Supplementary Materials for "Proximal Riemannian Pursuit"

A. More detailed preliminaries

In this section, we first present more details about the rank-*s* matrix submanifold $\mathcal{M}_s = \{\mathbf{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\mathbf{X}) = s\}$, and based on \mathcal{M}_s we present the geometries on $\mathcal{M}_{\leq r} = \{\mathbf{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\mathbf{X}) \leq r\}$, where $s \leq r$.

A.1. Geometries of fixed-rank matrices \mathcal{M}_s

The fixed rank-*s* matrices lie on a smooth submanifold defined below $\mathcal{M}_s = \{\mathbf{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\mathbf{X}) = s\} = \{\operatorname{Udiag}(\boldsymbol{\sigma})\mathbf{V}^{\mathsf{T}} : \mathbf{U} \in \operatorname{St}_s^m, \mathbf{V} \in \operatorname{St}_s^n, ||\boldsymbol{\sigma}||_0 = s\}$, where $\operatorname{St}_s^m = \{\mathbf{U} \in \mathbb{R}^{m \times s} : \mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}\}$ denotes the Stiefel manifold of $m \times s$ real and orthonormal matrices, and the entries in $\boldsymbol{\sigma}$ are in descending order [51]. Moreover, the tangent space $T_{\mathbf{X}}\mathcal{M}_s$ at \mathbf{X} is given by

$$T_{\mathbf{X}}\mathcal{M}_{s} = \{\mathbf{U}\mathbf{M}\mathbf{V}^{\mathsf{T}} + \mathbf{U}_{p}\mathbf{V}^{\mathsf{T}} + \mathbf{U}\mathbf{V}_{p}^{\mathsf{T}} : \mathbf{M} \in \mathbb{R}^{s \times s}, \mathbf{U}_{p} \in \mathbb{R}^{m \times s}, \mathbf{U}_{p}^{\mathsf{T}}\mathbf{U} = \mathbf{0}, \mathbf{V}_{p} \in \mathbb{R}^{n \times s}, \mathbf{V}_{p}^{\mathsf{T}}\mathbf{V} = \mathbf{0}\}.$$
 (23)

Given $\mathbf{X} \in \mathcal{M}_s$ and $\mathbf{A}, \mathbf{B} \in T_{\mathbf{X}}\mathcal{M}_s$, by defining a metric $g_{\mathbf{X}}(\mathbf{A}, \mathbf{B}) = \langle \mathbf{A}, \mathbf{B} \rangle$, \mathcal{M}_s is a **Riemannian** manifold by restricting $\langle \mathbf{A}, \mathbf{B} \rangle$ to the *tangent bundle* [2], which is defined as the disjoint union of all tangent spaces $T\mathcal{M}_s = \bigcup_{\mathbf{X} \in \mathcal{M}_s} \{\mathbf{X}\} \times T_{\mathbf{X}}\mathcal{M}_s$. The norm of a tangent vector $\boldsymbol{\zeta}_{\mathbf{X}} \in T_{\mathbf{X}}\mathcal{M}_s$ evaluated at \mathbf{X} is defined as $||\boldsymbol{\zeta}_{\mathbf{X}}|| = \sqrt{\langle \boldsymbol{\zeta}_{\mathbf{X}}, \boldsymbol{\zeta}_{\mathbf{X}} \rangle}$.

Once the metric is fixed, the notion of the gradient of an objective function can be introduced. For a Riemannian manifold, the **Riemannian gradient** of a smooth function $f : \mathcal{M}_s \to \mathbb{R}$ at $\mathbf{X} \in \mathcal{M}_s$ is defined as the unique tangent vector $\operatorname{grad} f(\mathbf{X})$ in $T_{\mathbf{X}}\mathcal{M}_s$, such that $\langle \operatorname{grad} f(\mathbf{X}), \boldsymbol{\xi} \rangle = \mathrm{D}f(\mathbf{X})[\boldsymbol{\xi}], \ \forall \boldsymbol{\xi} \in$ $T_{\mathbf{X}}\mathcal{M}_s$. As \mathcal{M}_s is embedded in $\mathbb{R}^{m \times n}$, the Riemannian gradient of f is given as the **orthogonal projection** of the gradient of f onto the tangent space. Here, the orthogonal projection of any $\mathbf{Z} \in \mathbb{R}^{m \times n}$ onto the tangent space $T_{\mathbf{X}}\mathcal{M}_s$ at $\mathbf{X} = \mathrm{Udiag}(\boldsymbol{\sigma})\mathbf{V}^{\mathsf{T}}$ is defined as

