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1. Additional Results
1.1. Qualitative Results on the WH-SYMMAX

Dataset

Qualitative comparisons on the WH-SYMMAX
Dataset [3] are illustrated in Fig. 1.

Figure 1. Illustration of skeleton extraction results on the
WH-SYMMAX dataset [3] for several selected images. The
groundtruth skeletons are in yellow and the thresholded extrac-
tion results are in red. Thresholds were optimized over the whole
dataset.

1.2. Qualitative Results on the SYMMAX300
Dataset

A large number of groundtruths are labeled on non-
object parts in SYMMAX300 [4], which do not have orga-
nized structures as object skeletons. Our aim is to suppress
those on non-object parts, so that the obtained skeletons can
be used for other potential applications. In addition, the
groundtruths for scale are not provided by SYMMAX300.
Therefore, we do not evaluate our method quantitatively on
SYMMAX300. Even so, Fig. 2 shows that our method can
obtain good skeletons of some objects in SYMMAX300.
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We also observe that the results obtained by our method
have significantly less noises on background.

1.3. Symmetric Part Segmentation

To verify the usefulness of the extracted skeletons, we
follow the criteria in [2] for symmetric part segmentation.
We evaluate the ability of our skeleton to find segmentation
masks corresponding to object parts in a cluttered scene.
Our network provides a predicted scale for each skeleton
pixel (the fused skeleton score map for which scale has
maximal response). With it we can recover object parts
from skeletons. For each skeleton pixel xj , we can pre-
dict its scale by ŝj =

∑M
i=1 Pr(zj = i|X;Θ∗,Φ∗,a0∗)ri.

Then for a skeleton segment {xj , j = 1, . . . , N}, where
N is the number of the skeleton pixels in this segmen-
t, we can obtain a segmented object part mask by M =⋃N

j=1 Dj , where Dj is the disk of center xj and diame-
ter ŝj . A confidence score is also assigned to each object
part mask for quantitative evaluation: PM = 1

N

∑N
j=1(1−

Pr(zj = 0|X;Θ∗,Φ∗,a0∗)). We compare our segment-
ed part masks with Lee’s method [1] and Levinshtein’s
method [2] on their BSDS-Parts dataset [1], which contains
36 images annotated with ground-truth masks correspond-
ing to the symmetric parts of prominent objects. The seg-
mentation results are evaluated by the protocol used in [1]:
A segmentation maskMseg is counted as a hit if its overlap
with the ground-truth maskMgt is greater than 0.4, where
overlap is measured by intersection-over-union (IoU). A
precision/recall curve is obtained by varying a threshold
over the confidence scores of segmented masks. The quan-
titative evaluation results are summarized in Fig. 3, which
indicate a significant improvement over the other two meth-
ods. Some qualitative results on the BSDS-Parts dataset [1]
are shown in Fig. 4.
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Figure 2. Illustration of skeleton extraction results on the SYMMAX300 dataset [4] for several selected images. The groundtruth skeletons
are in yellow and the thresholded extraction results are in red. Thresholds were optimized over the whole dataset.

Figure 3. Symmetric part segmentation results on BSDS-Parts
dataset [1].
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Figure 4. Illustration of symmetric part segmentation results on
the BSDS-Parts dataset [1] for several selected images. In each
column, we show the orginal image, the segmentation groundtruth,
the thresholded extracted skeleton (in green), the segmented masks
recovered by the skeleton. Thresholds were optimized over the
whole dataset.
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