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1. Proposing Layout Candidates
We predict floors and ceilings as the 0.001 and 0.999

quantiles of the 3D points along the gravity direction. After
that, we only need to propose wall candidates that follows
Manhattan structure.

We discretize orientation into 18 evenly spaced angles
between 0 and 180◦. For each orientation, the frontal wall
is bounded by the 0.99 quantiles of the farthest points and
the back wall is bounded by camera location. Because the
layout candidates should follow a Manhattan structure, the
left/right wall should be orthogonal to the frontal wall and
should be bounded by the 3D points. We further discretize
along the width and depth direction by 0.1m, and propose
candidates that capture at least 80% of all 3D points. For
typical scenes, there are 5,000-20,000 layout hypotheses.

2. Contextual Features
Here, we give a detailed explanation of the contextual

features we use to model object-object and object-layout re-
lationships in the second stage cascaded classifier.

For completeness, we define the notations again. For an
overlapping pair of detected bounding boxesBi andBj , we
denote their volumes as V (Bi) and V (Bj), their volume of
their overlap asO(Bi, Bj), and the volume of their union as
U(Bi, Bj). We characterize their geometric relationship via
three features: S1(i, j) =

O(Bi,Bj)
V (Bi)

, S2(i, j) =
O(Bi,Bj)
V (Bj)

,

and the IOU S3(i, j) =
O(Bi,Bj)
U(Bi,Bj)

. To model object-layout
context [1], we compute the distance D(Bi,M) and angle
A(Bi,M) of cuboid Bi to the closest wall in layout M .

The first-stage detectors provide a most-probable layout
hypothesis, as well as a set of detections (following non-
maximum suppression) for each category. For each bound-
ing box Bi with confidence score zi, there may be several
bounding boxes of various categories c ∈ {1, 2, ..., C} that
overlap with it. We let ic be the instance of category c
with the maximum confidence score zic . The features ψi

for bounding box Bi are then as follows:
1. Constant bias feature, and confidence score zi from the

first-stage detector.

2. For m ∈ {1, 2, 3} and c ∈ {1, 2, ..., C}, we calculate
Sm(i, ic), Sm(i, ic) ·zic , Sm(i, ic) ·zi and concatenate
those numbers.

3. For c ∈ {1, 2, ..., C}, we calculate the difference in
confidence score from each first-stage detector, zi −
zic , and concatenate those numbers.

4. For D(Bi,M), we consider radial basis functions of
the form

fj(x) = exp(− (x− µj)
2

2σ2
) (1)

For a typical indoor scene, the largest object-to-wall
distance is usually less than 5m, therefore we space
the basis function centers µj evenly between 0 and 5
with step size 0.5, and choose σ = 0.5. We expand
D(Bi,M) using this radial basis expansion.

5. The absolute value of the cosine of D(Bi,M):
| cos(D(Bi,M))|

To model the second-stage layout candidates, we se-
lect the bounding box ic with the highest confidence score
zic from the first-stage classifier in each category c ∈
{1, 2, ..., C}, and use the following features for layout Mi

with confidence score z′i:

1. All the features used in the first-stage to model Mi us-
ing Manhattan Voxels.

2. For c ∈ {1, 2, ..., C}, we calculate the radial basis ex-
pansion for D(Bic ,Mi), and its product with z′i and
zic .

3. For c ∈ {1, 2, ..., C}, we calculate the absolute value
of the cosine of D(Bic ,Mi): | cos(D(Bic ,Mi))|,
| cos(D(Bic ,Mi))| · z′i and | cos(D(Bic ,Mi))| · zic .

4. For c ∈ {1, 2, ..., C}, we calculate the difference in
confidence score from each first-stage detector, z′i −
zic , and concatenate those numbers.
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3. Additional Experimental Results
Orientation Besides evaluating detection based on
intersection-over-union score, we can also evaluate the ac-
curacy of the predicted orientations. We plot the cumulative
counts of true positive detections whose orientation error
in degrees is less than certain thresholds in Fig. 1. Using
geometric feature and COG, our detector is able to detect
more true positives than sliding-shape [3], while maintain-
ing comparable accuracy in orientation estimation. Those
curves are not related to the precision-recall curves as we
are only evaluating on true positives.
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Figure 1. Quantification of orientation estimation accuracy for the
four object categories considered by [2].

Additional Layout Prediction results Besides the two
examples for layout prediction shown in the paper, in fig-
ure 2 we show some additional results to demonstrate the
effectiveness of Manhattan Voxels.
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Figure 2. Comparison of our Manhattan voxel 3D layout pre-
dictions (blue) to the SUN RGB-D baseline ([2], green) and the
ground truth annotations (red). Our learning-based approach is
less sensitive to outliers and degrades gracefully in cases where
the true scene structure violates the Manhattan world assumption.


