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Abstract

The Supplementary Material contains the proofs for all mathematical results stated in the main paper. We also describe
in more detail the Quasi-random Fourier feature map approach in Section 3.1 of the main paper.

1. Proofs for main mathematical results
For clarity, we restate all the mathematical results that we wish to prove here.

Theorem 1. Assume that γ 6= µ, γ > 0, µ > 0. Then

lim
D→∞

∥∥∥log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + µID)
∥∥∥
F

=∞. (1)

Theorem 2. Assume that γ = µ > 0 and that limD→∞ K̂D(x, y) = K(x, y) for every pair (x, y) ∈ X × X . Then

lim
D→∞

∥∥∥log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + γID)
∥∥∥
F

= || log(CΦ(x) + γIH)− log(CΦ(y) + γIH)||eHS. (2)

We need the following preliminary results. LetH be a separable Hilbert space, equipped with norm || ||, and A : H → H
be a bounded linear operator. We recall that the operator norm of A is defined to be

||A|| = sup
x 6=0

||Ax||
||x||

. (3)

If A is self-adjoint, compact, and positive, then
||A|| = λmax(A), (4)

where λmax(A) denotes the largest eigenvalue of A. The trace norm of A in this case is given by

||A||tr =

∞∑
k=1

λk(A) = tr(A). (5)

Lemma 1. Let H be a separable Hilbert space. Let r ∈ N be fixed. Let A ∈ L(H) be a self-adjoint, positive operator with
finite rank r <∞. Then

||A|| ≤ ||A||HS ≤
√
r||A||, (6)

||A|| ≤ ||A||tr ≤ r||A||. (7)

Thus convergences in the || ||HS norm, the || ||tr norm, and the || || norm are all equivalent to each other.
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Proof. By definition of the || || and || ||HS norms and the finite rank assumption, we have

||A||2 = λ2
max(A) ≤

r∑
j=1

λ2
j (A) = ||A||2HS ≤ rλ2

max(A),

from which the first inequality follows. Similarly, for the second inequality, we have

||A|| = λmax(A) ≤
r∑
j=1

λk(A) = ||A||tr ≤ rλmax(A) = r||A||.

This completes the proof of the lemma.

Lemma 2. Let H be a separable Hilbert space. Let r ∈ N be fixed. Let A, {Ak}k∈N be self-adjoint, positive operators of
rank at most r, such that limk→∞ ||Ak −A||HS = 0. Then

lim
k→∞

|| log(I +Ak)− log(I +A)||HS = 0. (8)

Proof. By assumption, the operators in the sequence (Ak − A)k∈N all have rank at most 2r. Thus from Lemma 1, the
convergence ||Ak −A||HS is equivalent to the convergence ||Ak −A||.

The operators in the sequence (log(I +Ak))k∈N are also self-adjoint, positive, and of rank at most r. The operators in the
sequence (log(I +Ak)− log(I +A))k∈N have rank at most 2r and thus the convergence || log(I +Ak)− log(I +A)||HS is
equivalent to the convergence || log(I +Ak)− log(I +A)||. Thus we have

||Ak −A||HS → 0⇐⇒ ||Ak −A|| → 0⇐⇒ λmax(Ak)→ λmax(A).

It follows that

log(1 + λmax(Ak))→ log(1 + λmax(A))⇐⇒ || log(I +Ak)− log(I +A)|| → 0

⇐⇒ || log(I +Ak)− log(I +A)||HS → 0.

This completes the proof of the lemma.

Lemma 3. Let H be a separable Hilbert space. Let r ∈ N be fixed. Let A, {Ak}k∈N be self-adjoint, positive operators of
rank at most r, such that limk→∞ ||Ak −A||HS = 0. Then

lim
k→∞

tr[log(I +Ak)− log(I +A)] = 0. (9)

Proof. By assumption, the operators in the sequence (log(I +Ak))k∈N are also self-adjoint, positive, and of rank at most r.
The operators in the sequence (log(I + Ak) − log(I + A))k∈N have rank at most 2r and by Lemma 2, limk→∞ || log(I +
Ak)− log(I +A)||HS = 0. By Lemma 1, this convergence is equivalent to convergence in the || ||tr norm. Thus we have

|tr[log(I +Ak)− log(I +A)]| ≤ || log(I +Ak)− log(I +A)||tr → 0

as k →∞. This completes the proof of the lemma.

