Supplementary material for paper 1131: Conformal Surface alignment with Optimal Möbius Search

A Experiment Results

In Sec. A.1 and A.2, we provide more results on real data obtained by Möbius Search(MS) and the competitors: Möbius voting (MS), brute force (BF), graph matching (GM) and ICP. In Sec. A.3, we display the numerical values used to plot the bar charts in Fig. 4 (synthetic data results) of the main paper.

A.1 Conformal Teeth Alignment

We chose 5 pairs of teeth and repeat the experiments described in Sec. 5.3 in the main paper. For each pair, we show the qualitative results followed by a table displaying the quantitative results.

A.1.1 Human09 - Human11

Figure 1: Correspondences found by MS for Human09 - Human11

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
			MS	40	81	13	38.87866
		100	BF	32	81	6	10569.651
		100	MV	24	60	3	11.18483
			ICP	19	73	7	0.01788
		50	MS	25	43	13	3.16331
			BF	22	45	13	647.391
Human09	Human11		MV	19	30	2	2.17476
			ICP	16	42	12	0.00811
			MS	9	16	13	0.36952
			BF	1	17	8	17.19584
		20	MV	3	12	3	0.40676
			GM	2	12	1	39.456
			ICP	1	16	10	0.00191

Table 1: Results for conformal alignment of Human09 and Human11

Figure 2: Correspondences found by MS for Orangutan 505958 - Orangutan 50960

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
	Orangutan50960	100	MS	40	76	7	35.966
			BF	29	78	12	10049.000
			MV	26	61	2	11.283
			ICP	18	46	1	0.022
		50	MS	20	34	3	2.808
			BF	15	37	12	649.365
Orangutan50958			MV	11	32	1	2.925
			ICP	8	32	1	0.008
			MS	9	12	2	0.297
			BF	2	17	4	16.886
		20	MV	3	11	1	0.541
			GM	2	16	7	52.207
			ICP	3	10	2	0.002

Table 2: Results for conformal alignment of Orangutan 505958 and Orangutan 50960

A.1.3 V01 - V02

Figure 3: Correspondences found by MS for V01 - V02

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
			MS	34	81	15	14.691
		100	BF	25	78	12	10011.000
	100	MV	14	51	3	2.818	
			ICP	21	67	0	0.023
		MS	16	44	13	2.816	
		50	BF	7	44	12	639.578
V01	V02		MV	5	32	6	3.639
			ICP	8	38	0	0.006
			MS	8	19	15	0.524
			BF	4	19	14	17.039
		20	MV	0	14	5	1.211
			GM	3	7	1	59.338
			ICP	6	15	1	0.002

Table 3: Results for conformal alignment of V01 and V02

A.1.4 Bonobo 38018 - Bonobo 38019

Figure 4: Correspondences found by MS for Bonobo 38018 - Bonobo 38019

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
	Bonobo38019		MS	70	62	10	10.971
		100	BF	45	68	0	10025.551
			MV	60	58	6	11.342
			ICP	28	27	1	0.020
		50	MS	17	33	5	6.509
			BF	7	34	5	633.254
Bonobo 38018			MV	1	29	2	6.602
			ICP	2	28	2	0.028
			MS	5	13	2	0.624
			BF	0	15	6	17.550
		20	MV	2	8	0	0.993
			GM	5	7	2	0.001
			ICP	3	10	2	0.002

Table 4: Results for conformal alignment of Bonobo38018 and Bonobo38019

Figure 5: Correspondences found by MS for x03-x04

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
			MS	16	78	14	30.074
		100	BF	3	78	14	10903.700
			MV	7	66	0	42.472
		ICP	5	73	2	0.021	
		MS	21	43	16	4.207	
		50	BF	16	43	15	621.235
x03	x04		MV	12	27	2	2.181
			ICP	9	34	2	0.005
			MS	8	15	13	0.638
		BF	3	16	0	18.320	
	20	MV	2	13	1	0.336	
			GM	0	14	0	52.530
		ICP	3	17	4	0.002	

Table 5: Results for conformal alignment of x03 and x04

A.2 Conformal Face Alignment

Similar to A.1, the experiments are repeated for 5 more pairs of face.

