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1. Order of activation of features
Figure 1 shows the order of activation of features for

each known SHUT. Suppose features {A,B} are selected
for the current value of λ. Suppose feature C replaces
{A,B} if we decrease λ. The order of activation of fea-
tures will be (A,B,C) since C gets activated after A and
B.

2. Zero-shot learning with different number of
clusters

Figure 2 shows the results of zero-shot learning for
different number of clusters. The rightmost column cor-
responds to the case that each cluster includes only one
SHUT. The result for that case is worse compared to some
other cases that are based on grouped SHUTs. Therefore,
clustering is effective in improving the performance for un-
seen SHUTs.

3. Details of computing features
This section describes the details of computing features.

We use RGB-D data in this paper, therefore, our features
are defined for regions that span a volume in 3D, and cor-
respond to a set of pixels in the 2D image. We require re-
gions that cover the entire objects and do not overlap more
than one object as much as possible. We employ the region
generation method of [8]. For our experiments, we use the
regions generated in the 5th level of the hierarchical seg-
mentation that [8] provides. Regions in that level provide
a reasonable overlap with object and non-object instances.
We obtain 95 regions per image on average by the above
method. The features are described below:

Height: This feature measures the height of the region.
The intuition is that for some tasks (e.g., walking) the height
of the region plays an important role and it is impossible to
walk on surfaces of more than certain height.

We rotate the depth map such that the normal of the
floor points upward using the method described in [8]. The
height of each pixel is basically the y coordinate of that
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Figure 1: (a) The corresponding color of each feature is
shown. (b) Order of activation of the features (from left to
right).

pixel in the rotated depth map. To obtain the feature for each
region, we compute the histogram of heights for the con-
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Figure 2: Results of zero-shot learning using different num-
ber of clusters. The results for 20 clusters are shown in
Table 1 (bottom) of the paper.

stituent pixels of a region. This feature has 20 dimensions
(the interval between the maximum and minimum height in
the dataset is divided into 20 bins).

Surface Normals: This feature represents the surface
normals of a region. Similar to above, the depth map is ro-
tated. Then, we compute the histogram of surface normals
for the pixels of a region. The histogram is computed for x,
y, and z coordinates separately. This feature has 30 dimen-
sions, where we consider 10 bins for each coordinate.

Material Attributes: Another useful feature for our
tasks is the material of the regions. For instance, it is un-
likely that a suitable surface for sitting surface is made of
glass. We used the annotations of [11], which provide ad-
ditional attribute annotations: wood, painted, cotton, glass,
glossy, plastic, shiny, textured.

We train a linear multi-class SVM on a 1024 dimensional
histogram of SIFT codebooks, where the output label is one
of the eight material attributes that we consider. The feature
is the confidence for each attribute so it has 8 dimensions.

2D Appearance: To capture the 2D appearance or tex-
ture of the regions, we use kernel descriptors (KDES) [1].
Basically, KDES converts pixel-level similarity functions
(kernels) to descriptors for a patch. [7] uses 6 types of ker-
nels: gradient, color, local binary pattern, depth gradient,
surface normal, and KPCA/self-similarity. Kernel descrip-
tors are combined over regions using Efficient Match Ker-
nels (EMK) [2]. We ignore the 3D kernels to compute this
feature.

3D Shape: We use 3D shape as one of our cues since
the tasks that humans perform happen in 3D environments,
and 2D images alone are ambiguous in that the entire 3D
structure of the scene is projected onto a 2D image.

We use the implementation of [9] for computing the 3D
shape features. Their feature is comprised of four different
3D cues. The features are computed on cubic cells, which
are generated by dividing the 3D scene into cubic cells of
size 0.1.

The first cue is the point density, which shows the num-
ber of points in each voxel inside a cell (the cells are divided
into 6 × 6 × 6 voxels). A histogram represents the number
of points in each voxel. In addition to the first order statis-
tics, the second order statistics (count difference) are also
considered. For more details, refer to [9].

The second cue is the distribution of points inside each
voxel. The point cloud distribution inside each voxel is
represented by scatter-ness, linear-ness, and surface-ness,
which are computed based on the principal components of
the point cloud.

The third cue is 3D normals, which is similar to our sur-
face normal feature. The fourth cue captures the global
shape statistics and it is based on Truncated Signed Distance
Function (TSDF). For each voxel, the distance between its
center and the nearest object point on the line of sight of the
camera is used to compute this cue.

All of these cues are represented as a histogram for a spe-
cific cell. To compute the feature for our regions, we check
which cells overlap the regions and compute the average of
the histograms corresponding to the cells that overlap with
the region.

Distance to any Object: The intuition for this feature is
that for some tasks, we might need to know only the dis-
tance to the surrounding objects and we do not need to rea-
son about the actual appearance of the surrounding objects.