Lemma 4. Let H be a separable Hilbert space. Let r ∈ N be fixed. Let A, {Ak}k∈N, B, {Bk}k∈N be self-adjoint, positive
operators of rank at most r, such that limk→∞ ||Ak −A||HS = 0 and limk→∞ ||Bk −B||HS = 0. Then

lim
k→∞

tr[log(I +Ak) log(I +Bk)] = tr[log(I +A) log(I +B)]. (10)

Proof. From Lemma 2, we have

lim
k→∞

|| log(I +Ak)− log(I +A)||HS = 0,

lim
k→∞

|| log(I +Bk)− log(I +B)||HS = 0.



Thus, using Cauchy-Schwarz inequality and the definition 〈A,B〉HS = tr(ATB), we obtain

|tr[log(I +Ak) log(I +Bk)− log(I +A) log(I +B)]|
= |tr[log(I +Ak) log(I +Bk)− log(I +Ak) log(I +B) + log(I +Ak) log(I +B)− log(I +A) log(I +B)]|
= |tr[log(I +Ak)(log(I +Bk)− log(I +B)) + (log(I +Ak)− log(I +A)) log(I +B)]|
= |〈log(I +Ak), log(I +Bk)− log(I +B)〉HS + 〈log(I +Ak)− log(I +A), log(I +B)〉HS|
≤ |〈log(I +Ak), log(I +Bk)− log(I +B)〉HS|+ |〈log(I +Ak)− log(I +A), log(I +B)〉HS|
≤ || log(I +Ak)||HS|| log(I +Bk)− log(I +B)||HS + || log(I +Ak)− log(I +A)||HS|| log(I +B)||HS.

Taking limit on both sides as k →∞, we obtain

lim
k→∞

tr[log(I +Ak) log(I +Bk)− log(I +A) log(I +B)] = 0.

This completes the proof of the lemma.

Lemma 5. [2] Let H1 and H2 be two separable Hilbert spaces. Let A : H1 → H2 and B : H2 → H1 be two bounded
linear operators. Then the nonzero eigenvalues of BA : H1 → H1 and AB : H2 → H2, if they exist, are the same.

In the following, we identifyH with `2 and RD with a D-dimensional subspace of `2, that is

a = (aj)
D
j=1 ∈ RD ⇐⇒ a = (a1, . . . , aD, 0, 0, . . .) ∈ `2. (11)

For the data matrices x = [x1, . . . , xm], y = [y1, . . . , ym], let K[x],K[y], K̂D[x], K̂D[y] be the m × m Gram matrices,
defined by

(K[x])ij = K(xi, xj), (K̂D[x])ij = K̂D(xi, xj), (K[y])ij = K(yi, yj), (K̂D[y])ij = K̂D(yi, yj).

Lemma 6. LetH = `2, with RD identified with aD-dimensional subspace ofH as in Eq. (11). Assume that limD→∞ K̂D(x, y) =
K(x, y) for all pairs (x, y) ∈ X × X . Then

lim
D→∞

||CΦ̂D(x) − CΦ(x)||HS(H) = 0. (12)

Proof. Let A = 1√
m

Φ(x)Jm : Rm → H, then

AAT = CΦ(x), ATA =
1

m
JmK[x]Jm.

By Lemma 5, the nonzero eigenvalues of CΦ(x) = AAT are the same as those of 1
mJmK[x]Jm = ATA. Similarly, the

nonzero eigenvalues of CΦ̂D(x) are the same as those of 1
mJmK̂D[x]Jm. This also implies that both CΦ(x) and CΦ̂D(x) have

rank at most m− 1, since rank(Jm) = m− 1.
Since limD→∞ K̂D(xi, xj) = K(xi, xj) for all pairs (xi, xj), 1 ≤ i, j ≤ m, we have, as m×m matrices,

lim
D→∞

||JmK̂D[x]Jm − JmK[x]Jm||F = 0.

