrite pl2l (x), the coefficient of the monomial
yz from Eq. 90, as a combination of coefficients of yz from
Eqgs. 84 and 86 as

pP(x) = all(@) (aplfl — @) + 87, ©2)

where al'l(z) is a linear polynomial in z and § € R is a
constant. Now, we can eliminate yz from 90 by substituting
a proper combination of Eqgs. 84 and 86 as

fo(y, 2, D)3 = ol (@) 1 (y, 2, 1)225(93)
+ Bf3(y, z,1)223e

Eq. 93 is the sought-for second new equation linear in y and
z, with polynomial coefficients s[ ]( ), 3[22]( ) and s[;ﬁ,j (2)
w.r.t. y, z, and 1.

Finally, Eqgs. 78, 83, and 93 can be stacked into a matrix
form

pil@) @) ph@) ||y y

By Bl sB@) || 2| =Ma)|z|=0, 99
3 3 4

shl(x) shi(x) sh(x) || 1 1



After finding the roots of the up to degree 8 polynomial
det(M(z)) from Eq. 94, we obtain the solutions to the un-
known z.

The particular solver for Case VII needs to perform 878
additions and 1807 multiplications.

A.1.8. Case VIII

For the sake of completeness, let us restate the general non-
generate case described in §3 of the main paper. This non-
degenerate case is recognized by the full rank of matrix A.
Because of this regularity of matrix A, we can multiply Eq. 3
by AL resulting in

y? pii(x) plalz) pis() Y
2| = Po1 () pho(x) P/23($) Z |, 95)
yz P () Pho(z) phs(z)] [1

where p/;(z),...,phs(x) are linear combinations of poly-
nomials 11 (z). ... pas(x). Again, pia(2), pha(), hs()
are quadratic polynomials in x and the remaining polyno-
mials in Eq. 95 are linear in x. The reason why we manipu-
lated Eqs. 2 into Eq. 95 is to express monomials 42, 22, and
yz as polynomial functions in y, z, and 1.

Now, let us introduce three trivial identities

y*z = yzy, (96)
yzz = 2%y, o7
yzyz = y°2°. (98)

After substituting the expressions for y2, 22, and yz from
Eq. 95 into Egs. 96-98, we obtain the following three equa-
tions:

(p11(2)y + Pho(x)z + pis(x))z =

(31 ()Y + Pho ()2 + pis(x))y, (99)
(p31(2)y + i)z + pPas(z))z =
(P21 (2)y + P ()2 + Py (x))y, (100)

(P51 (2)y + Paa ()2 + Phs(a))-
(P51 (2)y + Paa()z + pPis(2)) =
(p11(2)y + Pha(2)2 + pis())-
(P91 ()Y + Pho ()2 + poz (). (101)

Since Egs. 99, 100, and 101 again contain monomials 32, 2>
and yz, we substitute expressions for y2, 2% and yz from
Eq. 95 into Egs. 99-101 once more. This double substitu-
tion transforms the identities from Eqgs. 96-98 into the fol-
lowing matrix equation

sil(x) shx) @) | |y y

sy (@) sB@)| |2| =M@) 2| =0, (102)
3 3 4

sil(x) sh(x) sia(a)]| 1 1

where the upper index [-] denotes the maximum possible
degree of the respective polynomial s;; ().

As we know from elementary linear algebra, matrix
Eq. 102 has a non-trivial solution if and only if the deter-
minant of its matrix M(x) is zero. It can be easily inferred
from the degrees of s;;(«) that the determinant of the 3x3
polynomial matrix M(z) is an up to degree 8 polynomial in
x.

The solutions to the unknown x from the original Eq. 2
can now be obtained by finding the roots of the up to de-
gree 8 polynomial det(M(z)). For example, these can be
computed as the eigenvalues of its companion matrix [2],
or more efficiently, using Sturm sequences [7] in some fea-
sible interval. Solutions to the unknowns y and z can be ob-
tained from M(z) after substituting the particular solutions
for x into this matrix and solving the resulting system of
two linear equations.

