Supplementary Materials for "Proximal Riemannian Pursuit"

A. More detailed preliminaries

In this section, we first present more details about the rank-s matrix submanifold $\mathcal{M}_{s}=\left\{\mathbf{X} \in \mathbb{R}^{m \times n}\right.$: $\operatorname{rank}(\mathbf{X})=s\}$, and based on \mathcal{M}_{s} we present the geometries on $\mathcal{M}_{\leq r}=\left\{\mathbf{X} \in \mathbb{R}^{m \times n}: \operatorname{rank}(\mathbf{X}) \leq r\right\}$, where $s \leq r$.

A.1. Geometries of fixed-rank matrices \mathcal{M}_{s}

The fixed rank-s matrices lie on a smooth submanifold defined below $\mathcal{M}_{s}=\left\{\mathbf{X} \in \mathbb{R}^{m \times n}\right.$: $\operatorname{rank}(\mathbf{X})=s\}=\left\{\mathbf{U d i a g}(\boldsymbol{\sigma}) \mathbf{V}^{\top}: \mathbf{U} \in \mathbf{S t}_{s}^{m}, \mathbf{V} \in \mathbf{S t}_{s}^{n},\|\boldsymbol{\sigma}\|_{0}=s\right\}$, where $\mathbf{S t}_{s}^{m}=\left\{\mathbf{U} \in \mathbb{R}^{m \times s}:\right.$ $\left.\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}\right\}$ denotes the Stiefel manifold of $m \times s$ real and orthonormal matrices, and the entries in $\boldsymbol{\sigma}$ are in descending order [51]. Moreover, the tangent space $T_{\mathbf{X}} \mathcal{M}_{s}$ at \mathbf{X} is given by

$$
\begin{equation*}
T_{\mathbf{X}} \mathcal{M}_{s}=\left\{\mathbf{U M} \mathbf{V}^{\top}+\mathbf{U}_{p} \mathbf{V}^{\top}+\mathbf{U} \mathbf{V}_{p}^{\top}: \mathbf{M} \in \mathbb{R}^{s \times s}, \mathbf{U}_{p} \in \mathbb{R}^{m \times s}, \mathbf{U}_{p}^{\top} \mathbf{U}=\mathbf{0}, \mathbf{V}_{p} \in \mathbb{R}^{n \times s}, \mathbf{V}_{p}^{\top} \mathbf{V}=\mathbf{0}\right\} \tag{23}
\end{equation*}
$$

Given $\mathbf{X} \in \mathcal{M}_{s}$ and $\mathbf{A}, \mathbf{B} \in T_{\mathbf{X}} \mathcal{M}_{s}$, by defining a metric $g_{\mathbf{X}}(\mathbf{A}, \mathbf{B})=\langle\mathbf{A}, \mathbf{B}\rangle, \mathcal{M}_{s}$ is a Riemannian manifold by restricting $\langle\mathbf{A}, \mathbf{B}\rangle$ to the tangent bundle [2], which is defined as the disjoint union of all tangent spaces $T \mathcal{M}_{s}=\bigcup_{\mathbf{X} \in \mathcal{M}_{s}}\{\mathbf{X}\} \times T_{\mathbf{X}} \mathcal{M}_{s}$. The norm of a tangent vector $\zeta_{\mathbf{X}} \in T_{\mathbf{X}} \mathcal{M}_{s}$ evaluated at \mathbf{X} is defined as $\left\|\boldsymbol{\zeta}_{\mathbf{X}}\right\|=\sqrt{\left\langle\boldsymbol{\zeta}_{\mathbf{X}}, \boldsymbol{\zeta}_{\mathbf{X}}\right\rangle}$.

Once the metric is fixed, the notion of the gradient of an objective function can be introduced. For a Riemannian manifold, the Riemannian gradient of a smooth function $f: \mathcal{M}_{s} \rightarrow \mathbb{R}$ at $\mathbf{X} \in \mathcal{M}_{s}$ is defined as the unique tangent vector $\operatorname{grad} f(\mathbf{X})$ in $T_{\mathbf{X}} \mathcal{M}_{s}$, such that $\langle\operatorname{grad} f(\mathbf{X}), \boldsymbol{\xi}\rangle=\mathrm{D} f(\mathbf{X})[\boldsymbol{\xi}], \quad \forall \boldsymbol{\xi} \in$ $T_{\mathbf{X}} \mathcal{M}_{s}$. As \mathcal{M}_{s} is embedded in $\mathbb{R}^{m \times n}$, the Riemannian gradient of f is given as the orthogonal projection of the gradient of f onto the tangent space. Here, the orthogonal projection of any $\mathbf{Z} \in \mathbb{R}^{m \times n}$ onto the tangent space $T_{\mathbf{X}} \mathcal{M}_{s}$ at $\mathbf{X}=\mathbf{U} \operatorname{diag}(\boldsymbol{\sigma}) \mathbf{V}^{\top}$ is defined as