Since JmK̂D[x]Jm and JmK[x]Jm are finite matrices, convergence in the || ||F norm is equivalent to convergence in the
operator || || norm. Thus we have

lim
D→∞

||JmK̂D[x]Jm − JmK[x]Jm|| = 0⇐⇒ lim
D→∞

λmax(JmK̂D[x]Jm) = λmax(JmK[x]Jm)

⇐⇒ lim
D→∞

λmax(CΦ̂D(x)) = λmax(CΦ(x))⇐⇒ lim
D→∞

||CΦ̂D(x) − CΦ(x)|| = 0

⇐⇒ lim
D→∞

||CΦ̂D(x) − CΦ(x)||HS(H) = 0,

by Lemma 1, since both CΦ̂D(x), CΦ(x) have rank at most m− 1. This completes the proof of the lemma.



Proof of Theorem 1. Consider the expansion∥∥∥log
(
CΦ̂D(x) + γID

)
− log

(
CΦ̂D(y) + µID

)∥∥∥2

F
=

∥∥∥∥log

(
CΦ̂D(x)

γ
+ ID

)
− log

(
CΦ̂D(y)

µ
+ ID

)
+ (log γ − logµ)ID

∥∥∥∥2

F

=

∥∥∥∥log

(
CΦ̂D(x)

γ
+ ID

)
− log

(
CΦ̂D(y)

µ
+ ID

)∥∥∥∥2

F

+ 2(log γ − logµ)tr

(
log

(
CΦ̂D(x)

γ
+ ID

)
− log

(
CΦ̂D(y)

µ
+ ID

))
+ (log γ − logµ)2D. (13)

With RD identified as a subspace ofH = `2, we have by Lemma 6 (with the scaling factors γ, µ), that

lim
D→∞

∥∥∥∥CΦ̂D(x)

γ
−
CΦ(x)

γ

∥∥∥∥2

HS(H)

= 0, lim
D→∞

∥∥∥∥CΦ̂D(y)

µ
−
CΦ(y)

µ

∥∥∥∥2

HS(H)

= 0.

By Lemma 3, we have

lim
D→∞

tr

(
log

(
CΦ̂D(x)

γ
+ ID

))
= tr

(
log

(
CΦ(x)

γ
+ IH

))
= tr

[
log

(
1

γm
JmK[x]Jm + Im

)]
,

lim
D→∞

tr

(
log

(
CΦ̂D(y)

µ
+ ID

))
= tr

(
log

(
CΦ(y)

µ
+ IH

))
= tr

[
log

(
1

µm
JmK[y]Jm + Im

)]
.

Since these two quantities are both finite, for γ 6= µ, as D →∞, clearly the right hand side of Eq. (13) goes to infinity. This
gives us the desired limit.

Proof of Theorem 2. Without loss of generality, we identify H with `2 as above and identify RD with a D-dimensional
subspace of `2 as in Eq. (11). When γ = µ, we have

|| log(CΦ(x) + γIH)− log(CΦ(y) + γIH)||2eHS =

∥∥∥∥log

(
CΦ(x)

γ
+ IH

)
− log

(
CΦ(y)

γ
+ IH

)∥∥∥∥2

HS

=

∥∥∥∥log

(
CΦ(x)

γ
+ IH

)∥∥∥∥2

HS

+

∥∥∥∥log

(
CΦ(y)

γ
+ IH

)∥∥∥∥2

HS

− 2tr

[
log

(
CΦ(x)

γ
+ IH

)
log

(
CΦ(y)

γ
+ IH

)]
.

It follows from Lemma 5 that the first term is∥∥∥∥log

(
1

γ
CΦ(x) + IH

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γm
Φ(x)J2

mΦ(x)T + IH

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γm
JmΦ(x)TΦ(x)Jm + Im

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γm
JmK[x]Jm + Im

)∥∥∥∥2

HS

= tr

[
log

(
1

γm
JmK[x]Jm + Im

)]2

.

Similarly, the second term is ∥∥∥∥log

(
1

γ
CΦ(y) + IH

)∥∥∥∥2

HS

= tr

[
log

(
1

γm
JmK[y]Jm + Im

)]2

.