To compute this feature, we rely on a set of object cuboid
hypotheses that are generated by the method of [6]. First, a
set of 3D regions are generated from the scene point cloud
in a bottom-up fashion (extension of CPMC [3] to 3D). We
use the setting that generates 15 cuboids per image as it
produces a reasonable recall for the dataset that we use for
our experiments. Our feature has 6 dimensions, where the
first three dimensions represent the distance between a re-
gion and the closest cuboid visible in the image. The dis-
tance corresponds to the distance of the closest points of the
cuboid and the region in 3D. We consider the distance in x,
y, and z coordinates separately. The second three dimen-
sions correspond to the average of the distances between
the region and the 15 cuboids extracted for an image. If a
region overlaps with a cube, the distance will be zero. Fig-
ure 3 (in the paper) illustrates the cubes and their distance
to a region.

Distance to Instances of a Particular Category: In
computing the above feature, we ignored the category of
the object, but in some cases the category of the surround-
ing objects (contextual information) is very informative for
a task. For instance, there is a high chance that a surface
next to a cup is a suitable surface for putting since it prob-
ably supports the cup, and the cup is in a stable condition.
Hence, it might be a stable surface for other objects too.

For this feature we again rely on the method of [6], but
we use their object classification results. Their method de-



termines the category of each cuboid (among the 21 cat-
egories they consider and background). We consider 6
dimensions for each category of interest (+background).
Hence, for K object categories, we have have 6(K + 1)
entries in the feature vector. Similar to above, for each cate-
gory, we use the distance of the region to the closest cuboid
of a particular category in x, y, and z coordinates. We also
use the average distance to all of the cuboids of a category
(similar to the average used for computing the above fea-
ture). If a category does not exist in an image, we zero out
all of the 6 entries corresponding to that category and set
the bias term to 1. We have K bias terms in the feature vec-
tor so the total size of the feature vector is 6(K + 1) +K.
Note that we rotate the scene so that the y direction points
upward and we get a consistent set of distances across im-
ages. We use the categories that [6] predicts so K = 21 in
our experiments.

Support Relations: Support relationships are another
important cue for task-based reasoning. For example, if a
surface is a supporter for an object, there is a high chance
that it is a good candidate for putting.

To compute this feature, we use the method of [8] that
estimates support relationships between pairs of regions in a
scene. Their assumption is that a region can have one of the
following states: (1) supported from behind, (2) supported
from below, (3) supported by a hidden object, (4) ground
(not supported by other regions). [8] predicts the support
state based on a set of features that are defined on pairs of
regions.

We compute our support feature based on the output of
the prediction made by [8]. Our feature has the following
form: f = [fbh, fbl, bbh, bbl, bg, bh], where the first two terms
correspond to the actual features and the last four terms are
bias terms. If the predicted state for region i is state (1)
(defined above), we find region j that supports i (according
to the prediction). We use the feature that [8] defines on the
pair i − j as fbh. In this case, bbl = 1, and the rest of the
terms will be zero. Similarly, for predicted state (2), only
fbl and bbh are set, and the rest of the terms will be 0. If the
predicted state is (3) or (4), we set bbl and bbh and either bg
or bh (depending on the ground or hidden prediction) to 1.
fbh and fbl will be zero in this case.

Object Size: We hypothesize that object size is another
important cue for task-based recognition. For instance, a
large object (e.g., bed) cannot be grasped. Our regions
sometimes cover part of objects so their size is not a good
indicative of the object size. Therefore, we rely on the ob-
ject cuboids generated by [6] (used above). For each region,
we find the cuboid that has the largest overlap with the re-
gion (the overlap is defined as the size of the intersection of
the region and the cuboid in 3D divided by the region size).
The feature for each region is the cuboid volume, area of
the largest surface, and area of the smallest surface of the

cuboid, hence the feature has 3 dimensions. We use the set-
ting of [6] that generates 15 cuboids per image.

4. Tasks
The results of Figure 7 in the paper are based on the fol-

lowing 15 tasks:

1. Put the cup on the shelf.

2. Sit on the sofa.

3. Put the book on the desk.

4. Walk to the door.

5. Put pillow on the bed.

6. Sit on the desk.

7. Walk away from the window.

8. Grasp the bottle.

9. Put the cup in the sink.

10. Walk towards the window with blinds.

11. Grasp the bag.

12. Grasp the papers and walk towards the trash bin.

13. Put the box next to the cabinet.

14. Put the papers in the trash bin.

15. Walk to find my clothes.

5. Further implementation details
We consider a rough estimate for the feature costs since

the feature computation time depends on the complexity of
the image, type of objects present in a scene, etc. The costs
that we considered for computing features for each image
are as follows (they are just relative costs and do not have
a specific unit): Height: 1, Surface normal: 1, Material at-
tributes: 2, 2D appearance: 20, 3D shape: 15, Distance to
any object: 10, Distance to instances of a particular cate-
gory: 30, Support relations: 20, and Object size: 10.

For the baseline methods in Table 1 of the paper [5, 10],
we used their publicly available implementation. For [5],
we used KNN-Euclidean setting since it produced the best
results for that method. For the linear SVM with L1 regu-
larization we used the implementation of [4].

To compute our curves we used 20 different values of λ
between 10−7 and 0.05.

6. Curves for known SHUTs in Table 1
In Figure 3, we provide the curves corresponding to four

main methods mentioned in Table 1 (top) in the paper.
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Figure 3: Classification AP vs (1-fraction of total cost) plots.


