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1. COMPUTATIONAL MODELS 

 

 
 
Figure S1. Visualization of the image representation for a subset of the models tested. (A) Original Image (B) Coarse footprint 
extracts a coarse description of the image. (C) Geometric blur representation. The square patches are the regions around the 
interest points overlaid on the edge image found using Canny edge detector. (D) SIFT representation. The blue arrows indicate 
the magnitude and direction of the gradient at key-points. (E) Fourier power represents the power in each spatial frequency (along 
both x & y) (F) Fourier phase represents the phase of each spatial frequency (along both x & y) (G) Scene Gist represents the 
output of a bank of Gabor filters operating on non-overlapping windows in the image. (H) V1 represents the image as a bank of 
oriented filters. The plots show outputs of 16 model V1 units. (I) Input image for boundary-based models (J) Fourier Descriptor 
(FD) represents the strength of frequency components along the contour of the object (K) Tangent Angle Length represents the 

frequency (cycles/length)

am
pl

itu
de

length along the contour

Ta
ng

en
t a

ng
le

 (d
eg

re
e)

360

0

1

0
length along the contour

G
au

ss
ia

n 
bl

ur
 (s

ig
m

a)

Curvature Zero Crossings

View-tuned

MAX
weighted sum

S1

C1

C2

S2

gabor
css
gb
jar
cl

sse
hog
sift
tal

gist
fph
fd

tsyn
hmaxc1

cfp
ssim

v1
fp

cnn

ga
bo

r
cs

s
gb ja

r
cl ss

e
ho

g
si

ft
ta

l
gi

st
fp

h
fd ts

yn
hm

ax
c1

cf
p

ss
im

v1 fp cn
n

Image Coarse footprint Geometric Blur SIFT

Fourier Power Fourier Phase Scene Gist V1

Silhouette Image

Fourier Descriptor Tangent Angle - Length Curvature Scale Space

HMAX

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9convolutional layer (1)

convolutional layer (2)

convolutional layer (5)

fully connected layer (1)

fully connected layer (2)

fully connected layer (3)

input image

output probability score

Convolutional 
Neural Network Correlation between model distances

features

A B C D

E F G H

I J K L

M N O

features



tangent angle of the boundary at regular locations along the entire length. (L) Curvature Scale Space represents a closed contour 

as a set of zero-crossings of curvature at multiple spatial scales. The plot shows the curvature zero crossing map with the scale 

space features marked in red. (M) HMAX model. The figure shows the alternating layers of simple and complex cells ultimately 

leading to view-tuned cells (from Riesenhuber and Poggio, 1999). (N) Convolutional Neural Network. An input image is passed 

through various convolutional and fully-connected layers of artificial neural units before computing the output probability score 

(likelihood of belonging to each category). We used the output of penultimate fully-connected layer as the feature vector. (O) 

Correlation between model distances. This plot shows the correlation between unweighted feature distances of all 26,675 pairs of 

objects between pairs of models. 
 

DETAILED MODEL DESCRIPTIONS 

All images in the dataset were scaled to a square frame of 140 pixels which was given as input to each model. In 

some models (CNN, TSYN), the input image is rescaled to another size before feature extraction in their standard 

implementation, and therefore we retained this rescaling step.   

 
Pixel based models 

1. Sum-of-squared error (SSE): This is the simplest of all models where pixel intensities are considered as 

features (Figure S1A). For a given pair of images, one of the images was linearly shifted in the x and y 

directions over the other image. The lowest sum of squared difference across all possible shifts was taken 

as the distance between the two images. (Number of features = 19,600) 

2. Coarse footprint (CFP): This model has been previously used to explain image similarity driven by coarse 

structure of objects (Sripati and Olson, 2010, Mohan and Arun, 2012). The images were first shifted and 

scaled to a constant frame without changing the aspect ratio. Then, the images were low-pass filtered using 

a Gaussian filter. These filtered images were then normalized to have a total intensity of 1. An example 

coarse footprint image is shown in Figure S1B. Coarse footprint distance between any two images was 

calculated as the city-block distance between the images. (Number of features = 19,600) 
 
Boundary based models 

Boundary based models compute features on the digital boundary extracted from the image. Natural objects 

were converted to silhouette images before extracting boundary-based features. 