Figure 6: Correspondences found by MS for F0015_FE01WH - F0015_FE02WH

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
			MS	54	82	13	15.661
		100	BF	42	84	13	9982.935
			MV	36	28	1	16.914
			ICP	30	58	0	0.083
	F0015_FE02WH	50	MS	24	40	13	4.088
			BF	12	41	1	612.245
F0015_FE01WH			MV	7	35	11	1.495
			ICP	10	29	0	0.005
			MS	14	17	13	0.710
			BF	10	18	11	16.798
		20	MV	2	10	6	0.138
		-	GM	12	18	12	44.208
			ICP	4	13	0	0.004

Table 6: Results for conformal alignment of F0015_FE01WH - F0015_FE02WH

A.2.2 F0049_SU01WH - F0049_SU03WH

Figure 7: Correspondences found by MS for F0049_SU01WH - F0049_SU03WH

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
	F0049_SU03WH	100	MS	51	84	13	15.581
			BF	46	85	13	10011.218
			MV	38	24	0	28.224
			ICP	36	67	0	0.023
		50	MS	29	44	13	4.249
			BF	23	47	13	635.322
F0049_SU01WH			MV	15	8	1	2.232
			ICP	7	33	0	0.007
			MS	13	19	13	0.378
			BF	12	19	13	16.992
		20	MV	3	7	2	0.693
			GM	2	16	8	66.848
			ICP	2	14	0	0.003

Table 7: Results for conformal alignment of F0049_SU01WH and F0049_SU03WH

A.2.3 M0015_HA02WH - M0015_HA04WH

Figure 8: Correspondences found by MS for M0015_HA02WH - M0015_HA04WH

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
	M0015_HA04WH		MS	34	80	13	16.143
		100	BF	28	84	13	11992.847
			MV	24	26	1	6.527
			ICP	21	79	12	0.045
		50	MS	17	42	13	10.316
			BF	11	44	13	648.235
M0015_HA02WH			MV	6	11	2	1.506
			ICP	10	38	13	0.026
			MS	10	15	13	0.523
			BF	1	17	5	18.740
		20	MV	3	15	13	0.326
			GM	3	14	8	86.483
			ICP	6	15	13	0.019

Table 8: Results for conformal alignment of M0015_HA02WH and M0015_HA04WH

Figure 9: Correspondences found by MS for M0040_SA02WH - M0040_SA04WH

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
	M0040_SA04WH		MS	38	84	12	14.568
		100	BF	30	85	13	10985.872
		100	MV	23	11	1	14.105
			ICP	18	79	11	0.232
		50	MS	17	43	12	14.977
			BF	14	45	13	629.110
M0040_SA02WH			MV	4	17	2	0.767
			ICP	1	42	10	0.009
			MS	12	18	13	0.914
			BF	4	19	12	16.956
		20	MV	2	17	12	0.137
			GM	3	17	13	29.429
			ICP	3	16	12	0.002

Table 9: Results for conformal alignment of M0040_SA02WH and M0040_SA04WH

Figure 10: Correspondences found by MS for F0036_AN02AE - F0036_AN02AE

		N_1, N_2	Methods	Qbnb	Qmv	Qtruth	Time (sec)
	F0036_AN04AE		MS	24	77	11	54.420
		100	BF	19	84	0	10565.549
		100	MV	10	43	1	2.822
			ICP	8	68	1	0.024
		50	MS	19	40	6	4.336
			BF	14	42	11	631.845
F0036_AN02AE			MV	8	8	1	1.484
			ICP	12	37	1	0.007
			MS	10	15	13	0.526
			BF	1	17	1	16.937
		20	MV	2	9	2	0.187
			GM	1	14	11	36.986
			ICP	0	14	1	0.002

Table 10: Results for conformal alignment of F0036_AN02AE and F0036_AN02AE

A.3 Numerical results for synthetic data

N_1	ρ (%)	Methods	Qbnb	Qmv	Time(sec)
		MS	100	71	0.385
		MV	100	71	2.557
	0	BF	100	71	11304.600
		ICP	4	40	0.028
		ICP2	77	83	0.033
		MS	75	59	1.130
		MV	75	59	11.435
100	25	BF	75	59	11404.700
		ICP	5	40	0.021
		ICP2	48	72	0.025
		MS	50	45	2.569
		MV	0	51	14.141
	50	BF	0	49	10121.000
		ICP	4	46	0.052
		ICP2	3	60	0.030

Table 11: Numerica	l results for synthetic	data with $N_1 = 100$
--------------------	-------------------------	-----------------------