Thus we have

|| log(CΦ(x) + γIH)− log(CΦ(y) + γIH)||2eHS = tr

[
log

(
1

γm
JmK[x]Jm + Im

)]2

+ tr

[
log

(
1

γm
JmK[y]Jm + Im

)]2

− 2tr

[
log

(
CΦ(x)

γ
+ IH

)
log

(
CΦ(y)

γ
+ IH

)]
. (14)

Similarly,

|| log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + γID)||2F = tr

[
log

(
1

γm
JmK̂D[x]Jm + Im

)]2

+ tr

[
log

(
1

γm
JmK̂D[y]Jm + Im

)]2

− 2tr

[
log

(
CΦ̂D(x)

γ
+ ID

)
log

(
CΦ̂D(y)

γ
+ ID

)]
. (15)



With RD identified as a subspace ofH = `2, we have by Lemma 6 (with the scaling factor γ), that

lim
D→∞

∥∥∥∥CΦ̂D(x)

γ
−
CΦ(x)

γ

∥∥∥∥2

HS(H)

= 0, lim
D→∞

∥∥∥∥CΦ̂D(y)

γ
−
CΦ(y)

γ

∥∥∥∥2

HS(H)

= 0,

with the operators CΦ̂D(x), CΦ(x), CΦ̂D(y), CΦ(y) all have rank at most m− 1. It thus follows from Lemma 4 that

lim
D→∞

tr

[
log

(
CΦ̂D(x)

γ
+ ID

)
log

(
CΦ̂D(y)

γ
+ ID

)]
= tr

[
log

(
CΦ(x)

γ
+ IH

)
log

(
CΦ(y)

γ
+ IH

)]
. (16)

Similarly, since limD→∞ K̂D(xi, xj) = K(xi, xj) for all pairs (xi, xj) and limD→∞ K̂D(yi, yj) = K(yi, yj) for all pairs
(yi, yj), 1 ≤ i, j ≤ m, we have, as m×m matrices,

lim
D→∞

||JmK̂D[x]Jm − JmK[x]Jm||F = 0, lim
D→∞

||JmK̂D[y]Jm − JmK[y]Jm||F = 0.

It also follows from Lemma 4 that

lim
D→∞

tr

[
log

(
1

γm
JmK̂D[x]Jm + Im

)]2

= tr

[
log

(
1

γm
JmK[x]Jm + Im

)]2

, (17)

lim
D→∞

tr

[
log

(
1

γm
JmK̂D[y]Jm + Im

)]2

= tr

[
log

(
1

γm
JmK[y]Jm + Im

)]2

. (18)

Combining the expressions in Eqs. (14), (15), (16), (17), (18), we obtain

lim
D→∞

|| log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + γID)||2F = || log(CΦ(x) + γIH)− log(CΦ(y) + γIH)||2eHS.

This completes the proof of the Theorem.

2. Further information on the Hilbert-Schmidt distance between covariance operators
For completeness, in this section we provide the mathematical expression for the Hilbert-Schmidt distance between two

RKHS covariance operators. This was used for carrying out the corresponding experiments on the Fish dataset in the main
paper. Let K be a positive definite kernel on an arbitrary non-empty set X and HK be its corresponding RKHS. Let CΦ(x)

and CΦ(y) be the covariance operators corresponding to two n ×m data matrices x and y, respectively, sampled from X .
Following [2], let K[x], K[y], and K[x,y] denote the m×m Gram matrices defined by

(K[x])ij = K(xi, xj), (K[y])ij = K(yi, yj), (K[x,y])ij = K(xi, yj), 1 ≤ i, j ≤ m.

Then the Gram matrices and the covariance operators are related by

Φ(x)TΦ(x) = K[x], Φ(y)TΦ(y) = K[y], Φ(x)TΦ(y) = K[x,y].

Here Φ(x)T denotes the transpose of Φ(x) in the case dim(HK) < ∞ and the adjoint operator of Φ(x) in the case
dim(HK) =∞.