1. Curvature scale space (CSS): This method was proposed to solve planar curve matching problem using 

descriptions at varying levels of detail (Mokhtarian and Mackworth, 1986, Mokhtarian, 1995). First, the 

external contour (a set of x-y co-ordinates) of the object is extracted and convolved with gaussian kernel 

with varying levels of standard deviation (σ) to get coarser representations of the object contour. Then, for 

each σ, curvature along the contour is calculated and points of inflections (curvature zero-crossing) are 

found. A plot of curvature zero-crossings along the curve for various values of σ is known as the curvature 

scale space image (Figure S1L). Local maxima in the curvature scale space image at a particular threshold 

of detail (σth) are considered to be features. That is, a set of co-ordinates (length, σ) form the feature 

representation. For any given pair of contours, the corresponding feature points are shifted to yield closest 

match and the Euclidean distance between the features is computed. (Number of features = 6) 

2. Curvature length (CL): Curvature-Length representation of an object contour is obtained by computing the 

curvature (κ) at every point on the contour as a function of cumulative length of the contour. Curvature at a 

point on a digital curve (x(t), y(t)) is calculated as, 

κ(t) =  
x′y′′ −  y′x′′

(x′2 + y′2)
3
2

 where t = [0,1] 

where, x’ and y’ represent first derivative and x’’ and y’’ represent second derivative with respect to the 

normalized contour (t). Distance between two contours is calculated as the Euclidean distance between the 

curvature-length representations of the contours. We used gaussian windows with various levels of 

variance to smooth the contour before computing Curvature Length representation. Specifically, we used 

101 levels of gaussian variance (0 to 1 in steps of 0.01) and chose the level of smoothening (= 0.23) that 

gave best correlation with observed dissimilarity. (Number of features = 200) 

3. Tangent Angle Length (TAL) representation: Tangent Angle-Length representation is a simple 

representation of the object contour obtained by computing tangent angle at every point on the contour. The 

tangent angle, in the range [0, 360), is calculated at every point on the contour and represented as a function 

of cumulative length of the contour (Figure S1K). The Euclidean distance between two TAL 

representations is considered as the measure of dissimilarity. We used gaussian windows with various 

levels of variance to smooth the contour before computing Tangent Angle Length representation. 

Specifically, we used 101 levels of gaussian variance (0 to 1 in steps of 0.01) and computed correlations 



between observed and model dissimilarities. However, the best correlation was obtained for gaussian 

variance of 0. (Number of features = 200) 

4. Fourier descriptor (FD): Fourier descriptors are used to represent contours of objects in the x-y plane 

(Zahn and Roskies, 1972). An N-point digital contour of an object is transformed into a sequence of N 

complex numbers as, 𝑧(𝑛) =  𝑥(𝑛) +  𝑗𝑦(𝑛) 𝑓𝑜𝑟 𝑛 = 1,2 … 𝑁. The discrete Fourier transform (DFT) of the 

sequence z(n) is computed and the resulting set of Fourier coefficients form the Fourier descriptors of the 

contour. Instead of considering all coefficients, only the first few coefficients can be used to match two 

contours. Specifically, the distance between two contours can be calculated as the Euclidean distance 

between the first K coefficients of the Fourier descriptor representation. In our experiments, we chose N = 

500 and used a range of values for K (2 to 500 in steps of 2) and obtained the best correlation between 

model distances and perceived dissimilarities for K = 10. Fourier descriptor representation for the ‘tiger’ 

image is shown in Figure S1J. (Number of features = 500) 

 
Feature based models 

1. Gabor Filterbank (Gabor): The features in this model are the projections of an image onto a Gabor wavelet 

pyramid. The Gabor wavelet pyramid model used in our experiments is a simplified version used in a 

previous study (Kay et al., 2008) obtained from the Image Similarity Toolbox 

(https://github.com/daseibert/image_similarity_toolbox/). The Gabor wavelet filters span eight orientations 

(in multiples of π/8), four sizes (covering 100%, 33%, 11% and 3.7% of the image) and different shifts 

across the image such that the filters tile the entire image for each filter size. The vectors of filter responses 

are compared between images by computing Euclidean distance. (Number of features = 1,3600) 