A.2. Symmetry and multiplicity of solutions

Besides degenerate configurations, the E3Q3 solver can
handle configurations with symmetric solutions as well as
solutions with multiplicity. After identifying the appropri-
ate solver among the eight possible particular solvers of
§A.1, we can proceed right to the final polynomial in one
variable. This is because none of the steps of the particular
solvers up to the derivation of the single variable polyno-
mial det(M(z)) = 0 of degree at most 8 are influenced by
the symmetry or multiplicity of the solutions. The only step
that may be influenced by these configurations is the step
of finding the roots this single variable polynomial. This
step may be simplified for symmetric solutions or—on the
other hand—it may lead to some numerical issues for so-
lutions with multiplicity. However, it is worth noting that
numerical issues that may appear in the connection with so-
lutions with multiplicity are an inherent problem of numer-
ical methods for finding roots of a single variable polyno-
mials and as such is not limited to the solvers presented in
this paper. This issue had to be addressed also by the pre-
viously published methods for solving the 3Q3 problem or
its variants which are based on deriving a single variable
polynomial, e.g., by Nistér [4].

To show how to deal with symmetric solutions and with
solutions with multiplicity in the E3Q3 solver, we will con-
sider an important computer vision problem: the perspec-
tive three point absolute pose problem.

A.2.1. Perspective three point pose problem

The goal of the perspective three point pose (P3P) prob-
lem is to estimate the absolute pose of a perspective camera
w.r.t. the known 3D points from three 2D-to-3D correspon-
dences.

The P3P problem can be formulated as a 3Q3 system by
considering a tetrahedron with vertices at the three known



3D points and the unknown camera center. For a calibrated
camera, we can use the image points corresponding to the
known 3D points to compute the angle between any pair of
these points, with the camera center being the angle vertex.
Such angles are sometimes called dihedral angles. In this
formulation, to solve the P3P problem is to determine the
lengths of the three line segments joining the camera center
and the known 3D points (three legs) of the tetrahedron,
given three sides of the tetrahedron base and the dihedral
angles.

The solution to this formulation of the P3P problem can
be found by solving 3Q3 system derived from the law of
cosines

RZ, =2 + ¢y — 2y cos(Ogy), (103)
R%2 =22 4 2% — 202c08(0,.), (104)
R2, =y + 2> — 2yzcos(O,.), (105)

where R.,, R;., R,. are the known lengths of the three
sides of the base of the tetrahedron, Oy, O, O, are the
corresponding dihedral angles, and x, y, z are the unknown
sides of the tetrahedron. This formulation of the P3P prob-
lem was presented in [1] and solved herein. The quadratic
equations derived from the law of cosines have a specific
structure as each equation contains only monomials of de-
gree 2 in two variables. The final system has four pairs of
symmetric solutions. The specific solver [1] was intended
for this special form of 3Q3 equations only and it is based
on the problem-specific polynomial manipulations and sub-
stitutions.

In the next, we show how to solve this problem using the
proposed E3Q3 solver.

A.2.1.1 Symmetric solutions

Le us start by reshaping the system of Eqs. 103105 into
the matrix equation from Eq. 3, where the matrix A takes a
special form

10
A=1]0 1 0 . (106)
11

This form ensures that the matrix A is regular for
cos(0O,,) # 0 and thus we can use the general E3Q3 solver
from §A.1.8 to solve the P3P problem.

Because of the peculiar form of the matrix A, the E3Q3
solver will arrive to an univariate polynomial in z that will
take the following form:

agz® + agx® + agxt + aqx® + ag, (107)

i.e., the odd order terms of the octic polynomial will van-
ish. This polynomial has four pairs of symmetric solutions.
Note that the univariate polynomial resulting from the P3P

problem will always have the form of Eq. 107, independent
of the concrete values of, or any possible noise in, the input
coefficients.

As we can see, in the case of the P3P problem, it is trivial
to detect this special form of the final univariate polynomial.
Here, we can use the substitution w = x2 and by consider-
ing the octic polynomial to be a quartic in w, the roots can
be found in a closed form. However, the E3Q3 solver can
compute the roots of Eq. 107 using the Sturm sequences
and recover the symmetric solutions without any problems
even if the special form of the polynomial is quite ignored,
possibly performing a few more operations than necessary.