$$
\begin{equation*}
P_{T_{\mathbf{x}} \mathcal{M}_{s}}(\mathbf{Z}): \mathbf{Z} \mapsto P_{U} \mathbf{Z} P_{V}+P_{U}^{\perp} \mathbf{Z} P_{V}+P_{U} \mathbf{Z} P_{V}^{\perp} \tag{24}
\end{equation*}
$$

where $P_{U}=\mathbf{U U}^{\top}$ and $P_{U}^{\perp}=\mathbf{I}-\mathbf{U U}^{\top}$. Letting $\mathbf{G}=\nabla f(\mathbf{X})$ be the gradient of $f(\mathbf{X})$ on vector space, it follows that

$$
\begin{equation*}
\operatorname{grad} f(\mathbf{X})=P_{T_{\mathbf{X}} \mathcal{M}_{s}}(\mathbf{G}) \tag{25}
\end{equation*}
$$

A Retraction mapping on \mathcal{M}_{s} relates an element in the tangent space to a corresponding point on the manifold. An retraction mapping is actually an approximated Riemannina exp mapping at the first order. In this paper, for a given tangent vector $\boldsymbol{\xi}$ at \mathbf{X}, we will make use of the following projection operator as the retraction mapping [2]. One of the issues associated with such retraction mappings is to find the best rank- s approximation to $\mathbf{X}+\boldsymbol{\xi}$ in terms of the Frobenius norm

$$
\begin{align*}
R_{\mathbf{X}}(\boldsymbol{\xi}) & =P_{\mathcal{M}_{s}}(\mathbf{X}+\boldsymbol{\xi}) \\
& =\underset{\mathbf{Y} \in \mathcal{M}_{s}}{\arg \min }\|\mathbf{Y}-(\mathbf{X}+\boldsymbol{\xi})\|_{F} . \tag{26}
\end{align*}
$$

where $\mathbf{X}+\boldsymbol{\xi}$ is defined on the vector space $\mathbb{R}^{m \times n} . R_{\mathbf{X}}(\boldsymbol{\xi})$ can be efficiently computer according to Algorithm 1 in the main paper.

A.2. Variety of low-rank matrices $\mathcal{M}_{\leq r}$

Given an integer $r \geq s \geq 0$, it would be more convenient to consider the closure of \mathcal{M}_{r} :

$$
\begin{equation*}
\mathcal{M}_{\leq r}=\left\{\mathbf{X} \in \mathbb{R}^{m \times n}: \operatorname{rank}(\mathbf{X}) \leq r\right\}, \tag{27}
\end{equation*}
$$

which is a real-algebraic variety [44]. Let $\operatorname{ran}(\mathbf{X})$ be the column space of \mathbf{X}. In the singular points where $\operatorname{rank}(\mathbf{X})=s<r$, we will construct search directions in the tangent cone [44] (instead of the tangent space)

$$
\begin{equation*}
T_{\mathbf{X}} \mathcal{M}_{\leq r}=T_{\mathbf{X}} \mathcal{M}_{s} \oplus\left\{\boldsymbol{\Xi}_{r-s} \in \mathcal{U}^{\perp} \otimes \mathcal{V}^{\perp}\right\} \tag{28}
\end{equation*}
$$

where $\mathcal{U}=\operatorname{ran}(\mathbf{X})$ and $\mathcal{V}=\operatorname{ran}\left(\mathbf{X}^{\boldsymbol{\top}}\right)$. Essentially, $\boldsymbol{\Xi}_{r-s}$ is a best rank- $(r-s)$ approximation of $\mathbf{G}-P_{T_{\mathbf{X}} \mathcal{M}_{s}}(\mathbf{G})$, which can be cheaply computed with truncated SVD of rank $(r-s)$. Let $\operatorname{grad} f(\mathbf{X}) \in$ $T_{\mathbf{X}} \mathcal{M}_{\leq r}$ be the projection of \mathbf{G} on $T_{\mathbf{X}} \mathcal{M}_{\leq r}$. It can be computed by

$$
\begin{equation*}
\operatorname{grad} f(\mathbf{X})=P_{T_{\mathbf{X}} \mathcal{M}_{s}}(\mathbf{G})+\boldsymbol{\Xi}_{r-s} \tag{29}
\end{equation*}
$$