2. Geometric Blur (GB): Geometric blur computes local image properties at selected interest points (Berg and 

Malik, 2001,  

3. Berg et al.,2005). These interest points were randomly selected from edges found by a Canny edge detector 

(Canny, 1986). Apart from local image properties, the relative locations of the interest points were also 

considered, thus incorporating global geometric properties of the image in the representation. Feature 

vector was formed by collecting low-pass filtered pixel values sampled regularly along radiating circles 

around the interest points. The amount of low-pass filtering was proportional to the distance between the 

pixel and the interest point. For a pair of images, the interest points were matched and the dissimilarity for 

each pair of points was computed by taking the weighted sum of the negative correlation between the 

corresponding feature vectors, the Euclidean distance between the points, and the change in circle 

orientation ( 

4. Berg et al.,2005). The total dissimilarity between the images was calculated by summing the dissimilarities 

for all pairs of interest points. We used an implementation of Geometric Blur found in Image Similarity 

Toolbox with default parameters, available at (https://github.com/daseibert/image_similarity_toolbox/). 

The interest points for the ‘tiger’ image are shown as small patches on the Canny edge image (Figure S1C).  

5. Scale Invariant Feature Transform (SIFT): SIFT is a hugely popular algorithm in computer vision mainly 

used to describe local features in images (Lowe, 2004). It has been widely used in object recognition, 

object tracking and image stitching. We used the well-known VLFeat package (http://www.vlfeat.org/) to 

extract SIFT key-points and feature vectors. The feature vectors were remapped by pooling across all 

images and clustering them using Matlab’s inbuilt k-means clustering algorithm with k = 15. In this way, 

every feature was assigned to a cluster and a histogram of cluster IDs was computed for each image. These 

histograms were compared using KL divergence to obtain distances between images. SIFT key-points for 

the ‘tiger’ image in Figure S1A is shown in Figure S1D. The magnitude and direction of the arrows 

indicate the magnitude and direction of the gradient respectively. To get Principal Components for SIFT 

model, we chose k = 100 and computed higher dimensional feature vectors. (Number of features = 15 or 

100) 

6. Histogram of Oriented Gradients (HOG): This is one of the widely used feature descriptors in computer 

vision for the purpose of object detection (Dalal and Triggs, 2005). In this representation, the image is 

broken down into overlapping blocks spanning the entire image space. Then, a normalized histogram of 

gradient orientations is calculated for every block. The computed histograms for all blocks of the image are 

concatenated to obtain the feature representation. We used the Matlab inbuilt function extractHOGFeatures 

with default parameters to compute HOG feature for an image. Distance between two HOG representations 

was calculated as the Euclidean distance. (Number of features = 9,216) 

7. Scene Gist (GIST): Scene Gist was specially proposed for recognizing scenes rather than objects (Oliva and 

Torralba, 2001). However, this representation has been used previously to measure contextual influences 

on object recognition (Leeds et al., 2013). In this model, each image is represented as a weighted sum of 

bases, found through PCA on windowed Fourier transform of the image. The number of bases was chosen 

such that the image could be reconstructed with minimum error. The weights used for bases during 

https://github.com/daseibert/image_similarity_toolbox/


reconstruction were treated as features. We used an implementation of scene gist in Image Similarity 

Toolbox (https://github.com/daseibert/image_similarity_toolbox/). The feature vector for each image was 

normalized to sum to 1. The distance between each pair of images was calculated as the KL divergence 

between the corresponding normalized feature vectors. The scene gist representation of the ‘tiger’ image is 

shown in Figure S1G where blocks represent non-overlapping windows, colours represent scale and 

saturation represents orientation of the basis functions. (Number of features = 320) 

8. Fourier Phase (FPh): The Fourier phase representation of an image is also computed by taking the 2-D 

Discrete Fourier transform. However, instead of computing the magnitude of Fourier coefficients, we 

calculate the angle (or phase) of the coefficients. The Euclidean distance between two such phase 

representations is considered as the distance measure. The Fourier phase representation for the ‘tiger’ 

image in Figure S1A is shown in Figure S1F. (Number of features = 19,600) 