A.2.1.2 Solutions with multiplicity

However, numerical issues may arise for problems with
solutions with multiplicity. For example, let us consider
an instance of the P3P problem where the base of the
tetrahedron is an equilateral triangle with sides R., =
R.. = Ry, = 2+/3 and the dihedral angles are equal to
c08(Oygy) = c08(0y.) = cos(Oy.) = 23. For the variable
x, this problem has one pair of symmetric solutions (4, —4)
with multiplicity three and one pair of symmetric solutions
(1, —1) of multiplicity one.

Here, instead of one solution 4 with multiplicity three,
the standard numerical methods, such as the Sturm se-
quences or the method based on the eigenvalues of the com-
panion matrix, will find three different solutions x; = 4+¢;
for some small €;. This numerical error may further accu-
mulate and it may lead to larger errors in y and z. Unfor-
tunately, barring the use of some ad hoc numerical limits
imposed on the size of ¢;, such a situation is hard to detect.

In certain situations, it may be even impossible to com-
pute the remaining variables y and z at all. This second
problem appears when, after the substitution of the variable
z from a solution with multiplicity into Eq. 6, the matrix
M(z) vanishes or has rank 1. Again, this situation is hard
to detect, since for solutions corrupted by some numerical
error €;, the matrix M(«) does not vanish entirely, but only
up to some error that depends on ;.

Even though the numerical issues of solutions with mul-
tiplicity are hard to detect, at least there are several ways to
mitigate the problem of vanishing M(x). First of all, one can
avoid the problem altogether by running the E3Q3 solver
three times, each time "hiding’ a different variable in Eq. 3,
thus avoiding the need for extracting y and z as linear so-
lutions to Eq. 6. This effectively translates into running the
original E3Q3 solver for three different permutations of the
input coefficient vectors c;, see Eq. 2. The main drawback
of this approach, besides the increased computational bur-
den, is the fact that since the variables z, y, and z are com-
puted separately, the orders of the particular solutions for
these variables do not necessarily correspond. To obtain the



solutions to the original problem, one needs to test all the
permutations of the particular solutions just to keep those
satisfying the original problem in Eq. 2.

A better approach is to avoid the solutions with multi-
plicity altogether. This can be done by transforming the
original problem, e.g., by taking a random linear combina-
tion of the original variables z, y, and z and by substituting
them by new variables z’,y" and z’. After this transforma-
tion, we will once again obtain a 3Q3 system, however, the
probability that such a system will have solutions with mul-
tiplicity is very low.

To present an example of this approach, let us once again
consider the P3P problem instance from the beginning of
this section, where all individual variables z, y, and 2z have
one pair of symmetric solutions (4, —4) with multiplicity
three and one pair of symmetric solutions (1, —1) of multi-
plicity one,

{[4,4,4], [-4, -4, —4], [4,4,1],[-4, —4, —1],
[4,1,4],[-4, —1,-4],[1,4,4],[-1,—4,—4]}. (108)

Further, for solutions *+ = 4 and + = —4 the matrix
M(z) vanishes. Thus, solving the univariate polynomial in
Eq. 107 using standard methods may cause numerical prob-
lems, resulting in three different solutions x; = 4 + ¢; with
€; ~ 1072, To avoid this problem, let us consider the fol-
lowing very simple linear combination of the original vari-
ables x, y, and z and substitute them for three new variables
',y and 2’:

¥ =x+2y+ 3z, (109)
v =3z 4y +z, (110)
2 =x 42y + 22 (111)

The original variables can be express using Eqs 109-111 as

2, 1,

T = gy'—gz, (112)
1 8

y:_x’_qu_ng, (113)

z=a — 2. (114)

After substituting Egs. 112-114 into Eqgs. 103-105, we ob-
tain a 3Q3 system that has four pairs of symmetric solu-
tions:

{]24,20,20], [—24, —20, —20],
[21,11,17],[-21, —11, —17],
[18,17,14],[—18,—17, —14],
[15,17,14],[—15,—17, —14]}. (115)

After this simple linear transformation, we obtained a 3Q3
system that has four distinct pairs of symmetric solutions for

a’ and, as we can easily test, the matrix M(z’) doesn’t van-
ishes for these solutions. Thus, this simple substitution was
sufficient to run the E3Q3 solver and solve this P3P instance
without any numerical problems up to the numerical accu-
racy set in the Sturm sequences implementation. The solu-
tions to the original variables can be now easily obtained by
substituting solutions for z’, 7’ and 2’ into Eqs. 112-114.

