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1. Overview
In this supplementary document, we present three main additional results to complement the paper. First, we present test

images in our real and synthetic datasets, and screenshots of the user study survey webpage. Second, we show complete
results of the user study analysis, which include the B-T scores, grouping of algorithms, the percentage of obtained votes and
the rationale analysis. Finally, we present qualitative comparisons of state-of-the-art deblurring algorithms on 10 selected
blurred images from our real dataset.

2. Datasets
Real Dataset. We show the 100 blurred images of our real dataset in Figure 1. These images cover a wide variety of scenes
and challenges for deblurring, allowing us to evaluate the deblurring algorithms in the wild.

Figure 1: All blurred images in our real dataset.
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Synthetic Dataset. Our synthetic dataset consists of 25 latent images (Figure 2), 4 uniform blur kernels (Figure 3), and 4
camera trajectories, i.e., non-uniform blur kernels (Figure 4).

Figure 2: All latent images in our synthetic dataset.

(a) 51×51 (b) 75×75 (c) 75×75 (d) 101×101

Figure 3: Uniform blur kernels generated from [9]. The captions indicate the corresponding support size of the blur kernels.

Figure 4: Visualization of the local blur kernels generated from our recorded camera trajectories. The support size of the blur
kernel is 25×25.



3. Evaluated Algorithms
In Table 1, we list the details of the evaluated algorithms, including the blur model assumptions, image priors, blur kernel

priors, and the execution time under different blur kernel sizes. The execution time is measured with an image of size
800×600 on a machine with 3.6 GHz CPU and 16G RAM.

Table 1: List of the evaluated algorithms. For the blur model column, U: uniform deblurring, NU: non-uniform deblurring.
For the code column, E: executable binary code, M: MATLAB M code, P: MATLAB P code.

Method
Blur

Image Priors Blur Kernel Priors Code
Execution time (sec.) and kernel width

Model 25 51 75 101

Fergus-06 [3] U mixture-of-Gaussian mixture-of-exponential M 218.4 173.5 163.7 146.9
Cho-09 [2] U edge selection + L2 gradient L2 E 5.0 7.4 11.3 7.4
Xu-10 [12] U edge selection + L2 gradient L2 + L1 E 18.2 22.8 26.4 38.2
Krishnan-11 [4] U normalized sparsity L1 M 145.2 214.2 312.4 466.1
Levin-11 [5] U sparse mixture-of-Gaussian none M 385.8 1490.7 9738.0 34014
Whyte-12 [11] NU mixture-of-Gaussian mixture-of-exponential M 516.2 306.0 445.3 487.0
Sun-13 [10] U external patch L2 M 1317.1 1335.3 1635.7 1572.1
Xu-13 [13] U L0 gradient L2 P 3.3 3.5 4.4 3.6
Zhang-13 [14] U weighted L2 gradient weighted L2 P 631.2 2215.7 15258 47053
Zhong-13 [15] U non-local mean filter L2 P 18.2 20.1 20.4 22.3
Michaeli-14 [6] U internal patch L2 P 12.9 130.9 2115.9 14045
Pan-14 [7] U L0 intensity + L0 gradient L2 M 170.3 216.0 384.0 319.8
Perrone-14 [8] U L2 gradient none M 5745.1 8058.8 10177 10693



4. Human Subject Study
We show screenshots of our user study website in Figure 5 and 6. We first give a brief introduction to the image deblurring

task and list two common artifacts (e.g. ringing artifacts, noisy images) before subjects start the survey. In our main survey
page, we ask subjects to choose a preferred image from a pair of deblurred results on the screen. Our webpage allows subjects
to easily flip between two images by hovering the mouse over the two thumbnails on the top, and show the magnified images
in the middle of the page (see Figure 6).

Figure 5: A screenshot of the introduction page in our user study website.



Figure 6: A screenshot of the survey page in our user study website.



5. Ranking
5.1. Ranking from the B-T Scores

Figure 7, 8, and 9 illustrate the complete rankings from the B-T scores [1] on our real, synthetic uniform and synthetic
non-uniform datasets, respectively.
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Figure 7: Cumulative frequency and ranking of the B-T scores on our real dataset.
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Figure 8: Cumulative frequency and ranking of the B-T scores on our synthetic uniform dataset.
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Figure 9: Cumulative frequency and ranking of the B-T scores on our synthetic non-uniform dataset.



5.2. Ranking from Obtained Votes and Method Grouping

Figure 10, 11, and 12 show the complete rankings from the obtained votes and method grouping from the significance test
on our real, synthetic uniform, and synthetic non-uniform datasets, respectively.
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Figure 10: Grouping of algorithms by significance test on our real dataset.
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Figure 11: Grouping of algorithms by significance test on our synthetic uniform dataset.
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Figure 12: Grouping of algorithms by significance test on our synthetic non-uniform dataset.



Figure 13, 14, and 15 show the percentage of the obtained votes for each evaluated method. Each column represents the
performance of evaluated methods under a specific attribute. Each row represents the performance of a specific method under
different attributes.
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Figure 13: Percentage of the obtained votes with different attributes on our real dataset.
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Figure 14: Percentage of the obtained votes with different attributes on our synthetic uniform dataset.
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Figure 15: Percentage of the obtained votes with different attributes on our synthetic non-uniform dataset.