Lemma 7. The Hilbert-Schmidt distances between two RKHS covariance operators CΦ(x) and CΦ(y) is given by

||CΦ(x) − CΦ(y)||2HS =
1

m2
〈JmK[x],K[x]Jm〉F −

2

m2
〈JmK[x,y],K[x,y]Jm〉F +

1

m2
〈JmK[y],K[y]Jm〉F . (19)

Proof of Lemma 7. By definition of the Hilbert-Schmidt norm and property of the trace operation, we have

||CΦ(x) − CΦ(y)||2HS =

∥∥∥∥ 1

m
Φ(x)JmΦ(x)T − 1

m
Φ(y)JmΦ(y)T

∥∥∥∥2

HS

=
1

m2
||Φ(x)JmΦ(x)T ||2HS −

2

m2
〈Φ(x)JmΦ(x)T ,Φ(y)JmΦ(y)T 〉HS +

1

m2
||Φ(y)JmΦ(y)T ||2HS

=
1

m2
tr[Φ(x)JmΦ(x)TΦ(x)JmΦ(x)T ]− 2

m2
tr[Φ(x)JmΦ(x)TΦ(y)JmΦ(y)T ] +

1

m2
tr[Φ(y)JmΦ(y)TΦ(y)JmΦ(y)T ]

=
1

m2
tr[(K[x]Jm)2 − 2K[y,x]JmK[x,y]Jm + (K[y]Jm)2]

=
1

m2
[〈JmK[x],K[x]Jm〉F − 2〈JmK[x,y],K[x,y]Jm〉F + 〈JmK[y],K[y]Jm〉F ].

This completes the proof of the lemma.



3. Further information on the Quasi-random Fourier features
Consider again the expression of the kernel K(x, y) = k(x− y) by Bochner’s theorem

k(x− y) =

∫
Rn
e−i〈ω,x−y〉dρ(ω) (20)

=

∫
Rn
ρ(ω)φω(x)φω(y)dω, where φω(x) = e−i〈ω,x〉.

The Random Fourier feature maps arise from the Monte-Carlo approximation of the integral in Eq. (20), using a random set
of points ωj’s sampled according to the distribution ρ. In this section, we describe in more detail the Quasi-random Fourier
features approach proposed recently by [4]. This approach is based on the methodology of Quasi-Monte Carlo integration
[1], in which the ωj’s are deterministic points arising from a low-discrepancy sequence in [0, 1]n (see below for more details).

Assume that the distribution ρ in Eq. (20) has the product form ρ(ω) =
∏n
j=1 ρj(ωj). Assume that each component

cumulative distribution function ψj(xj) =
∫ xj
−∞ ρj(zj)dzj is strictly increasing, so that the inverse functions ψ−1

j : [0, 1]→
R are all well-defined. Let ψ : Rn → [0, 1]n be defined by ψ(x) = ψ(x1, . . . , xn) = (ψ1(x1), . . . , ψn(xn)). Then
its inverse function ψ−1 : [0, 1]n → Rn is well-defined and is given component-wise by ψ−1(z) = ψ−1(z1, . . . , zn) =

(ψ−1
1 (z1), . . . , ψ−1

n (zn)).
With the change of variable ω = ψ−1(t), the integral in Eq. (20) becomes∫

Rn
e−i〈ω,x−y〉ρ(ω)dω =

∫
[0,1]n

e−i〈ψ
−1(t),x−y〉dt. (21)

Instead of approximating the left hand side of Eq. (21) using a random set of points {ωj}Dj=1 in Rn sampled according to ρ,
in the Quasi-Monte Carlo approach, one approximates the right hand side using a deterministic, low-discrepancy sequence
of points {tj}Dj=1 in [0, 1]n. This sequence gives rise to a deterministic sequence

ωj = ψ−1(tj), 1 ≤ j ≤ D, (22)

from which we construct the Fourier feature map as described by Eqs. (23), (24), and (25),

cos(WTx) = (cos(〈ω1, x〉), . . . , cos(〈ωD, x〉))T ∈ RD, (23)

sin(WTx) = (sin(〈ω1, x〉), . . . , sin(〈ωD, x〉))T ∈ RD. (24)

Φ̂D(x) =
1√
D

(cos(WTx); sin(WTx)) ∈ R2D, (25)

just as in the case of random Fourier features. In our experiments, {tj}Dj=1 is a Halton sequence, whose implementation is
readily available in MATLAB1.