$$P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{Z}): \mathbf{Z} \mapsto P_U \mathbf{Z} P_V + P_U^{\perp} \mathbf{Z} P_V + P_U \mathbf{Z} P_V^{\perp}.$$
(24)

where $P_U = \mathbf{U}\mathbf{U}^{\mathsf{T}}$ and $P_U^{\perp} = \mathbf{I} - \mathbf{U}\mathbf{U}^{\mathsf{T}}$. Letting $\mathbf{G} = \nabla f(\mathbf{X})$ be the gradient of $f(\mathbf{X})$ on vector space, it follows that

$$\operatorname{grad} f(\mathbf{X}) = P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{G}). \tag{25}$$

A *Retraction* mapping on \mathcal{M}_s relates an element in the tangent space to a corresponding point on the manifold. An retraction mapping is actually an approximated Riemannina exp mapping at the first order. In this paper, for a given tangent vector $\boldsymbol{\xi}$ at \mathbf{X} , we will make use of the following projection operator as the retraction mapping [2]. One of the issues associated with such retraction mappings is to find the best rank-*s* approximation to $\mathbf{X} + \boldsymbol{\xi}$ in terms of the Frobenius norm

$$R_{\mathbf{X}}(\boldsymbol{\xi}) = P_{\mathcal{M}_s}(\mathbf{X} + \boldsymbol{\xi})$$

= $\underset{\mathbf{Y} \in \mathcal{M}_s}{\operatorname{arg\,min}} ||\mathbf{Y} - (\mathbf{X} + \boldsymbol{\xi})||_F.$ (26)

where $\mathbf{X} + \boldsymbol{\xi}$ is defined on the vector space $\mathbb{R}^{m \times n}$. $R_{\mathbf{X}}(\boldsymbol{\xi})$ can be efficiently computer according to Algorithm 1 in the main paper.

A.2. Variety of low-rank matrices $\mathcal{M}_{\leq r}$

Given an integer $r \ge s \ge 0$, it would be more convenient to consider the closure of \mathcal{M}_r :

$$\mathcal{M}_{\leq r} = \{ \mathbf{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\mathbf{X}) \leq r \},\tag{27}$$

which is a real-algebraic variety [44]. Let $ran(\mathbf{X})$ be the column space of \mathbf{X} . In the singular points where $rank(\mathbf{X}) = s < r$, we will construct search directions in the tangent cone [44] (instead of the tangent space)

$$T_{\mathbf{X}}\mathcal{M}_{\leq r} = T_{\mathbf{X}}\mathcal{M}_s \oplus \{ \Xi_{r-s} \in \mathcal{U}^{\perp} \otimes \mathcal{V}^{\perp} \},$$
(28)

where $\mathcal{U} = \operatorname{ran}(\mathbf{X})$ and $\mathcal{V} = \operatorname{ran}(\mathbf{X}^{\mathsf{T}})$. Essentially, Ξ_{r-s} is a best rank-(r-s) approximation of $\mathbf{G} - P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{G})$, which can be cheaply computed with truncated SVD of rank (r-s). Let $\operatorname{grad} f(\mathbf{X}) \in T_{\mathbf{X}}\mathcal{M}_{\leq r}$ be the projection of \mathbf{G} on $T_{\mathbf{X}}\mathcal{M}_{\leq r}$. It can be computed by

$$\operatorname{grad} f(\mathbf{X}) = P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{G}) + \mathbf{\Xi}_{r-s}.$$
(29)

