Supplementary Materials for ‘“Proximal Riemannian Pursuit”

A. More detailed preliminaries

In this section, we first present more details about the rank-s matrix submanifold M, = {X € R™*" :
rank(X) = s}, and based on M we present the geometries on M, = {X € R™*" : rank(X) < r},
where s < r.

A.1. Geometries of fixed-rank matrices M

The fixed rank-s matrices lie on a smooth submanifold defined below M, = {X € R"™" :
rank(X) = s} = {Udiag()VT : U € StI',V € St%,||o|lo = s}, where St7* = {U € R™** :
UTU = I} denotes the Stiefel manifold of m x s real and orthonormal matrices, and the entries in o
are in descending order [51]]. Moreover, the tangent space Tx M at X is given by

TxM={UMV'™+U,V'+UV] :M € R** U, e R"**, U U =0,V, € R”* V]V =0}. (23)

Given X € M and A, B € Tx M, by defining a metric gx (A, B) = (A, B), M, is a Riemannian
manifold by restricting (A, B) to the rangent bundle [2l], which is defined as the disjoint union of all
tangent spaces T M = UXE M{X} x Tx M. The norm of a tangent vector (x € Tx .M evaluated at

X is defined as [|Cx|[| = v/(Cx: Cx)-

Once the metric is fixed, the notion of the gradient of an objective function can be introduced. For
a Riemannian manifold, the Riemannian gradient of a smooth function f : M, — Rat X € M, is
defined as the unique tangent vector gradf(X) in Tx M, such that (gradf(X), &) = Df(X)[£], V& €
Tx M. As M, is embedded in R™*", the Riemannian gradient of f is given as the orthogonal projec-
tion of the gradient of f onto the tangent space. Here, the orthogonal projection of any Z € R™*" onto
the tangent space Tx M, at X = Udiag(o )V is defined as

Prom. (Z) : Z— PyZPy + Pt ZPy + PyZPy. (24)

where Py = UUT and P7 =1 — UUT. Letting G = V f(X) be the gradient of f(X) on vector space,
it follows that

gradf(X) = Pro. (G). (25)

A Retraction mapping on M relates an element in the tangent space to a corresponding point on the
manifold. An retraction mapping is actually an approximated Riemannina exp mapping at the first order.
In this paper, for a given tangent vector £ at X, we will make use of the following projection operator as
the retraction mapping [2]. One of the issues associated with such retraction mappings is to find the best
rank-s approximation to X + £ in terms of the Frobenius norm

Rx (&) =Pm. (X +€)
=argmin||Y — (X + &)||r. (26)
YeMs

where X + £ is defined on the vector space R"*". Rx (&) can be efficiently computer according to
Algorithm|I]in the main paper.



A.2. Variety of low-rank matrices M,
Given an integer > s > 0, it would be more convenient to consider the closure of M,.:
Mo, ={X € R™" : rank(X) < r}, (27)

which is a real-algebraic variety [44]. Let ran(X) be the column space of X. In the singular points
where rank(X) = s < r, we will construct search directions in the tangent cone [44] (instead of the
tangent space)

TxMe, =TxM;®{E,_, e Ut @V}, (28)
where U = ran(X) and V = ran(X"). Essentially, Z,_, is a best rank-(r — s) approximation of
G — P, (G), which can be cheaply computed with truncated SVD of rank (r — s). Let grad f(X) €
Tx M, be the projection of G on Tx M,. It can be computed by

gradf(X) = Prom. (G) + B, . (29)

Given a search direction § € TxM,, we need perform retraction which finds the best approximation
by a matrix of rank at most r as measured in terms of the Frobenius norm, i.e.,

RY (&) = argminyenr., ||Y — (X +&)]|r. (30)

Since E,_, € U+ @ V, R)S{(S) w.rt. M., can be efficiently computed with the same complexity
as on M,. In general, problem (30) can be addressed by performing SVD on X + &, which may be
computationally expensive.

A.3. Computation of R;{(E )on M,

Essentially, =, is the best rank-(r — s) approximation of G — Pp, r(,(G) (which can be cheap-

—

ly computed using truncated SVD of rank r — s). In other words, =, ; is orthogonal to G —
Pram. (G). Let 25 = Pro.(G) = UMVT+UpVT+UV;, X = Udiag(o)VT € M, and
E=E,+E, , € TxMc,, where E, € Tx M, and E,_, = U,diag(o,)V/]. X + £ can be written

as [U U, (dl&g(e;')+M IOS ) [V V,]T + &, _,, where E,_; is orthogonal to first term. With these

relations, Ry (£) can be calculated via Algorithm
B. Proof of Remark 2
Proof. When updating X with fixed E = E!~1, the step size L; is determined such that
(T, (X'),E) < U(XHET) + Bgrad(XH EY), ¢,_y)/ L.
In PRP, we choose ¢, ; = —grad(X'~! E!~!). Thus we have
U(T, (X, EN) < (XL ETY) — Blgrad(X1 EY), grad(XHL EY)) /Ly