9. Fourier Power (FP): The Fourier power of an image is computed by taking the 2-D Discrete Fourier 

transform. The magnitude of the Fourier coefficients are calculated and normalized to have unit power. The 

Euclidean distance between two such normalized magnitude spectra is taken as the distance measure. The 

Fourier power representation for the ‘tiger’ image in Figure S1A is shown in Figure S1E. (Number of 

features = 19,600) 

 
Statistical models 

1. Texture Synthesis (TSYN): We tested a popular texture synthesis/analysis model (Portilla and Simoncelli, 

2000). In this model, each image is passed through wavelet filters where it is initially split into high- and 

low-pass bands. The low-pass band is further split into a lower frequency band and various orientation sub-

bands. Finally, the image is characterized by a set of statistics (central moments, range of pixel intensities, 

and correlation) computed on filter outputs or coefficients at adjacent spatial locations, orientations and 

scales. We used a MATLAB implementation of the Texture Synthesis algorithm available online 

(http://www.cns.nyu.edu/~lcv/texture/). We used wavelet filters corresponding to 5 scales and 4 

orientations with a pixel neighbourhood of 9 pixels. All the statistics were concatenated to form a single 

feature vector for each image. (Number of features = 3,027)   

2. Structural Similarity Index (SSIM): SSIM is used for measuring similarity between two images (Wang 

et al., 2004). This measure was designed to closely mirror human visual perception of 

distortions/degradations in an image. The SSIM between two image patches x and y of same size is given 

by, 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 +  𝜇𝑦

2 + 𝑐2)(𝜎𝑥
2 +  𝜎𝑦

2 + 𝑐2)
 

Where 𝜇𝑥 and 𝜇𝑦 are the averages and σx and σx are the variances of image patches x and y respectively. σxy 

is the covariance of x and y and c1 and c2 are constants. We used the Matlab implementation of SSIM with 

default values to get similarity measure between each pair of images. We used the structural dissimilarity 

index, defined as 
(1−𝑆𝑆𝐼𝑀(𝑥,𝑦))

2
, to get distances between images. 

 
Network-based models 

1. Jarrett et. al. model (Jar): This is a biologically inspired hierarchical model with one stage of random 

filters with no learning involved (Jarrett et al., 2009). This model is described as Fcsg – Rabs – N – Pa in the 

literature where a first stage of random filters is followed by stages of divisive normalization, out-put 

nonlinearity and pooling. For a given image, the output of every unit in this model was converted into a 

histogram of pixel values. All such histograms were collected to form the feature representation. KL 

divergence between feature vectors of two images was computed to get distances. (Number of features = 

2624) 

2. HMAX: HMAX is a popular biologically inspired model of object representation with several layers of 

units (Riesenhuber and Poggio, 1999). These units are labelled as simple (S) and complex (C) because of 

their resemblance to the simple and complex cells in the primary visual cortex. These layers of units 

alternate between summing and winner-take-all (max) computations. We used an implementation of 

HMAX-C1 model provided in the Image Similarity toolbox 

(https://github.com/daseibert/image_similarity_toolbox/) to get feature vectors corresponding to images. 

Euclidean distance between two feature vectors was computed as the distance measure between images. A 

schematic of HMAX model is shown in Figure S1M. (Number of features = 1728) 

3. V1 model (V1): We used a standard V1 model consisting of Gabor filters (Pinto et al., 2008). This model 

produced responses of a population of V1-like neurons using a bank of Gabor filters with output divisive 

normalization. The output of our implementation of the V1 model consisted of the activity of 48 (= 6 

spatial frequencies x 8 orientations) model neurons in response to an image. The outputs of all the model 

neurons were concatenated to create a feature vector. The Euclidean distance between two feature vectors 

http://www.cns.nyu.edu/~lcv/texture/


was calculated as the distance between two images. Figure S1H shows the output of 16 model V1 neurons 

in response to the ‘tiger’ image. (Number of features = 940,800) 

