Multilinear Hyperplane Hashing

Xianglong Liu[†] Xinjie Fan[†] Cheng Deng[‡] Zhujin Li[†] Hao Su[§] Dacheng Tao[‡]

[†]State Key Lab of Software Development Environment, Beihang University, Beijing, China

[‡]School of Electronic Engineering, Xidian University, Xi'an, China

[§]Department of Computer Science, Stanford University, Stanford, CA, USA

[‡]QCIS and FEIT, University of Technology, Sydney, Australia

xlliu@nlsde.buaa.edu.cn chdeng.xd@gmail.com dacheng.tao@uts.edu.au

1. The Proof

Theorem 1 Given a database \mathcal{D} with n points and a hyperplane query $\mathcal{P}_{\boldsymbol{w}}$, if there exists a database point \boldsymbol{x}^* such that $d(\boldsymbol{x}^*, \mathcal{P}_{\boldsymbol{w}}) \leq r$, then with $\rho = \frac{\ln p_1}{\ln p_2} (1)$ using n^{ρ} hash tables with $\log_{1/p_2} n$ hash bits, the random multilinear hyperplane hash of an even order is able to return a database point $\hat{\boldsymbol{x}}$ such that $d(\hat{\boldsymbol{x}}, \mathcal{P}_{\boldsymbol{w}}) \leq r(1 + \epsilon)$ with probability at least $1 - \frac{1}{c} - \frac{1}{e}$, $c \geq 2$; (2) the query time is sublinear to the entire data number n, with $n^{\rho} \log_{1/p_2} n$ bit generations and cn^{ρ} pairwise distances computation.

This can be completed easily following prior research [1,2].

Proof 1 Denote the number of hash tables to be L. For the l-th hash table, the proposed MH-Hash algorithm randomly samples k hash functions $h_{l,1}^m, \dots, h_{l,k}^m$ with replacement from \mathbf{M}_m , which will generate a k-bit hash key for each input data vector \mathbf{x} We denote \mathbf{x} 's hash code by $\mathbf{H}_l^m(\mathbf{x}) = [h_{l,1}^m(\mathbf{x}), \dots, h_{l,k}^m(\mathbf{x})]$. The main observation is that using $\mathbf{L} = n^{\rho}$ independent hash tables, a $(1 + \epsilon)$ appropriate nearest neighbor is achieved with a nontrivial constant probability. Moreover, the query (search) time complexity is proved to be sub-linear with respect to the entire data number n.

To complete the proof, we define the following two events \mathbf{F}_1 and \mathbf{F}_2 . It suffices to prove the theorem by showing that both \mathbf{F}_1 and \mathbf{F}_2 hold with probability larger than 0.5. The two event are defined as follows:

F₁: If there exists a database point \mathbf{x}^* such that $d(\mathbf{x}^*, \mathcal{P}_{\mathbf{w}}) \leq r$, then $H_l^m(\mathbf{x}^*) = H_l^m(\mathcal{P}_{\mathbf{w}})$ for some $1 \leq l \leq L$.

 F_2 : Provided with a false alarm set

$$\mathscr{S} = \{ \check{\boldsymbol{x}} \mid \check{\boldsymbol{x}} \in \mathscr{X} \text{ such that } \mathbf{D}(\check{\boldsymbol{x}}, \mathcal{P}_{\boldsymbol{w}}) > r(1+\epsilon) \\ and \exists l \in [1: \mathbf{L}], \mathbf{H}_l^m(\check{\boldsymbol{x}}) = \mathbf{H}_l^m(\mathcal{P}_{\boldsymbol{w}}) \},$$

where $\epsilon > 0$ is the given small constant. Then the set cardinality $|\mathcal{S}| < cL$.

First, we prove that \mathbf{F}_1 holds with probability at least $1 - \frac{1}{e}$.

Let us consider the converse case that $\mathrm{H}_{l}^{m}(\boldsymbol{x}^{*}) \neq \mathrm{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}})$ for $\forall l \in [1 : L]$ whose probability is

$$\begin{aligned} \mathbf{P}[\mathbf{H}_{l}^{m}(\boldsymbol{x}^{*}) \neq \mathbf{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}}), \forall l \in [1:\mathbf{L}]] \\ &= (\mathbf{P}[\mathbf{H}_{l}^{m}(\boldsymbol{x}^{*}) \neq \mathbf{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}})])^{\mathbf{L}} \\ &= (1 - \mathbf{P}[\mathbf{H}_{l}^{m}(\boldsymbol{x}^{*}) = \mathbf{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}})])^{\mathbf{L}} \\ &\leq (1 - p_{1}^{k})^{\mathbf{L}} = (1 - p_{1}^{\log \frac{1}{p_{2}}n})^{n^{p}} = (1 - n - \rho)^{n^{\ell}} \\ &= ((1 - n^{-\rho})^{-n^{\rho}})^{-1} \leq \frac{1}{e}, \end{aligned}$$

where inequality (1) follows the inequality $(1-n^{-\rho})^{-n^{\rho}} \ge e$. Herewith we derive

$$\begin{split} \mathbf{P}[\mathbf{H}_{l}^{m}(\boldsymbol{x}^{*}) &= \mathbf{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}}), \exists l \in [1:L]] \\ &= 1 - \mathbf{P}[\mathbf{H}_{l}^{m}(\boldsymbol{x}^{*}) \neq \mathbf{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}}), \forall l \in [1:H]] \\ &\geq 1 - \frac{1}{e}. \end{split}$$

Second, we prove that \mathbf{F}_2 holds with probability at least $1 - \frac{1}{c}$.

For every false alarm point \check{x} conforming to $D(\check{x}, \mathcal{P}_w) > r(1 + \epsilon)$, in any hash table $l \in [1 : L]$ we have

$$\mathbf{P}[\mathbf{H}_{l}^{m}(\check{\boldsymbol{x}}) = \mathbf{H}_{l}^{m}(\mathcal{P}_{\boldsymbol{w}})] < {p_{2}}^{k} = ({p_{2}})^{\log_{\frac{1}{p_{2}}}n} = \frac{1}{n}$$

Therefore the expected number of false alarm points, which fall into the same hash bucket with the query \mathcal{P}_{w} in hash table l, is smaller than $n \times 1/n = 1$. Immediately, we

conclude $\mathbf{E}[| \mathscr{S} |] < L$. Subsequently, we further apply Markov's inequality to derive the following result:

$$\mathbf{P}[|\mathscr{S}| \ge c\mathbf{L}] \le \frac{\mathbf{E}[|\mathscr{S}|]}{c\mathbf{L}} < \frac{\mathbf{L}}{c\mathbf{L}} = \frac{1}{c},$$

which leads to

$$\mathbf{P}[|\mathscr{S}| < c\mathbf{L}] = 1 - \mathbf{P}[|\mathscr{S}| \ge c\mathbf{L}] > 1 - \frac{1}{c}.$$

Third, we prove that F_1 and F_2 simultaneously hold with probability at least $1 - \frac{1}{c} - \frac{1}{e}$.

References

- P. Jain, S. Vijayanarasimhan, and K. Grauman. Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning. In *NIPS*, pages 928–936. 2010.
- [2] W. Liu, J. Wang, Y. Mu, S. Kumar, and S.-F. Chang. Compact hyperplane hashing with bilinear functions. In *ICML*, pages 1–8, 2012. 1