Given a search direction $\boldsymbol{\xi} \in T_{\mathbf{X}} \mathcal{M}_{\leq r}$, we need perform retraction which finds the best approximation by a matrix of rank at most r as measured in terms of the Frobenius norm, i.e.,

$$
\begin{equation*}
R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})=\arg \min _{\mathbf{Y} \in \mathcal{M}_{\leq r}}\|\mathbf{Y}-(\mathbf{X}+\boldsymbol{\xi})\|_{F} \tag{30}
\end{equation*}
$$

Since $\boldsymbol{\Xi}_{r-s} \in \mathcal{U}^{\perp} \otimes \mathcal{V}^{\perp}, R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})$ w.r.t. $\mathcal{M}_{\leq r}$ can be efficiently computed with the same complexity as on \mathcal{M}_{r}. In general, problem (30) can be addressed by performing SVD on $\mathbf{X}+\boldsymbol{\xi}$, which may be computationally expensive.

A.3. Computation of $R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})$ on $\mathcal{M}_{\leq r}$

Essentially, $\boldsymbol{\Xi}_{r-s}$ is the best rank- $(r-s)$ approximation of $\mathbf{G}-P_{T_{\mathbf{X}} \mathcal{M}_{s}}(\mathbf{G})$ (which can be cheaply computed using truncated SVD of rank $r-s$). In other words, $\boldsymbol{\Xi}_{r-s}$ is orthogonal to \mathbf{G} $P_{T_{\mathbf{x}} \mathcal{M}_{s}}(\mathbf{G})$. Let $\boldsymbol{\Xi}_{s}=P_{T_{\mathbf{X}} \mathcal{M}_{s}}(\mathbf{G})=\mathbf{U M} \mathbf{V}^{\top}+\mathbf{U}_{p} \mathbf{V}^{\top}+\mathbf{U V}_{p}^{\top}, \mathbf{X}=\mathbf{U d i a g}(\boldsymbol{\sigma}) \mathbf{V}^{\top} \in \mathcal{M}_{s}$ and $\boldsymbol{\xi}=\boldsymbol{\Xi}_{s}+\boldsymbol{\Xi}_{r-s} \in T_{\mathbf{X}} \mathcal{M}_{\leq r}$, where $\boldsymbol{\Xi}_{s} \in T_{\mathbf{X}} \mathcal{M}_{s}$ and $\boldsymbol{\Xi}_{r-s}=\mathbf{U}_{s} \operatorname{diag}\left(\boldsymbol{\sigma}_{s}\right) \mathbf{V}_{s}^{\top} . \mathbf{X}+\boldsymbol{\xi}$ can be written as $\left[\begin{array}{ll}\mathbf{U} & \mathbf{U}_{p}\end{array}\right]\left(\begin{array}{cc}\operatorname{diag}(\boldsymbol{\sigma})+\mathbf{M} & \mathbf{I}_{s} \\ \mathbf{I}_{s} & \mathbf{0}\end{array}\right)\left[\begin{array}{ll}\mathbf{V} & \mathbf{V}_{p}\end{array}\right]^{\top}+\boldsymbol{\Xi}_{r-s}$, where $\boldsymbol{\Xi}_{r-s}$ is orthogonal to first term. With these relations, $R_{\mathbf{X}}^{\leq r}(\boldsymbol{\xi})$ can be calculated via Algorithm 1 .

B. Proof of Remark 2

Proof. When updating \mathbf{X} with fixed $\mathbf{E}=\mathbf{E}^{t-1}$, the step size L_{t} is determined such that

$$
\Psi\left(T_{L_{t}}\left(\mathbf{X}^{t}\right), \mathbf{E}\right) \leq \Psi\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)+\beta\left\langle\operatorname{grad}\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right), \boldsymbol{\zeta}_{t-1}\right\rangle / L_{t}
$$

In PRP, we choose $\boldsymbol{\zeta}_{t-1}=-\operatorname{grad}\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)$. Thus we have

$$
\Psi\left(T_{L_{t}}\left(\mathbf{X}^{t}\right), \mathbf{E}^{t-1}\right) \leq \Psi\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)-\beta\left\langle\operatorname{grad}\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right), \operatorname{grad}\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)\right\rangle / L_{t}
$$