Given a search direction $\boldsymbol{\xi} \in T_{\mathbf{X}} \mathcal{M}_{\leq r}$, we need perform retraction which finds the best approximation by a matrix of rank at most r as measured in terms of the Frobenius norm, *i.e.*,

$$R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi}) = \arg\min_{\mathbf{Y}\in\mathcal{M}_{\leq r}} ||\mathbf{Y} - (\mathbf{X} + \boldsymbol{\xi})||_{F}.$$
(30)

Since $\Xi_{r-s} \in \mathcal{U}^{\perp} \otimes \mathcal{V}^{\perp}$, $R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})$ w.r.t. $\mathcal{M}_{\leq r}$ can be efficiently computed with the same complexity as on \mathcal{M}_r . In general, problem (30) can be addressed by performing SVD on $\mathbf{X} + \boldsymbol{\xi}$, which may be computationally expensive.

A.3. Computation of $R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})$ on $\mathcal{M}_{\leq r}$

Essentially, Ξ_{r-s} is the best rank-(r-s) approximation of $\mathbf{G} - P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{G})$ (which can be cheaply computed using truncated SVD of rank r-s). In other words, Ξ_{r-s} is orthogonal to $\mathbf{G} - P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{G})$. Let $\Xi_s = P_{T_{\mathbf{X}}\mathcal{M}_s}(\mathbf{G}) = \mathbf{U}\mathbf{M}\mathbf{V}^{\mathsf{T}} + \mathbf{U}_p\mathbf{V}^{\mathsf{T}} + \mathbf{U}\mathbf{V}_p^{\mathsf{T}}$, $\mathbf{X} = \mathbf{U}\mathrm{diag}(\boldsymbol{\sigma})\mathbf{V}^{\mathsf{T}} \in \mathcal{M}_s$ and $\boldsymbol{\xi} = \Xi_s + \Xi_{r-s} \in T_{\mathbf{X}}\mathcal{M}_{\leq r}$, where $\Xi_s \in T_{\mathbf{X}}\mathcal{M}_s$ and $\Xi_{r-s} = \mathbf{U}_s\mathrm{diag}(\boldsymbol{\sigma}_s)\mathbf{V}_s^{\mathsf{T}}$. $\mathbf{X} + \boldsymbol{\xi}$ can be written as $[\mathbf{U} \ \mathbf{U}_p] \begin{pmatrix} \mathrm{diag}(\boldsymbol{\sigma}) + \mathbf{M} \ \mathbf{I}_s \\ \mathbf{I}_s & \mathbf{0} \end{pmatrix} [\mathbf{V} \ \mathbf{V}_p]^{\mathsf{T}} + \Xi_{r-s}$, where Ξ_{r-s} is orthogonal to first term. With these relations, $R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})$ can be calculated via Algorithm 1.

B. Proof of Remark 2

Proof. When updating X with fixed $\mathbf{E} = \mathbf{E}^{t-1}$, the step size L_t is determined such that

$$\Psi(T_{L_t}(\mathbf{X}^t), \mathbf{E}) \le \Psi(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}) + \beta \langle \operatorname{grad}(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}), \boldsymbol{\zeta}_{t-1} \rangle / L_t.$$

In PRP, we choose $\zeta_{t-1} = -\operatorname{grad}(\mathbf{X}^{t-1}, \mathbf{E}^{t-1})$. Thus we have

$$\Psi(T_{L_t}(\mathbf{X}^t), \mathbf{E}^{t-1}) \le \Psi(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}) - \beta \langle \operatorname{grad}(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}), \operatorname{grad}(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}) \rangle / L_t.$$

Note that $\operatorname{grad} f(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}) = P_{T_{\mathbf{X}^{t-1}}\mathcal{M}_s}(\mathbf{G}) + \mathbf{\Xi}_{\kappa}^{t-1}$ (see Step 6), and $\langle P_{T_{\mathbf{X}^{t-1}}\mathcal{M}_s}(\mathbf{G}), \mathbf{\Xi}_{\kappa}^{t-1} \rangle = 0$. It follows that

$$\Psi(T_{L_t}(\mathbf{X}^t), \mathbf{E}^{t-1}) \le \Psi(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}) - \beta ||\mathbf{\Xi}_{\kappa}^{t-1}||_F^2 / L_t.$$
(31)

