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1. The Proof
Theorem 1 Given a database D with n points and a hy-
perplane query Pw, if there exists a database point x∗ such
that d(x∗,Pw) ≤ r, then with ρ = ln p1

ln p2
(1) using nρ hash

tables with log1/p2 n hash bits, the random multilinear hy-
perplane hash of an even order is able to return a database
point x̂ such that d(x̂,Pw) ≤ r(1 + ε) with probability at
least 1 − 1

c −
1
e , c ≥ 2; (2) the query time is sublinear to

the entire data number n, with nρlog1/p2 n bit generations
and cnρ pairwise distances computation.

This can be completed easily following prior research [1,2].

Proof 1 Denote the number of hash tables to be L. For
the l-th hash table, the proposed MH-Hash algorithm
randomly samples k hash functions hml,1,· · · ,hml,k with
replacement from Mm, which will generate a k-bit hash
key for each input data vector x We denote x’s hash code
by Hml (x) = [hml,1(x), · · · , hml,k(x)]. The main observation
is that using L = nρ independent hash tables, a (1 + ε)-
appropriate nearest neighbor is achieved with a nontrivial
constant probability. Moreover, the query (search) time
complexity is proved to be sub-linear with respect to the
entire data number n.

To complete the proof, we define the following two
events F1 and F2. It suffices to prove the theorem by
showing that both F1 and F2 hold with probability larger
than 0.5. The two event are defined as follows:

F1: If there exists a database point x∗ such that
d(x∗,Pw) ≤ r, then Hml (x∗) = Hml (Pw) for some
1 ≤ l ≤ L.

F2: Provided with a false alarm set

S = {x̌ | x̌ ∈X such that D(x̌,Pw) > r(1 + ε)

and ∃l ∈ [1 : L],Hml (x̌) = Hml (Pw)},

where ε > 0 is the given small constant. Then the set
cardinality | S |< cL.

First, we prove that F1 holds with probability at least
1− 1

e .

Let us consider the converse case that Hml (x∗) 6= Hml (Pw)
for ∀l ∈ [1 : L] whose probability is

P[Hml (x∗) 6= Hml (Pw),∀l ∈ [1 : L]]

= (P[Hml (x∗) 6= Hml (Pw)])L

= (1−P[Hml (x∗) = Hml (Pw)])L

≤ (1− p1k)L = (1− p1
log 1

p2

n
)n
p

= (1− n−ρ)n
ρ

= ((1− n−ρ)−n
ρ

)−1 ≤ 1

e
,

where inequality (1) follows the inequality (1−n−ρ)−nρ ≥
e. Herewith we derive

P[Hml (x∗) = Hml (Pw),∃l ∈ [1 : L]]

= 1−P[Hml (x∗) 6= Hml (Pw),∀l ∈ [1 : H]]

≥ 1− 1

e
.

Second, we prove that F2 holds with probability at least
1− 1

c .

For every false alarm point x̌ conforming to
D(x̌,Pw) > r(1 + ε), in any hash table l ∈ [1 : L]
we have

P[Hml (x̌) = Hml (Pw)] < p2
k = (p2)

log 1
p2

n
=

1

n
.

Therefore the expected number of false alarm points, which
fall into the same hash bucket with the query Pw in hash
table l, is smaller than n × 1/n = 1. Immediately, we

1



conclude E[| S |] < L. Subsequently, we further apply
Markov’s inequality to derive the following result:

P[| S |≥ cL] ≤ E[| S |]
cL

<
L
cL

=
1

c
,

which leads to

P[| S |< cL] = 1−P[| S |≥ cL] > 1− 1

c
.

Third, we prove that F1 and F2 simultaneously hold with
probability at least 1− 1

c −
1
e .
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