Note that $\operatorname{grad} f\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)=P_{T_{\mathbf{x}^{t-1} \mathcal{M}_{s}}}(\mathbf{G})+\boldsymbol{\Xi}_{\kappa}^{t-1}\left(\right.$ see Step 6), and $\left\langle P_{T_{\mathbf{X}^{t-1} \mathcal{M}_{s}}}(\mathbf{G}), \boldsymbol{\Xi}_{\kappa}^{t-1}\right\rangle=0$. It follows that

$$
\begin{equation*}
\Psi\left(T_{L_{t}}\left(\mathbf{X}^{t}\right), \mathbf{E}^{t-1}\right) \leq \Psi\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)-\beta\left\|\boldsymbol{\Xi}_{\kappa}^{t-1}\right\|_{F}^{2} / L_{t} \tag{31}
\end{equation*}
$$

According to Algorithm 2, $\Psi\left(T_{L_{t}}\left(\mathbf{X}^{t}\right), \mathbf{E}^{t-1}\right)=\Psi\left(\mathbf{X}_{0}^{t}, \mathbf{E}^{t-1}\right)$. Due to the thresholding on \mathbf{E}, we have $\Psi\left(\mathbf{X}_{0}^{t}, \mathbf{E}_{0}^{t}\right) \leq \Psi\left(\mathbf{X}_{0}^{t}, \overline{\mathbf{E}}^{t-1}\right)$. Note that $\left(\mathbf{X}_{0}^{t}, \mathbf{E}_{0}^{t}\right)$ is the starting point of $\operatorname{PRG}(\mathrm{R})$. It follows that $\Psi\left(\mathbf{X}^{t}, \mathbf{E}^{t}\right) \leq \Psi\left(\mathbf{X}_{0}^{t}, \mathbf{E}_{0}^{t}\right) \leq \Psi\left(\mathbf{X}_{0}^{t}, \mathbf{E}^{t-1}\right)=\Psi\left(T_{L_{t}}\left(\mathbf{X}^{t}\right), \mathbf{E}^{t-1}\right) \leq \Psi\left(\mathbf{X}^{t-1}, \mathbf{E}^{t-1}\right)-\beta\left\|\boldsymbol{\Xi}_{\kappa}^{t-1}\right\|_{F}^{2} / L_{t}$. This completes the proof.

C. Proof of Lemma 1

Proof. Recall that $\mathbf{X}=\mathbf{Y}+\boldsymbol{\xi}$, where \mathbf{X} lies on the tangent cone $T_{\mathbf{Y}} \mathcal{M}_{\leq r}$ at \mathbf{Y}, as illustrated in Figure (3)

Figure 3. Illustration of Retraction $R_{\mathbf{Y}}(\boldsymbol{\xi})$ on $\mathcal{M}_{\leq r}$.

On the other hand, it is not difficult to verify that

$$
\begin{align*}
T_{L}(\mathbf{Y}) & =\arg \min _{\mathbf{X} \in \mathcal{M}_{\leq r}}\|\mathbf{X}\|_{*}+f(\mathbf{Y})+\langle\operatorname{grad} f(\mathbf{Y}), \boldsymbol{\xi}\rangle+\frac{L}{2}\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle \\
& =\arg \min _{\mathbf{X} \in \mathcal{M}_{\leq r}}\|\mathbf{X}\|_{*}+\frac{L}{2}\left\|\mathbf{X}-\mathbf{Y}+\frac{1}{L} \operatorname{grad} f(\mathbf{Y})\right\|^{2} \tag{32}
\end{align*}
$$

where we use the fact that $\mathbf{X}=\mathbf{Y}+\boldsymbol{\xi}$ which is restricted on the tangent cone $T_{\mathbf{Y}} \mathcal{M}_{\leq r}$. Let $\mathbf{Z}=$ $\mathbf{Y}-1 / L \operatorname{grad} f(\mathbf{Y})$ and

$$
Q(\mathbf{X})=f(\mathbf{Y})+\langle\operatorname{grad} f(\mathbf{Y}), \boldsymbol{\xi}\rangle+L / 2\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle
$$

which is a smooth function. Clearly, \mathbf{Z} is a minimizer of $Q(\mathbf{X})$ when $\boldsymbol{\xi}$ is restricted to $T_{\mathbf{Y}} \mathcal{M}_{\leq r}$, thus $R_{\mathbf{Y}}(\boldsymbol{\xi})$ is a minimizer of $Q(\mathbf{X})$ when \mathbf{X} restricted on $\mathcal{M}_{\leq r}$. This implies that $\operatorname{grad} \Phi\left(R_{\mathbf{Y}}(\boldsymbol{\xi})\right)=\mathbf{0}$. In fact, $R_{\mathbf{Y}}(\boldsymbol{\xi})$ is the basic update rule in [51, 49], where the objective function is smooth.