A.3. Hand-eye calibration problem

The third problem for which we propose a 3Q3 formulation
is the problem of hand-eye calibration (HEC) with known
translation. The HEC problem [5, 6] appeared for the first
time in the connection with cameras mounted on robotic
systems. Since then, it arose in many other fields ranging
from medical applications to automotive industry. The HEC
task is to find a rigid transformation X from the coordinate
system connected with the robot’s gripper to the coordinate
system of a rigidly attached camera.

In this section, we will consider a variation of the HEC
problem where the rotation of the gripper w.r.t. the robot
global coordinate system is not known, however its trans-
lation can be measured. This variation was recently solved
using the Grobner basis method by Kukelova et al. [3], who
formulated the problem using quaternions as a system of
seven equations in seven unknowns with 16 solutions. The
final Grobner basis solver needs to perform G-J elimina-
tion of a 187x203 matrix and to compute eigenvalues for
a 16x 16 matrix. Here, we will show that this variation of
the HEC problem can be formulated as a much simpler 3Q3
system, again using Cayley’s parametrization of rotations.

First, let us define the set of rigid transformations
SE(3) = {T ‘T = <RT tT) Rr€SO(3), tr € RS} (116)

- - OT 1 s VT y UT .
Further, let us suppose that transformations A,B € SFE(3)
capture the motions, i.e., the change of coordinate frames
between two poses, of camera and robot, respectively, and
that these transformations are known. Algebraically, the
HEC problem can be formulated as a matrix equation

AX = XB, (117)

where X € SE(3) is the unknown hand-eye transformation.
Eq. 117 can be decomposed to a matrix and a vector equa-
tion

R.AR.X = RxR.B, (1 18)
RAtx + tA = RXtB + tx. (119)

It was shown in [5] that single Eq. 117 is not enough to solve
for X. At least two Eqs. 117 for two motions with different
rotation axes are required. In the next, we will assume that
we have performed two such camera and gripper motions
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Figure 1: HEC problem, numerical stability: Log,, of (a)
the relative translation and (b) rotation errors on the noise-
free data for E3Q3-HEC (blue) and Kukeloval?2 (red).

A',A? and B',B?, respectively, however, for various techni-
cal reasons, were unable to measure the gripper rotations R}
and RZ.

As noted in [3], the vector part of Eq. 117 does not de-
pend on the unknown gripper rotations R and R2 while con-
taining all the problem’s unknowns, Rx and ty, at the same
time. In [3], the problem was solved as a system of two
Egs. 117 in seven unknowns resulting from the two motions
A%, BY, i = 1,2, using quaternions to represent the unknown
rotation Rx. Here, we suggest to use the Cayley parametriza-
tion to obtain an even simpler 3Q3 system.

Let us parametrize the unknown rotation Ry using three
new variables x = [z,y, z]T as Rx(x) = £R§(x). Using
this parametrization, the two Eqgs. 119 can be rewritten as

Rjtx +th = $tRE(X)th +ty, i=1,2. (120)
To transform these equations into polynomials, we need to
multiply them by the denominator k. Next, we substitute
vector kty with a vector of three new unknowns fx. Now,
we have six polynomial equations, three for every Eq. 119,
in six unknowns z, y, z, and ty:

Ritx+(1+a+y¥ 420t = Ry (x)th+tx, i = 1,2. (121)

Since the system of Eqs. 121 depends on tx linearly, three
of these equations can be used to eliminate ty from the re-
maining three equations, e.g., using G-J elimination. After
the elimination, we end up with a 3Q3 system in the un-
knowns z, y, and z. Once the 3Q3 problem is solved by
E3Q3, we can resubstitute kty back to Eqs. 120 and com-
pute tx by solving this system of, now linear, equations.

