
Supplementary Materials for “Proximal Riemannian Pursuit”

A. More detailed preliminaries

In this section, we first present more details about the rank-smatrix submanifoldMs = {X ∈ Rm×n :
rank(X) = s}, and based onMs we present the geometries onM≤r = {X ∈ Rm×n : rank(X) ≤ r},
where s ≤ r.

A.1. Geometries of fixed-rank matricesMs

The fixed rank-s matrices lie on a smooth submanifold defined below Ms = {X ∈ Rm×n :
rank(X) = s} = {Udiag(σ)VT : U ∈ Stms ,V ∈ Stns , ||σ||0 = s}, where Stms = {U ∈ Rm×s :
UTU = I} denotes the Stiefel manifold of m × s real and orthonormal matrices, and the entries in σ
are in descending order [51]. Moreover, the tangent space TXMs at X is given by

TXMs={UMVT+UpV
T+UVT

p :M ∈ Rs×s,Up ∈ Rm×s,UT
pU = 0,Vp ∈ Rn×s,VT

pV = 0}. (23)

Given X ∈Ms and A,B ∈ TXMs, by defining a metric gX(A,B) = 〈A,B〉,Ms is a Riemannian
manifold by restricting 〈A,B〉 to the tangent bundle [2], which is defined as the disjoint union of all
tangent spaces TMs =

⋃
X∈Ms

{X} × TXMs. The norm of a tangent vector ζX ∈ TXMs evaluated at
X is defined as ||ζX|| =

√
〈ζX, ζX〉.

Once the metric is fixed, the notion of the gradient of an objective function can be introduced. For
a Riemannian manifold, the Riemannian gradient of a smooth function f : Ms → R at X ∈ Ms is
defined as the unique tangent vector gradf(X) in TXMs, such that 〈gradf(X), ξ〉 = Df(X)[ξ], ∀ξ ∈
TXMs. AsMs is embedded in Rm×n, the Riemannian gradient of f is given as the orthogonal projec-
tion of the gradient of f onto the tangent space. Here, the orthogonal projection of any Z ∈ Rm×n onto
the tangent space TXMs at X = Udiag(σ)VT is defined as

PTXMs(Z) : Z 7→ PUZPV + P⊥U ZPV + PUZP⊥V . (24)

where PU = UUT and P⊥U = I−UUT. Letting G = ∇f(X) be the gradient of f(X) on vector space,
it follows that

gradf(X) = PTXMs(G). (25)

A Retraction mapping onMs relates an element in the tangent space to a corresponding point on the
manifold. An retraction mapping is actually an approximated Riemannina exp mapping at the first order.
In this paper, for a given tangent vector ξ at X, we will make use of the following projection operator as
the retraction mapping [2]. One of the issues associated with such retraction mappings is to find the best
rank-s approximation to X + ξ in terms of the Frobenius norm

RX(ξ) =PMs(X + ξ)

= arg min
Y∈Ms

||Y − (X + ξ)||F . (26)

where X + ξ is defined on the vector space Rm×n. RX(ξ) can be efficiently computer according to
Algorithm 1 in the main paper.



A.2. Variety of low-rank matricesM≤r

Given an integer r ≥ s ≥ 0, it would be more convenient to consider the closure ofMr:

M≤r = {X ∈ Rm×n : rank(X) ≤ r}, (27)

which is a real-algebraic variety [44]. Let ran(X) be the column space of X. In the singular points
where rank(X) = s < r, we will construct search directions in the tangent cone [44] (instead of the
tangent space)

TXM≤r = TXMs ⊕ {Ξr−s ∈ U⊥ ⊗ V⊥}, (28)

where U = ran(X) and V = ran(XT). Essentially, Ξr−s is a best rank-(r− s) approximation of
G− PTXMs(G), which can be cheaply computed with truncated SVD of rank (r − s). Let gradf(X) ∈
TXM≤r be the projection of G on TXM≤r. It can be computed by

gradf(X) = PTXMs(G) + Ξr−s. (29)

Given a search direction ξ ∈ TXM≤r, we need perform retraction which finds the best approximation
by a matrix of rank at most r as measured in terms of the Frobenius norm, i.e.,

R≤rX (ξ) = arg minY∈M≤r ||Y − (X + ξ)||F . (30)

Since Ξr−s ∈ U⊥ ⊗ V⊥, R≤rX (ξ) w.r.t. M≤r can be efficiently computed with the same complexity
as on Mr. In general, problem (30) can be addressed by performing SVD on X + ξ, which may be
computationally expensive.

A.3. Computation of R≤rX (ξ) onM≤r

Essentially, Ξr−s is the best rank-(r−s) approximation of G − PTXMs(G) (which can be cheap-
ly computed using truncated SVD of rank r − s). In other words, Ξr−s is orthogonal to G −
PTXMs(G). Let Ξs = PTXMs(G) = UMVT + UpV

T + UVT
p , X = Udiag(σ)VT ∈ Ms and

ξ = Ξs + Ξr−s ∈ TXM≤r, where Ξs ∈ TXMs and Ξr−s = Usdiag(σs)V
T
s . X + ξ can be written

as [U Up]

(
diag(σ)+M Is

Is 0

)
[V Vp]

T + Ξr−s, where Ξr−s is orthogonal to first term. With these

relations, R≤rX (ξ) can be calculated via Algorithm 1.

