
Supplemtary Materials

1. Proof of Proposition 3.1
Without loss of generality, we may assume ‖Di‖ = 1 for

all i. From the definition of Φ, we know

‖Φ(Di)‖22 = 〈Φ(Di),Φ(Di)〉 = ψ(0), ∀i,

and
〈Φ(Di),Φ(Dj)〉 = ψ(2− 2µ0), ∀i 6= j.

We complete the proof by noting c0 =
√
ψ(0) and η =

ψ(2− 2µ0).

2. Proof of Proposition 3.5
Since H(C,D) = 1

2Tr(C>QC − 2K(D,Y )>C) and
k(x, y) = exp(−‖x− y‖22/2σ2), we have

∇CH(C,D) = QC −K(D,Y ),

∇D`
H(C,D) =

n∑
i=1

a`i(D` − Yi), ∀`,
(1)

where a`i = − 1
σ2C`i exp

(
− ‖D`−Yi‖22

2σ2

)
.

As ∇2
CH(C,D) = Q implies that ∇CH(C,D) is

Lipschitz with modulus λmax(Q), where λmax(Q) is the
maximal eigenvalue of Q. Moreover, the Hessian matrix
∇2
D`
H(C,D) is given by

n∑
i=1

a`i
(
I − 1

σ2
(D` − Yi)(D` − Yi)>

)
.

By the fact (1 − ‖y‖22)2 ≤ ‖d − y‖2 ≤ (1 + ‖y‖22)2 for
any ‖d‖2 = 1, we have |a`i| ≤ 1

σ2 |C`i| exp(− (1−‖Yi‖22)
2σ2 )

and the maximal eigenvalue is bounded by 1 + 1
σ2 ‖D` −

Yi‖22 ≤ 1 + 1
σ2 (1 + ‖Yi‖22)2. Thus, the maximal eigenvalue

of∇2
D`
H(C,D) is bounded by L(C`) which is defined as

n∑
i=1

1
σ2 |C`i| exp(− 1+‖Yi‖22

2σ2 )(1 + 1
σ2 (1 + ‖Yi‖22)2). (2)

3. Numerical Algorithm for The Supervised
Equiangular Kernel Sparse Coding Prob-
lem (16)

Recall that the supervised extension of our equiangular
kernel dictionary learning method is formulated as the fol-

lowing minimization model:

min
D∈D,C∈C,W

1
2Tr(C>QC − 2K(D,Y )>C)

+ β
2 ‖L−WC‖2F + α

2 ‖W‖
2
F ,

(3)

where C = {C : ‖C‖∞ ≤ M, ‖Cz‖0 ≤ T, ∀z} and D =
{D : D>D = DD> = I} . We give the detailed algorithm
for solving (3) as follows. Define

H(C,D,W ) = 1
2Tr(C>QC − 2K(Y,D)>C) + β

2 ‖L−WC‖2F ,
F (C) = δC(C), G(D) = δD(C), E(W ) = α

2 ‖W‖
2
F .

Then the sparse code C, dictionary D and classifier W are
updated by the following proximal alternating scheme.
1. Kernel sparse coding. When the dictionary D and the
classifierW are fixed, we update the sparse codeC via solv-
ing:

Cj+1 ∈ argmin
C

F (C) + sj

2 ‖C − U
j‖2F , (4)

where U j = Cj − ∇CH(Cj , Dj ,W j)/sj and sj is some
positive step size. This subproblem has a closed-form solu-
tion given by

Cj+1 = sign(U j)� argmin(HT (|U j |),M), (5)

where HT (X) keeps the largest T entries in each column
of X and sets others to zero.
2. Dictionary update. When the sparse code C and the
classifier W are fixed, the update of dictionary D is the
same as that in the unsupervised version, i.e. we update the
dictionary D by solving

Dj+1 ∈ argmin
D

G(D) + tj

2 ‖D − V
j‖2F , (6)

where V j = Dj−∇DH(Cj+1, Dj ,W j)/tj and tj is some
positive step size. This problem (6) has a closed-form solu-
tion given by the Proposition. 3.4 in our paper.
3. Classifier update. When the dictionary D and sparse
code C are fixed, we update W via solving the following
minimization:

argmin
W

β
2 ‖L−WCj‖2F + α

2 ‖W‖
2
F + pj

2 ‖W−W
j‖2F , (7)



where pj > 0. The solution of (7) is given by

W j+1 = (βLCj>+pjW j)(βCjCj>+(α+pj)I)−1. (8)

Setting of step size. The three step sizes pj , sj , tj are set
as follows. Since ‖W‖2F has coercive property, we know
W j is a bounded sequence and the maximal eigenvalue of
Q+W j>W j is defined by λjmax and λmax = max

j
(λjmax).

Given γj > 1, 0 < a < b and 0 < c < d such that b >
λmax for all j and d > Lmax, whereLmax = max{L(C`) :
` = 1, 2, . . . ,m,C ∈ C} and L(C`) is defined in (2).

sj = max(min(γjλ
j
max, b), a), (9a)

tj = max(min(γjL(Cj+1), d), c), (9b)

pj ∈ [pmin, pmax], (9c)

where L(Cj+1) = max({L(Cj+1
` ), ` = 1, 2, . . . ,m}) and

pmin, pmax are two positive numbers.
Convergence analysis. We can easily extend the conver-
gence result of Alg. 1 to the supervised version by checking
the conditions in the proof of Theorem 3.7. The proof is
omitted here.

4. Algorithm for Solving Problem (17)
The minimization problem (17) is equivalent to

min
X

Tr(X>AX −B>X), (10)

subject to ‖X‖0 ≤ T , where A = K(D,D) and B =
K(D,Y ). We use proximal gradient descent method to
solve (10). More specifically, we update X via

Xj+1 = sign(X̂j)�HT (|X̂j |), (11)

where X̂j = Xj − (AXj − B)/v and HT is defined in
(5). The step size v is set as v > λ(A) where λ(A) is the
maximal eigenvalue of A.

5. Details of The Global Feature Extraction
Given the sparse code C ∈ Rm×n×t×k of a DT se-

quence g ∈ Rm×n×t, we useC(i) = C(:, :, :, i) ∈ Rm×n×t
to denote the sparse code that corresponds to the ith dictio-
nary atom Di. As the sparse code is extracted by a sliding
window, C(i) can be viewed as a sequence whose size is
the same as the original DT sequence. Then, we extract a
histogram hA

(i) ∈ R
l0×1 on C(i) w.r.t. code value. More-

over, we extract three mean histograms along X, Y, and T
axes, which are denoted by hX

(i),h
Y
(i),h

T
(i) ∈ Rl1×1 respec-

tively. Take the X-axis case for example. We cut C(i) into
slices along the X axis, and compute a histogram w.r.t. code
value on each slice. These histograms are averaged to be the
mean histogram for the X axis. See Fig. 1 for an illustration
of such a process. Define h(i) = [hA

(i);h
X
(i);h

Y
(i);h

T
(i)]. The

final feature vector for g is the concatenation of h(i) over i.
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Figure 1. Calculation of space-time histograms in one coding
channel.