6. Rationale Analysis
For each image pair, we ask subjects to choose reason(s) why they prefer the selected image. Table 2 lists the reasons

available to select when comparing a pair of images. We present the percentage of chosen reasons for all the datasets in
Figure 16, 17, and 18.

ID Reason
1 This image is sharper/clearer.
2 This image has less ringings.
3 This image has less noise.
4 This image has less saturated regions.
5 This image is NOT over-sharpen.
6 No specific reason. This image is simply more appealing.
7 I can’t tell the difference. / I don’t know which one is better.

Table 2: Reasons for choosing a result.
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Figure 16: Percentage of chosen reasons for each method on our real dataset.
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Figure 17: Percentage of chosen reasons for each method on our synthetic uniform dataset.

13.7%

30.4%

27.5%

36.6%

33.5%

34.7%

30.1%

32.9%

35.4%

31.0%

33.4%

27.9%

44.0%

37.9%

27.9%

18.9%

19.4%

18.7%

19.7%

17.7%

19.9%

19.6%

20.2%

19.0%

19.0%

20.7%

18.5%

20.6%

17.1%

14.4%

14.3%

15.5%

16.0%

15.7%

16.0%

14.2%

14.5%

14.8%

14.5%

14.6%

15.5%

14.3%

8.3%

7.8%

7.0%

6.1%

6.9%

6.2%

7.6%

6.4%

6.1%

7.6%

6.7%

6.4%

6.3%

6.3%

13.5%

7.3%

7.3%

5.6%

5.2%

4.6%

7.4%

5.7%

5.8%

6.6%

5.4%

8.1%

4.3%

5.3%

9.4%

9.5%

9.9%

7.8%

8.0%

8.4%

9.4%

8.8%

7.6%

9.4%

8.4%

8.0%

6.6%

7.9%

10.0%

11.8%

14.7%

9.8%

10.8%

12.7%

9.5%

12.4%

10.3%

11.6%

12.5%

14.3%

4.9%

7.7%

1 2 3 4 5 6 7
Reason ID

Blur

Fergus-06

Cho-09

Xu-10

Krishnan-11

Levin-11

Whyte-12

Sun-13

Xu-13

Zhang-13

Zhong-13

Michaeli-14

Pan-14

Perrone-14 5

10

15

20

25

30

35

40

Figure 18: Percentage of chosen reasons for each method on our synthetic non-uniform dataset.



7. Deblurred Results
From Figure 19 to 28, we show 10 images from our real dataset to demonstrate the qualitative comparisons of the state-

of-the-art deblurring algorithms.

(a) Blur, −0.8301 (b) Fergus-06 [3], −1.3698 (c) Cho-09 [2], 0.3213 (d) Xu-10 [12], 0.4522

(e) Krishnan-11 [4], 0.6420 (f) Levin-11 [5], −0.4208 (g) Whyte-12 [11], −0.0771 (h) Sun-13 [10], 0.1653

(i) Xu-13 [13], NaN 1 (j) Zhang-13 [14], −0.0670 (k) Zhong-13 [15], −0.1584 (l) Michaeli-14 [6], 0.6087

(m) Pan-14 [7], 0.6790 (n) Perrone-14 [8], 0.0546

Figure 19: Deblurred results from our real dataset and the corresponding B-T scores. Note that results with serious ringing
artifacts are not favored by subjects.

1A method with NaN B-T score means that there is no subject prefers this method during the user study.



(a) Blur, −2.7480 (b) Fergus-06 [3], −1.0439 (c) Cho-09 [2], 0.3110 (d) Xu-10 [12], 3.3246

(e) Krishnan-11 [4], 1.4639 (f) Levin-11 [5], −1.7301 (g) Whyte-12 [11], 1.7181 (h) Sun-13 [10], 2.1856

(i) Xu-13 [13], 2.2323 (j) Zhang-13 [14], −4.8348 (k) Zhong-13 [15], −0.6232 (l) Michaeli-14 [6], −0.6019

(m) Pan-14 [7], 1.8060 (n) Perrone-14 [8], −1.4596

Figure 20: An commonly used example in previous work with repeated structure, texts and saturated regions.



(a) Blur, −1.0501 (b) Fergus-06 [3], NaN (c) Cho-09 [2], 0.4211 (d) Xu-10 [12], 0.5418

(e) Krishnan-11 [4], 0.5656 (f) Levin-11 [5], −0.1513 (g) Whyte-12 [11], 1.1109 (h) Sun-13 [10], 0.6175

(i) Xu-13 [13], −0.5069 (j) Zhang-13 [14], −0.3559 (k) Zhong-13 [15], 0.1783 (l) Michaeli-14 [6], 0.3395

(m) Pan-14 [7], −1.5549 (n) Perrone-14 [8], −0.1556

Figure 21: A challenging example. We note that most algorithms cannot recover the eyeball region well.