B. Proof of Remark 2

Proof. When updating X with fixed E = Et−1, the step size Lt is determined such that

Ψ(TLt(X
t),E) ≤ Ψ(Xt−1,Et−1) + β〈grad(Xt−1,Et−1), ζt−1〉/Lt.

In PRP, we choose ζt−1 = −grad(Xt−1,Et−1). Thus we have

Ψ(TLt(X
t),Et−1) ≤ Ψ(Xt−1,Et−1)− β〈grad(Xt−1,Et−1), grad(Xt−1,Et−1)〉/Lt.

Note that gradf(Xt−1,Et−1)=PTXt−1Ms(G) + Ξt−1
κ (see Step 6), and 〈PTXt−1Ms(G),Ξt−1

κ 〉 = 0. It
follows that

Ψ(TLt(X
t),Et−1) ≤ Ψ(Xt−1,Et−1)− β||Ξt−1

κ ||2F/Lt. (31)

According to Algorithm 2, Ψ(TLt(X
t),Et−1) = Ψ(Xt

0,E
t−1). Due to the thresholding on E, we

have Ψ(Xt
0,E

t
0) ≤ Ψ(Xt

0,E
t−1). Note that (Xt

0,E
t
0) is the starting point of PRG(R). It follows that

Ψ(Xt,Et) ≤ Ψ(Xt
0,E

t
0) ≤ Ψ(Xt

0,E
t−1) = Ψ(TLt(X

t),Et−1) ≤ Ψ(Xt−1,Et−1)− β||Ξt−1
κ ||2F/Lt. This

completes the proof.



C. Proof of Lemma 1

Proof. Recall that X = Y + ξ, where X lies on the tangent cone TYM≤r at Y, as illustrated in Figure
3.

Figure 3. Illustration of Retraction RY(ξ) onM≤r .

On the other hand, it is not difficult to verify that

TL(Y) = arg min
X∈M≤r

||X||∗ + f(Y) + 〈gradf(Y), ξ〉+
L

2
〈ξ, ξ〉

= arg min
X∈M≤r

||X||∗ +
L

2
||X−Y +

1

L
gradf(Y)||2, (32)

where we use the fact that X = Y + ξ which is restricted on the tangent cone TYM≤r. Let Z =
Y − 1/Lgradf(Y) and

Q(X) = f(Y) + 〈gradf(Y), ξ〉+ L/2〈ξ, ξ〉,

which is a smooth function. Clearly, Z is a minimizer of Q(X) when ξ is restricted to TYM≤r, thus
RY(ξ) is a minimizer of Q(X) when X restricted onM≤r. This implies that gradΦ(RY(ξ)) = 0. In
fact, RY(ξ) is the basic update rule in [51, 49], where the objective function is smooth.

For the non-smooth objective function in (32), following [6], we can show that, there exists ζ ∈
∂||X||∗ such that gradΦ(TL(Y)) + ζ = 0, i.e., TL(Y) satisfies the local optimality condition of (17).

On the other hand, from the computation of TL(Y), we immediately have rank(TL(Y)) ≤
rank(RY(ξ)) ≤ r. In other words, it is a feasible solution. This completes the proof.

D. Proof of Lemma 2

Proof. Since ζk is a descent direction, it follows that 0 /∈ gradf(Xk)+∂||X||∗ and 〈gradf(Xk), ζk〉 < 0.
Note that Ψ(X) is bounded below. Since TL(Xk) is continuous in L, there must exist an L̂ such that
Ψ(TL(Xk))≤Ψ(Xk) + β〈gradf(Xk), ζk〉/L, ∀L ∈ [L̂,+∞).



Table 3. Computation of Sλ(B).
Υ(E) MR: ||E||1 LRR: ||E||2,1
Sλ(B) sgn(B)�max(|B| − λ

γ
,0)[Sλ(B)]i =

max(‖bi‖−λγ ,0)
‖bi‖

bi, ∀i

E. Proof of Proposition 1

Proof. A point X∗ ∈ M≤r is a local minimizer of (16) if and only if there exists ς ∈ ∂||X||∗ such that
gradf(X) + ς = 0 [38]. Note that Ψ(X) is bounded below. The proof can be completed by adapting the
proof of Theorem 3.9 in [44].

F. Proof of Proposition 2

Proof. Note that λk is non-increasing,M≤r is closed and Ψ(X,E) is bounded below. Ψ(Xk+1,Ek+1) ≤
Ψ(Xk+1,Ek) ≤ Ψ(Xk,Ek) holds due to the line search w.r.t. X and thresholding property on E. The
convergence of Algorithm 4 can be established by adapting the proof of Theorem 3.9 in [44].

G. Computation of Sλ(B)

Computation of Sλ(B) is shown in Table 3.

H. Complexity comparison on LRR and RPCA

At the tth iteration of PRP, the complexity of PRG or PRG(R) is O(mnr) for a large n. To compute
Ξt
κ, we need to compute truncated SVD on a n×nmatrix, which takesO(n2κ) time; while the truncated

SVD in existing proximal gradient based methods takes O(n2r). In contrast, for the LRR solver in [30],
the time complexity per iteration is O(nmrD + nr2D + r3D), where rD denotes the rank of D. Moreover,
for the LRR solver in [29], the time complexity per iteration is O(n2rZ), where rZ denotes the rank of
Z in that iteration.

For RPCA, suppose the data X is of size m × n. Since X is not sparse, the cmplexity of RPCA is
O(mnr) in general. However, unlike existing methods, the truncated SVDs in the proposed method are
warm-started. As a result, the constant term in O(mnr) is much reduced.