4. Convolutional Neural Network (CNN): Convolutional Neural Networks are a class of computational 

models that are inspired by the hierarchical nature of computations in the brain. These models have gained 

widespread acclaim in recent years with state-of-the-art performances in various visual tasks. There are 

various implementations of CNNs available in the literature with various parameter choices and learning 

techniques. In this study, we used a pre-trained CNN (VGG-16, 

http://www.vlfeat.org/matconvnet/pretrained/) with 3x3 convolutional filters and 16 weight layers 

(Simonyan and Zisserman, 2014). We used the outputs of the penultimate fully connected layer as features 

(Figure S1N). Hence, each image was represented by a collection of activities of 4,096 units. For each pair 

of images, the Euclidean distance between feature vectors was computed as distance. (Number of features 

= 4,096, fully connected layer) 
 
 

  

http://www.vlfeat.org/matconvnet/pretrained/


2. RESIDUAL ERROR PATTERNS FOR 100-PC BASED MODELS 

 

 
 
Figure S2. Residual error patterns for models after fitting to the perceptual data. We repeated the analysis in Figure 6 
except that each model was fit to the perceptual data using the weighted sum of the feature differences along the first 100 
principal components. (A) Correlation between symmetry strength and residual error across object pairs for each model. Error 
bars indicate standard deviation. All correlations are significant with p < 0.05. Non-significant correlations are indicated as “n.s”. 
(B) Correlation between area ratio and residual error across object pairs for each model. (C) Average residual error across image 
pairs with zero, one or two shared parts. (D) Average residual error for objects pairs related by view, mirror reflection, shape and 
texture. 
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3. GENERALIZATION OF THE BEST MODEL TO NOVEL EXPERIMENTS 

 Although the best model (comb2) shows a good cross-validated prediction of the perceptual data, this may 
not accurately represent its ability to generalize to novel images. This is because the model is trained each time on 
80% of the image pairs but these image pairs may contain all the images in the dataset. Because our dataset is based 
on 32 distinct experiments which contain non-overlapping sets of images, we asked whether the comb2 model would 
predict the outcome of each experiment when it is trained on all other experiments. The resulting model 
performance, expressed as usual in terms of the percentage of the variance explained is shown in Figure S3. The best 
model was able to generalize to many new experiments, but not to all experiments. Specifically, the model 
generalized poorly to experiments containing similar natural objects, objects in multiple views, symmetric objects, 
broken objects and to sets of natural objects containing vehicles. This pattern was similar even when the best model 
was trained and tested exclusively on individual experiments (Supplementary Section S4). Note that although the 
experiments contained distinct images, they share many properties: for instance, several experiments contained 
symmetric objects, mirror images and objects in multiple views. Yet the best model generalized well to specific 
experiments and did not generalize to others. These patterns are similar to the residual error patterns reported in the 
main text.  

 

Figure S3. Generalization of the best model to novel experiments. Each bar represents the amount of variance explained by 
the best model (comb2) when it was trained on all other experiments and tested on the image pairs of that particular experiment. 
The text inside each bar summarizes the images and image pairs used, and the image centered below each bar depict two example 
images from each experiment.  
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4. BEST MODEL PERFORMANCE WHEN FITTED TO INDIVIDUAL EXPERIMENTS 

In the previous section, we investigated the generalization capabilities of the best model (comb2) to novel 
experiments when trained on other experiments. Here, we set out to explore whether the trends observed previously 
hold even when the best model was trained to predict data from the same experiment. We considered 16 experiments 
which had perceptual data for at least 1000 image pairs and trained the model on 800 image pairs for each individual 
experiment. The model was then tested on a separate test set containing 200 image pairs. This procedure was 
repeated 10 times for each experiment and the average variance explained was computed (Figure S4). Interestingly, 
we saw similar trends as observed before. Thus, even the best model shows specific deviations from perception and 
these deviations are preserved when the model is trained on individual experiments. 

 
 

 
Figure S4. Best model performance on individual experiments. To investigate how well the best model (comb2) fits the data 
from each experiment, we selected 1000 image pairs from 16 experiments containing more than this number of pairs, and trained 
the model using 80-20 cross-validation as before. In the resulting plot, the bars represent the variance explained on the test set. 
The text inside each bar summarizes the images and image pairs used, and the image centered below each bar depicts two 
examples objects from each experiment.   
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