N_1	ρ (%)	Methods	Qbnb	Qmv	Time(sec)
50	0	MS	50	42	0.072
		MV	50	42	0.815
		BF	50	42	618.759
		ICP	2	14	0.010
		ICP2	21	42	0.008
	25	MS	37	36	3.339
		MV	37	36	0.755
		BF	37	36	642.490
		ICP	1	19	0.021
		ICP2	1	36	0.010
	50	MS	25	25	23.175
		MV	6	6	0.728
		BF	4	4	643.603
		ICP	0	24	0.021
		ICP2	4	29	0.008

Table 12: Numerical results for synthetic data with $N_1 = 50$

N_1	ρ (%)	Methods	Qbnb	Qmv	Time(sec)
20	0	MS	20	19	0.15343
		MV	20	19	0.1365
		BF	20	19	17.07308
		ICP	1	8	0.00664
		ICP2	14	19	0.00808
		GM	20	19	29.281
	25	MS	15	14	0.16772
		MV	15	14	0.1965
		BF	15	14	16.86983
		ICP	1	7	0.01413
		ICP2	1	9	0.00213
		GM	15	14	24.4612
	50	MS	10	11	0.38881
		MV	1	11	0.3723
		BF	0	13	17.02
		ICP	0	10	0.01533
		ICP2	0	13	0.00182
		GM	0	4	37.9

Table 13: Numerical results for synthetic data with $N_1 = 20$

B **Calculating range limit**

B.1 Range limit for solving rotation angle

Figure 11: Computing range limits for solving rotation angle

This section explains how the range limit $[\alpha_{\mathbf{z},1}^{jk}, \alpha_{\mathbf{z},2}^{jk}]$ defined in section 3 can be derived. Let $\theta_{\mathbf{z}}^{jk}$ be the intersection angle between $\Omega_{\mathbf{z}}^{j}$ and $\mathbb{O}_{\epsilon}^{k}$ as depicted in Fig. 11. This angle can be evaluated easily using circle to circle intersection. Define $\beta_{\mathbf{z},1}^{jk}$ and $\beta_{\mathbf{z},2}^{jk}$ to be the limiting angles of the intersection arc, which can be determined by:

$$\beta_{\mathbf{z},1}^{jk} = \angle \mathbf{b}_k - \frac{\theta_{\mathbf{z}}^{jk}}{2} \tag{1}$$

and

$$\beta_{\mathbf{z},2}^{jk} = \angle \mathbf{b}_k + \frac{\theta_{\mathbf{z}}^{jk}}{2} \tag{2}$$

As can easily be seen, the formula for the range limit $[\alpha_{z,1}^{jk}, \alpha_{z,2}^{jk}]$ will be:

$$\alpha_{\mathbf{z},1}^{jk} = \beta_{\mathbf{z},1}^{jk} - \angle \mathbf{m}_j' \tag{3}$$

and

$$\chi_{\mathbf{z},2}^{jk} = \beta_{\mathbf{z},2}^{jk} - \angle \mathbf{m}_j' \tag{4}$$

B.2 Range limit for computing upper bound

This section details the steps to compute the range limit $[\alpha_{\mathbb{R},1}^{jk}, \alpha_{\mathbb{R},1}^{jk}]$ defined in bound calculation part in section 4.2 (cf. the main paper).

Let $\theta_{\mathbb{R}}^{jk}$ be the intersection angle between $\Omega_{\mathbb{R}}^{j}$ and the disk $\mathbb{O}_{\epsilon}^{k}$. The way to compute this angle depends on the relative position between \mathbf{b}_{k} and the annulus $\Omega_{\mathbb{R}}^{j}$ plus the value of ϵ . Specifically,

C1 If $r_{\mathbb{R},1}^j \leq \sqrt{|\mathbf{b}_k|^2 - \epsilon^2} \leq r_{\mathbb{R},2}^j$ (Fig. 12): $\theta_{\mathbb{R}}^{jk}$ is the angle between two tangent lines starting from the center of the \mathbb{O}_{ϵ}^k disk. Mathematically,

$$\theta_{\mathbb{R}}^{jk} = 2 * \arcsin \frac{\epsilon}{|\mathbf{b}_k|} \tag{5}$$