Experiments. In order to gauge the numerical stabil-
ity and noise sensitivity of the proposed algorithm E3Q3-
HEC, we performed several experiments on synthetic data
and compared the results with the state-of-the-art method
Kukeloval2 [3].

In the synthetic scenes used in both experiments, the
camera observed a 16x16 planar calibration grid placed
into the working space of a simulated robotic arm. For each
scene, a random yet feasible transformation X was gener-
ated and the robot was instructed to perform two random
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Figure 2: HEC problem, noise experiment: (a) Relative
translation and (b) rotation errors in the presence of image

noise for E3Q3-HEC (blue) and Kukeloval?2 (red).

motions Ry and R such that the camera rigidly connected
with its gripper was still able to observe the calibration grid.
Finally, we recovered the camera poses using [8] and com-
puted the corresponding camera motions A' and A2.

Figures 1(a—b) show the results of the numerical stability
experiment on a dataset of 10K synthetic scenes with noise-
free image correspondences. The relative translation error
was measured as ||tx — ty,, H / ||txgt || and rotation error as
the rotation angle in the angle-axis representation of the rel-
ative rotation RxRy_ tl Both E3Q3-HEC and Kukeloval?2 per-
formed comparably well, however, Kukeloval2 failed on
2% of the scenes.

In the image noise experiment, we corrupted the im-
age correspondences with varying amount of noise prior
to the camera pose recovery. The results are plotted using
boxplot function in Figures 2(a-b). Again, Kukeloval2
sometimes fails even on noise-free data. On average, E3Q3-
HEC slightly outperforms Kukeloval2 for all noise levels.

A.4. P4Pf—parametrization of P

Let us recall the PAPf problem stated in the main paper,

85.1: given four 3D scene points X; = [xi,yi,z,»,l]T,
i = 1,...,4, and four corresponding image points u; =
[wi, vy, 1}T, 1=1,...,4, the task is to recover the unknown

rotation R, translation t, and focal length f = i
Each of the 2D to 3D point correspondences results in a
matrix equation:

0 -1 v i Tiz Tz t i
1 0 —U; T21 T2 T923 t2 Yi =0.
Vi Ug 0 wr31 Wrsz wWrss ’U.)tg iz
(122)
In the main paper, §5.1, we have shown how the third
rows of matrix Eq. 122 for + = 1,...,4 can be used to

parametrize the first two rows of the projection matrix P
with the new unknowns 71, 72, and ~3.

Here, we will use the remaining two equations from
Eq. 122 to parametrize the third row of P. For this, we have
to distinguish the following two cases: if |u;| < €, for some



small predetermined threshold e, we will use the equation
corresponding to the first row of Eq. 122; if |v;| < e, we
will use the equation corresponding to the second row. In
all other cases—and these are by far the most common
we can pick one of the two equations arbitrarily, e.g., let’s
choose the equation corresponding to the second row:

(P11 @i + p12Yi + P13 2 + P1a)
— u; (P31 %5 + P32 Yi + P33 zi +pag) = 0. (123)

Eq. 123 contains unknowns psi, ps2, p3s, and psy from
the third row of P and unknowns p11, pi12, P13, and pig
from the first row of P, which we already parametrized
by 71, 72, and ~s3. Again, the four 2D-3D corre-
spondences give us four specific linear equations in the
form of Eq. 123. Using the parametrization of v =

T
[pn,plg,p13,p14,p21,p22,p23,p24] as
V =101 + Y2 N3 + y3N3 + Ny, (124)

derived in the main paper, we can stack the four Eqs. 123
and reshape them into one matrix equation

B [ps1, ps2, P33, p3a) | = C[y1,72,78, 1], (125)

with two coefficient matrices B,C € R**4, If the points
X1, X9,X3 and X, are non-planar, the matrix B has full
rank and we can rewrite Eq. 125 as

T
]

(P31, P32, P33, P34 =B_1C[71,727’Y3,1]T~ (126)

Eqgs. 126 gives us a parametrization of the third row of P
in the three unknowns 71, 72, 73, and a coefficient matrix
D=B"'C,De R,
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