(a) Blur, −2.7592 (b) Fergus-06 [3], −2.7250 (c) Cho-09 [2], −0.7706 (d) Xu-10 [12], 2.4300 (e) Krishnan-11 [4], −0.778

(f) Levin-11 [5], −3.0374 (g) Whyte-12 [11], −1.498 (h) Sun-13 [10], 2.7066 (i) Xu-13 [13], 2.1748 (j) Zhang-13 [14], −1.1505

(k) Zhong-13 [15], 1.4209 (l) Michaeli-14 [6], 0.1446 (m) Pan-14 [7], 3.4517 (n) Perrone-14 [8], 0.3912

Figure 22: A commonly used example in previous.



(a) Blur, −1.4936 (b) Fergus-06 [3], NaN (c) Cho-09 [2], −0.2489 (d) Xu-10 [12], 0.8699 (e) Krishnan-11 [4], −0.272

(f) Levin-11 [5], 0.2786 (g) Whyte-12 [11], −0.3159 (h) Sun-13 [10], 0.8026 (i) Xu-13 [13], 0.8303 (j) Zhang-13 [14], 0.1168

(k) Zhong-13 [15], −0.9789 (l) Michaeli-14 [6], 0.5529 (m) Pan-14 [7], 0.8574 (n) Perrone-14 [8], −0.9992

Figure 23: There is no clear winner in this example as the B-T scores of [7, 12, 13] are very close. Over-sharpened result [8]
or the result with obvious ringing [3] are not favored by users.



(a) Blur, NaN (b) Fergus-06 [3], −0.5460 (c) Cho-09 [2], 0.6977 (d) Xu-10 [12], 0.3638

(e) Krishnan-11 [4], 0.6846 (f) Levin-11 [5], −0.1911 (g) Whyte-12 [11], 0.5656 (h) Sun-13 [10], 0.0381

(i) Xu-13 [13], 0.3581 (j) Zhang-13 [14], −0.9539 (k) Zhong-13 [15], −0.2357 (l) Michaeli-14 [6], 0.6029

(m) Pan-14 [7], 0.0458 (n) Perrone-14 [8], −1.4299

Figure 24: An example with large scene depth variations. Most algorithms produce visiable ringing artifacts around the lamp
post.



(a) Blur, −4.2615 (b) Fergus-06 [3], −1.9513 (c) Cho-09 [2], 2.2656 (d) Xu-10 [12], 1.5771

(e) Krishnan-11 [4], −1.0608 (f) Levin-11 [5], −0.9856 (g) Whyte-12 [11], −2.4611 (h) Sun-13 [10], 2.0881

(i) Xu-13 [13], 2.0890 (j) Zhang-13 [14], −2.1276 (k) Zhong-13 [15], −0.3213 (l) Michaeli-14 [6], 1.9761

(m) Pan-14 [7], 2.0887 (n) Perrone-14 [8], 1.0846

Figure 25: A commonly used example. It is challenging to accurately estimate the blur kernel with a spiral shape.



(a) Blur, −2.6297 (b) Fergus-06 [3], −1.0441 (c) Cho-09 [2], 1.5778 (d) Xu-10 [12], 1.2228

(e) Krishnan-11 [4], −0.0042 (f) Levin-11 [5], −2.0103 (g) Whyte-12 [11], 1.6796 (h) Sun-13 [10], 1.4839

(i) Xu-13 [13], 1.3183 (j) Zhang-13 [14], −0.9308 (k) Zhong-13 [15], 0.7685 (l) Michaeli-14 [6], −1.7326

(m) Pan-14 [7], −0.1561 (n) Perrone-14 [8], 0.4569

Figure 26: A commonly used example. Note that the green bounding box in (a) reveals the shape of the blur kernel.



(a) Blur, −2.8083 (b) Fergus-06 [3], −1.0591 (c) Cho-09 [2], 1.1516 (d) Xu-10 [12], 2.2550

(e) Krishnan-11 [4], 0.1839 (f) Levin-11 [5], −2.4538 (g) Whyte-12 [11], −2.3836 (h) Sun-13 [10], 2.7478

(i) Xu-13 [13], 2.0553 (j) Zhang-13 [14], −1.5643 (k) Zhong-13 [15], 1.1471 (l) Michaeli-14 [6], −0.9064

(m) Pan-14 [7], 0.3125 (n) Perrone-14 [8], 1.3222

Figure 27: A commonly used example. Edge-based algorithms [10, 12] perform well in this example.



(a) Blur, −0.4624 (b) Fergus-06 [3], NaN (c) Cho-09 [2], −1.3122 (d) Xu-10 [12], 0.9279

(e) Krishnan-11 [4], −0.3828 (f) Levin-11 [5], −1.2821 (g) Whyte-12 [11], 0.3157 (h) Sun-13 [10], 0.7890

(i) Xu-13 [13], 0.2354 (j) Zhang-13 [14], −0.3735 (k) Zhong-13 [15], 0.1483 (l) Michaeli-14 [6], 0.6089

(m) Pan-14 [7], 1.0524 (n) Perrone-14 [8], −0.2646

Figure 28: An example with rich texts. Most algorithms produce noticeable ringing artifacts.
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