- C2 If $\sqrt{|\mathbf{b}_k|^2 \epsilon^2} < r_{\mathbb{R},1}^j$ or $\sqrt{|\mathbf{b}_k|^2 \epsilon^2} > r_{\mathbb{R},2}^j$. There are two possibilities:
 - C2.1 The outline of $\mathbb{O}_{\epsilon}^{k}$ intersects with either the inner or the outer ring of $\Omega_{\mathbb{R}}^{j}$: $\theta_{\mathbb{R}}^{jk}$ is computed using circle to circle intersection (Fig. 13)
 - C2.2 The outline of \mathbb{O}^k_{ϵ} intersects with both the inner **and** the outer ring of $\Omega^j_{\mathbb{R}}$: $\theta^{jk}_{\mathbb{R}}$ is determined by the ring that has larger intersection angle with \mathbb{O}^k_{ϵ} using circle to circle intersection (Fig. 14)

Similar to B.1, define $\beta_{\mathbb{R},1}^{jk}$ and $\beta_{\mathbb{R},2}^{jk}$ to be the limiting angles of the intersection area

$$\beta_{\mathbb{R},1}^{jk} = \angle \mathbf{b}_k - \frac{\theta_{\mathbb{R}}^{jk}}{2} \tag{6}$$

and

$$\beta_{\mathbb{R},2}^{jk} = \angle \mathbf{b}_k + \frac{\theta_{\mathbb{R}}^{jk}}{2} \tag{7}$$

Finally, the range limit can be computed as:

$$\alpha_{\mathbb{R},1}^{jk} = \beta_{\mathbb{R},1}^{jk} - \theta_{\mathbb{R},2}^{j} \tag{8}$$

and

$$\alpha_{\mathbb{R},2}^{jk} = \beta_{\mathbb{R},2}^{jk} - \theta_{\mathbb{R},1}^{j} \tag{9}$$

Figure 12: Illustration of C1: $r_{\mathbb{R},1}^j \leq \sqrt{|\mathbf{b}_k|^2 - \epsilon^2} \leq r_{\mathbb{R},2}^j$

Figure 13: Illustration of C2.1: Outline of \mathbb{O}^k_{ϵ} intersects with either the inner or outer ring of the annulus $\Omega^j_{\mathbb{R}}$

Figure 14: Illustration of C2.2: Outline of \mathbb{O}^k_{ϵ} intersects with both the inner or outer ring of the annulus $\Omega^j_{\mathbb{R}}$

С Solving for rotation angle

Algorithm 1 in this document gives the method for solving problem (12) in Sec. 3 of the main paper, i.e., finding the rotation angle that intersects the highest number of angular ranges $S_{\mathbf{z}}^{j} = \left\{ [\alpha_{\mathbf{z},1}^{jk}, \alpha_{\mathbf{z},2}^{jk}] \right\}_{k=1}^{N_2}$. This algorithm runs very efficiently in $\mathcal{O}(N \log N)$ time. See Chapter 10 of [M. De Berg, M. Van Kreveld, M. Overmars, and

O. C. Schwarzkopf. Computational geometry. Springer, 2000] if more details are required.

Require: Set of angular ranges $\left\{ S_{\mathbf{z}}^{j} = \left\{ [\alpha_{\mathbf{z},1}^{jk}, \alpha_{\mathbf{z},2}^{jk}] \right\}_{k=1}^{N_{2}} \right\}_{j=1}^{N_{1}}$ Set $\mathcal{S} \leftarrow \text{empty set}$; $\theta^* \leftarrow \text{null}$; $U(\mathbf{z}) \leftarrow 0$; $l \leftarrow 0$ for all $j = 1 \dots N_1$ do for all angular intervals $[\alpha_{\mathbf{z},1}^{jk}, \alpha_{\mathbf{z},2}^{jk}]$ in $\mathcal{S}_{\mathbf{z}}^{j}$ do $l \leftarrow l + 1 \\ s_l.a \leftarrow \alpha_{\mathbf{z},1}^{jk} \\ s_l.f \leftarrow 1$ Insert s_l into S $l \leftarrow l+1$ $s_{l} \cdot a \leftarrow \alpha_{\mathbf{z},2}^{jk}$ $s_{l} \cdot f \leftarrow -1$ Insert s_l into Send for end for Sort all elements $s_l \in \mathcal{S}$ by $s_l.a$ in ascending order $\rightarrow S'$ $c \gets 0$ for all $s_l \in S'$ do $c \leftarrow c + s_l.f$ if $c > U(\mathbf{z})$ then $\theta^* \leftarrow s_l.a$ $U(\mathbf{z}) \leftarrow c$ end if end for return θ^* and $U(\mathbf{z})$.