According to Algorithm 2, $\Psi(T_{L_t}(\mathbf{X}^t), \mathbf{E}^{t-1}) = \Psi(\mathbf{X}_0^t, \mathbf{E}^{t-1})$. Due to the thresholding on \mathbf{E} , we have $\Psi(\mathbf{X}_0^t, \mathbf{E}_0^t) \leq \Psi(\mathbf{X}_0^t, \mathbf{E}^{t-1})$. Note that $(\mathbf{X}_0^t, \mathbf{E}_0^t)$ is the starting point of PRG(R). It follows that $\Psi(\mathbf{X}^t, \mathbf{E}^t) \leq \Psi(\mathbf{X}_0^t, \mathbf{E}_0^t) \leq \Psi(\mathbf{X}_0^t, \mathbf{E}^{t-1}) = \Psi(T_{L_t}(\mathbf{X}^t), \mathbf{E}^{t-1}) \leq \Psi(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}) - \beta ||\mathbf{\Xi}_{\kappa}^{t-1}||_F^2 / L_t$. This completes the proof.

C. Proof of Lemma 1

Proof. Recall that $\mathbf{X} = \mathbf{Y} + \boldsymbol{\xi}$, where \mathbf{X} lies on the tangent cone $T_{\mathbf{Y}}\mathcal{M}_{\leq r}$ at \mathbf{Y} , as illustrated in Figure 3.

Figure 3. Illustration of Retraction $R_{\mathbf{Y}}(\boldsymbol{\xi})$ on $\mathcal{M}_{\leq r}$.

On the other hand, it is not difficult to verify that

$$T_{L}(\mathbf{Y}) = \arg \min_{\mathbf{X} \in \mathcal{M}_{\leq r}} ||\mathbf{X}||_{*} + f(\mathbf{Y}) + \langle \operatorname{grad} f(\mathbf{Y}), \boldsymbol{\xi} \rangle + \frac{L}{2} \langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle$$
$$= \arg \min_{\mathbf{X} \in \mathcal{M}_{\leq r}} ||\mathbf{X}||_{*} + \frac{L}{2} ||\mathbf{X} - \mathbf{Y} + \frac{1}{L} \operatorname{grad} f(\mathbf{Y})||^{2},$$
(32)

where we use the fact that $\mathbf{X} = \mathbf{Y} + \boldsymbol{\xi}$ which is restricted on the tangent cone $T_{\mathbf{Y}}\mathcal{M}_{\leq r}$. Let $\mathbf{Z} = \mathbf{Y} - 1/L \operatorname{grad} f(\mathbf{Y})$ and

$$Q(\mathbf{X}) = f(\mathbf{Y}) + \langle \operatorname{grad} f(\mathbf{Y}), \boldsymbol{\xi} \rangle + L/2 \langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle,$$

which is a smooth function. Clearly, Z is a minimizer of $Q(\mathbf{X})$ when $\boldsymbol{\xi}$ is restricted to $T_{\mathbf{Y}}\mathcal{M}_{\leq r}$, thus $R_{\mathbf{Y}}(\boldsymbol{\xi})$ is a minimizer of $Q(\mathbf{X})$ when X restricted on $\mathcal{M}_{\leq r}$. This implies that $\operatorname{grad}\Phi(R_{\mathbf{Y}}(\boldsymbol{\xi})) = \mathbf{0}$. In fact, $R_{\mathbf{Y}}(\boldsymbol{\xi})$ is the basic update rule in [51, 49], where the objective function is smooth.

For the non-smooth objective function in (32), following [6], we can show that, there exists $\zeta \in \partial ||\mathbf{X}||_*$ such that grad $\Phi(T_L(\mathbf{Y})) + \zeta = 0$, *i.e.*, $T_L(\mathbf{Y})$ satisfies the local optimality condition of (17).