3.1. Low-discrepancy sequences

In this section, we briefly review the concept of low-discrepancy sequences in Quasi-Monte Carlo methods. For a com-
prehensive treatment, we refer to [3]. Let n ∈ N be fixed. Let In = [0, 1)n and denote its closure by I

n
= [0, 1]n. For an

integrable function f in I
n

, we consider the approximation∫
I
n
f(u)du ≈ 1

N

N∑
j=1

f(xj) (26)

using a deterministic set of points P = (x1, . . . , xN ), which are part of an infinite sequence (xj)j∈N in I
n

, such that the
integration error satisfies

lim
N→∞

∣∣∣∣∣∣ 1

N

N∑
j=1

f(xj)−
∫
I
n
f(u)du

∣∣∣∣∣∣ = 0. (27)

1http://www.mathworks.com/help/stats/quasi-random-numbers.html



This convergence can be measured via the concept of discrepancy as follows. Let N be fixed. For an arbitrary set B ⊂ I
n

,
define the counting function

A(B;P ) =

N∑
j=1

χB(xj), (28)

where χB denotes the characteristic function for B. Thus A(B;P ) denotes the number of points in P that lie in the set B.
Let B be a non-empty family of Lebesgue-measurable subsets of I

n
. The discrepancy of the set P with respect to B is

then defined by

DN (B;P ) = sup
B∈B

∣∣∣∣A(B;P )

N
− vol(B)

∣∣∣∣ , (29)

with vol(B) denoting the volume of B with respect to the Lebesgue measure.
The star discrepancy D∗N (P ) is defined by

D∗N (P ) = DN (J ∗;P ), (30)

where J ∗ denotes the family of all subintervals of In of the form
∏n
j=1[0, xj). The star discrepancy and the integration error

are related via the Koksma- Hlawka inequality, as follows. Define

V (f) =

n∑
k=1

∑
1≤i1≤···≤ik≤n

∫ 1

0

· · ·
∫ 1

0

∣∣∣∣ ∂kf

∂ui1 . . . ∂uik

∣∣∣∣ dui1 . . . duik , (31)

which is called the variation of f on I
n

in the sense of Hardy-Krause.

Theorem 3 (Koksma-Hlawka inequality). If f has bounded variation V (f) on I
n

in the sense of Hardy-Krause, then for
any set (x1, . . . , xN ) in In, ∣∣∣∣∣∣ 1

N

N∑
j=1

f(xj)−
∫
I
n
f(u)du

∣∣∣∣∣∣ ≤ V (f)D∗N (x1, . . . , xN ). (32)

By Theorem 3, to achieve a small integration error, we need a sequence (xj)j∈N with low discrepancyD∗N (x1, . . . , xN )→
0 as N → ∞. Some examples of low-discrepancy sequences are Halton and Sobol’ sequences (we refer to [3, 1] for
the detailed constructions of these and other sequences). The Halton sequence in particular satisfies D∗N (x1, . . . , xN ) =

C(n) (logN)n

N for N ≥ 2.

3.2. The Gaussian case
In this section, we give the explicit expression for the functions ψ and ψ−1, as defined above, in the case of the Gaus-

sian kernel. It suffices for us to consider the one-dimensional setting here, since the multivariate case is defined compo-

nentwise using the one-dimensional case. For K(x, y) = e−
(x−y)2

σ2 , we have ρ(z) = σ
2
√
π
e−

σ2z2

4 . Recall the Gaussian

error function erf defined by erf(x) = 2√
π

∫ x
0
e−z

2

dz and the complementary Gaussian error function erfc defined by

erfc(x) = 2√
π

∫∞
x
e−z

2

dz = 1− erf(x). By definition, the cumulative distribution function ψ for ρ is given by

ψ(x) =

∫ x

−∞
ρ(z)dz = 1−

∫ ∞
x

ρ(z)dz = 1− σ

2
√
π

∫ ∞
x

e−
σ2z2

4 dz = 1− 1√
π

∫ ∞
xσ
2

e−u
2

du = 1− 1

2
erfc

(xσ
2

)
.

It follows that the inverse function ψ−1 is given by

x = ψ−1(t) =
2

σ
erfc−1(2− 2t) =

2

σ
erf−1(2t− 1). (33)
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