Manifold SLIC: A Fast Method to Compute Content-Sensitive Superpixels
(Supplementary Material)

Yong-Jin Liu, Cheng-Chi Yu*, Min-Jing Yu*
Tsinghua University, China
{liuyongjin,yccl3,yumjl4}@tsinghua.edu.cn

1. Further Discussion on Splitting and Merg-
ing Operators

The manifold SLIC algorithm is largely based on the
Lloyd method to compute restricted CVT on the image
manifold M. The major difference is the splitting and
merging operators (see lines 12 and 15 in Algorithm 2),
which are not available in the conventional Lloyd method.
It is known that the Lloyd method has only linear conver-
gence rate and produces a local optimal solution. Although
global optimization tools, such as simulated annealing, can
improve the quality, they are computationally expensive and
not practical for high-resolution images. We observe that
the splitting and merging operators are low-cost heuristic
that can improve both runtime performance and quality of
the content-sensitive superpixels. Figure [S4] demonstrates
that those operators lead to superpixels with better distribu-
tion, i.e., there are more superpixels in content-rich regions
and fewer superpixels in content-sparse regions. In our im-
plementation, we use a fixed iteration number 20. In this
supplementary material, we also present the pseudo-codes
of the two operators to ease implementation and Figure [ST]|
shows an example.

Function 1 split();, s;)

1: Generate four new seeds s;1 = (u; — A5 g 4 /\is),

2 2
sio = (u; — '\QS,%‘ - LQS), si3 = (u; + '\QS,%‘ - ’\QS)
AS

and s;4 = (u; + 2%, v; + 242).

2: Set A\j1 = Njg = Aiz = Ay =)\7,/2

2. Additional Results & Comparison

Figure [S2] shows several typical results of manifold
SLIC. We can clearly see that the superpixels adhere to
image boundaries well and they are content sensitive, i.e.,
superpixels are small in content-dense regions and large in
content-sparse regions. The content sensitive feature is due

*C. Yu and M. Yu contributed equally to this paper

Ying He
Nanyang Technological University, Singapore

YHe@ntu.edu.sg

S N A T e FF
Figure S1. Left: Red dots denote the to-be-split superpixels. Blue
dots on the edges mean the two neighboring superpixels (with
small blue dots in the center) will be merged. Right: Superpix-
els after splitting and merging.

{2

SeE

P

Figure S2. Experimental results. We compute 300 superpixels for
each image. Content sensitivity can be verified in the closeup
views.

to the fact that regions of high color variance have larger ar-
eas on M. Figure [S3|shows more results on the BSDS500
benchmark [1]

Uhttps://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Function 2 merge_voronoi_cells(I)

Require: A labeled image I in which every pixel has a la-
bel ¢ (means in the superpixel of seed s;). The image is
represented in two data structures: a 2D array I (u,v)
and a four-connectivity graph G of pixels.

Ensure: The image with updated labels after merging su-
perpixels.

1: Initialize the flag visit = FALSE for each pixel.

2: for each pixel p in I with flag visit == FALSE do

3: Set! be the label of p.

4: In G, depth-first search the nodes of label [to find
unvisited neighboring superpixels and set the flag
visit = T RUFE for all the pixels of label [in I.

5: Put all unvisited neighboring seeds into a list unlist
and set merge = FALSE.

6. if unlist is not empty and Area(Va(®(s;))) <
Area(M)/8K then

Pop a seed sy, from unlist.

Merge s; and s: in G depth-first search the nodes
of label k; set the flag visit = T RUE for all the
pixels of label & in I and relabel these pixels to be
l; compute the new position of merged seed.

9: Set merge = TRUE.

10: else

11: while wunlist is not empty and merge ==
FALSE do

12: Pop a seed s, from unlist.

13: if Area(Vm(®(s:)) UVm(®(s5))) < E/5

then
14: Merge s; and si: in G depth-first search the

nodes of label k; set the flag visit = TRUE
for all the pixels of label & in I and relabel
these pixels to be /; compute the new position
of merged seed.

15: Set merge = TRUE.
16: end if

17: Remove s;, from unlist.
18: end while

19: end if

20: end for

21: if merge == T RUE then
22: Relabel the pixels so that their IDs are in sequence.
23: end if

As mentioned in Section 1 in the main paper, manifold
SLIC is inspired by the simplicity and high performance of
SLIC and the content-aware nature of SSS. We observe that
the superpixels produced by manifold SLIC are of similar
quality to those by SSS, but manifold SLIC runs 10 times
faster than SSS. Computational results also show that man-
ifold SLIC outperforms SLIC in terms of under segmen-
tation error, boundary recall ratio, and achievable segmen-

e e T

Figure S3. More experimental results by manifold SLIC.

tation accuracy. Note that both SLIC and manifold SLIC
has an O(N) time complexity, which is independent of the
number of superpixels K. Figure [S4] provides additional
results demonstrating that the content-sensitive nature of
manifold SLIC.

-~ 52,}',51%’»;;

Figure S4. Comparison of SLIC, manifold SLIC with and without the splitting and merging operators, denoted by MSLIC and
MSLIC—S&M, respectively. We set the compactness parameter to 40 in SLIC.