On the other hand, from the computation of $T_L(\mathbf{Y})$, we immediately have $\operatorname{rank}(T_L(\mathbf{Y})) \leq \operatorname{rank}(R_{\mathbf{Y}}(\boldsymbol{\xi})) \leq r$. In other words, it is a feasible solution. This completes the proof.

D. Proof of Lemma 2

Proof. Since ζ_k is a descent direction, it follows that $\mathbf{0} \notin \operatorname{grad} f(\mathbf{X}_k) + \partial ||\mathbf{X}||_*$ and $\langle \operatorname{grad} f(\mathbf{X}_k), \zeta_k \rangle < 0$. Note that $\Psi(\mathbf{X})$ is bounded below. Since $T_L(\mathbf{X}_k)$ is continuous in L, there must exist an \widehat{L} such that $\Psi(T_L(\mathbf{X}_k)) \leq \Psi(\mathbf{X}_k) + \beta \langle \operatorname{grad} f(\mathbf{X}_k), \zeta_k \rangle / L, \forall L \in [\widehat{L}, +\infty)$.

Table 3. Computation of $S_{\lambda}(\mathbf{B})$.		
$\Upsilon(\mathbf{E})$	MR: $ \mathbf{E} _1$	LRR: $ \mathbf{E} _{2,1}$
$S_{\lambda}(\mathbf{B})$	$\operatorname{sgn}(\mathbf{B})\odot\max(\mathbf{B} -rac{\lambda}{\gamma},0)$	$[S_{\lambda}(\mathbf{B})]_{i} = \frac{\max(\ \mathbf{b}_{i}\ - \frac{\lambda}{\gamma}, 0)}{\ \mathbf{b}_{i}\ } \mathbf{b}_{i}, \forall i$

E. Proof of Proposition 1

Proof. A point $\mathbf{X}^* \in \mathcal{M}_{\leq r}$ is a local minimizer of (16) if and only if there exists $\boldsymbol{\varsigma} \in \partial ||\mathbf{X}||_*$ such that grad $f(\mathbf{X}) + \boldsymbol{\varsigma} = \mathbf{0}$ [38]. Note that $\Psi(\mathbf{X})$ is bounded below. The proof can be completed by adapting the proof of Theorem 3.9 in [44].

F. Proof of Proposition 2

Proof. Note that λ_k is non-increasing, $\mathcal{M}_{\leq r}$ is closed and $\Psi(\mathbf{X}, \mathbf{E})$ is bounded below. $\Psi(\mathbf{X}_{k+1}, \mathbf{E}_{k+1}) \leq \Psi(\mathbf{X}_{k+1}, \mathbf{E}_k) \leq \Psi(\mathbf{X}_k, \mathbf{E}_k)$ holds due to the line search w.r.t. **X** and thresholding property on **E**. The convergence of Algorithm 4 can be established by adapting the proof of Theorem 3.9 in [44].

G. Computation of $S_{\lambda}(\mathbf{B})$

Computation of $S_{\lambda}(\mathbf{B})$ is shown in Table 3.

H. Complexity comparison on LRR and RPCA

At the *t*th iteration of PRP, the complexity of PRG or PRG(R) is O(mnr) for a large *n*. To compute Ξ_{κ}^{t} , we need to compute truncated SVD on a $n \times n$ matrix, which takes $O(n^{2}\kappa)$ time; while the truncated SVD in existing proximal gradient based methods takes $O(n^{2}r)$. In contrast, for the LRR solver in [30], the time complexity per iteration is $O(nmr_{D} + nr_{D}^{2} + r_{D}^{3})$, where r_{D} denotes the rank of **D**. Moreover, for the LRR solver in [29], the time complexity per iteration is $O(n^{2}r_{Z})$, where r_{Z} denotes the rank of **Z** in that iteration.

For RPCA, suppose the data X is of size $m \times n$. Since X is not sparse, the cmplexity of RPCA is O(mnr) in general. However, unlike existing methods, the truncated SVDs in the proposed method are warm-started. As a result, the constant term in O(mnr) is much reduced.