Note that grad f(X'™  E"™)=Pr_, , . (G) + E] " (see Step 6), and (Pr,, 0, (G),EL ") = 0. It
follows that

W(Tp, (X1), B < (XL ETY) = Bl [E/ Le. (1)

According to Algorithm 2| ¥(7%,(X?), E"!) = (X, E™!). Due to the thresholding on E, we

have U(X! Ef) < (X! E'™!). Note that (X}, E}) is the starting point of PRG(R). It follows that

U(XHE) < U(XEEY) < U(XEECY = (T, (XY, EFY < U(XEH ESY — g||EX|2 /L. This

completes the proof. [



C. Proof of Lemma/1l

Proof. Recall that X =Y + &, where X lies on the tangent cone 7y M, at Y, as illustrated in Figure
Bl

Figure 3. Illustration of Retraction Ry (§) on M<,.

On the other hand, it is not difficult to verify that

L
Tu(Y)  =arg min [[X[[, + f(Y) + (gradf(Y), &) + 5 (£,€)
L 1
=arg min [X||. + J[X =Y + Ferad f(Y)[]", (32)

where we use the fact that X = Y 4 & which is restricted on the tangent cone Ty M<,. Let Z =
Y — 1/Lgradf(Y) and

Q(X) = f(Y) + (grad f(Y), &) + L/2(§, ),

which is a smooth function. Clearly, Z is a minimizer of Q)(X) when £ is restricted to 7y M<,, thus
Ry (£€) is a minimizer of ()(X) when X restricted on M,. This implies that grad®(Ry(§)) = 0. In
fact, Ry (&) is the basic update rule in [S1} 49], where the objective function is smooth.
For the non-smooth objective function in , following [6], we can show that, there exists { €
9]|X]|+ such that grad®(T;,(Y)) + ¢ = 0, i.e., T (Y) satisfies the local optimality condition of (17).
On the other hand, from the computation of 77(Y), we immediately have rank(7.(Y)) <
rank(Ry (£)) < r. In other words, it is a feasible solution. This completes the proof. O

D. Proof of Lemma
Proof. Since ¢, is a descent direction, it follows that 0 ¢ grad f (X;,)+0||X||« and (grad f (Xx), {;) < 0.

~

Note that W(X) is bounded below. Since 77 (X}) is continuous in L, there must exist an L such that
U (T (Xp))<W(Xe) + Blgrad f(Xe), §p) /L, VL € [L, +00). O



Table 3. Computation of Sx(B).
T(E) MR: ||E||, LRR: ||E||2,1

“max([b; -2

,0) .
Sx(B)[sgn(B) © max(|B| — 2, 0)[Sx(B)]i =g b, Vi

E. Proof of Proposition I

Proof. A point X* € M, is a local minimizer of if and only if there exists ¢ € J||X||. such that
gradf(X) + ¢ = 0 [38]. Note that ¥(X) is bounded below. The proof can be completed by adapting the
proof of Theorem 3.9 in [44]. O

F. Proof of Proposition 2]

Proof. Note that )\, is non-increasing, M, is closed and ¥ (X, E) is bounded below. ¥ (X1, Ex1) <
U (Xji1, EBr) < U(Xy, Er) holds due to the line search w.r.t. X and thresholding property on E. The
convergence of Algorithm @4{can be established by adapting the proof of Theorem 3.9 in [44]. U

G. Computation of S,(B)
Computation of S, (B) is shown in Table

H. Complexity comparison on LRR and RPCA

At the tth iteration of PRP, the complexity of PRG or PRG(R) is O(mnr) for a large n. To compute
Ei we need to compute truncated SVD on a n X n matrix, which takes O(n2/<o) time; while the truncated
SVD in existing proximal gradient based methods takes O(n?r). In contrast, for the LRR solver in [30]],
the time complexity per iteration is O(nmrp + m“,% + r%), where rp denotes the rank of D. Moreover,
for the LRR solver in [29], the time complexity per iteration is O(n?rz), where r; denotes the rank of
Z in that iteration.

For RPCA, suppose the data X is of size m x n. Since X is not sparse, the cmplexity of RPCA is
O(mnr) in general. However, unlike existing methods, the truncated SVDs in the proposed method are
warm-started. As a result, the constant term in O(mnr) is much reduced.