For the non-smooth objective function in (32), following [6], we can show that, there exists $\zeta \in$ $\partial\|\mathbf{X}\|_{*}$ such that $\operatorname{grad} \Phi\left(T_{L}(\mathbf{Y})\right)+\boldsymbol{\zeta}=\mathbf{0}$, i.e., $T_{L}(\mathbf{Y})$ satisfies the local optimality condition of (17).

On the other hand, from the computation of $T_{L}(\mathbf{Y})$, we immediately have $\operatorname{rank}\left(T_{L}(\mathbf{Y})\right) \leq$ $\operatorname{rank}\left(R_{\mathbf{Y}}(\boldsymbol{\xi})\right) \leq r$. In other words, it is a feasible solution. This completes the proof.

D. Proof of Lemma 2

Proof. Since $\boldsymbol{\zeta}_{k}$ is a descent direction, it follows that $\mathbf{0} \notin \operatorname{grad} f\left(\mathbf{X}_{k}\right)+\partial\|\mathbf{X}\|_{*}$ and $\left\langle\operatorname{grad} f\left(\mathbf{X}_{k}\right), \boldsymbol{\zeta}_{k}\right\rangle<0$. Note that $\Psi(\mathbf{X})$ is bounded below. Since $T_{L}\left(\mathbf{X}_{k}\right)$ is continuous in L, there must exist an \widehat{L} such that $\Psi\left(T_{L}\left(\mathbf{X}_{k}\right)\right) \leq \Psi\left(\mathbf{X}_{k}\right)+\beta\left\langle\operatorname{grad} f\left(\mathbf{X}_{k}\right), \boldsymbol{\zeta}_{k}\right\rangle / L, \forall L \in[\widehat{L},+\infty)$.

Table 3. Computation of $S_{\lambda}(\mathbf{B})$.

$\Upsilon(\mathbf{E})$	MR: $\\|\mathbf{E}\\|_{1}$	LRR: $\\|\mathbf{E}\\|_{2,1}$
$S_{\lambda}(\mathbf{B})$	$\operatorname{sgn}(\mathbf{B}) \odot \max \left(\|\mathbf{B}\|-\frac{\lambda}{\gamma}, \mathbf{0}\right)\left[S_{\lambda}(\mathbf{B})\right]_{i}=\frac{\max \left(\left\\|\mathbf{b}_{i}\right\\|-\frac{\lambda}{\gamma}, 0\right)}{\left\\|\mathbf{b}_{i}\right\\|} \mathbf{b}_{i}, \forall i$	

E. Proof of Proposition 1

Proof. A point $\mathbf{X}^{*} \in \mathcal{M}_{\leq r}$ is a local minimizer of (16) if and only if there exists $\varsigma \in \partial\|\mathbf{X}\|_{*}$ such that $\operatorname{grad} f(\mathbf{X})+\boldsymbol{\varsigma}=\mathbf{0}[38]$. Note that $\Psi(\mathbf{X})$ is bounded below. The proof can be completed by adapting the proof of Theorem 3.9 in [44].

F. Proof of Proposition 2

Proof. Note that λ_{k} is non-increasing, $\mathcal{M}_{\leq r}$ is closed and $\Psi(\mathbf{X}, \mathbf{E})$ is bounded below. $\Psi\left(\mathbf{X}_{k+1}, \mathbf{E}_{k+1}\right) \leq$ $\Psi\left(\mathbf{X}_{k+1}, \mathbf{E}_{k}\right) \leq \Psi\left(\mathbf{X}_{k}, \mathbf{E}_{k}\right)$ holds due to the line search w.r.t. \mathbf{X} and thresholding property on \mathbf{E}. The convergence of Algorithm 4 can be established by adapting the proof of Theorem 3.9 in [44].

G. Computation of $S_{\lambda}(\mathbf{B})$

Computation of $S_{\lambda}(\mathbf{B})$ is shown in Table 3 .

H. Complexity comparison on LRR and RPCA

At the t th iteration of PRP, the complexity of PRG or $\operatorname{PRG}(\mathrm{R})$ is $O(m n r)$ for a large n. To compute $\boldsymbol{\Xi}_{\kappa}^{t}$, we need to compute truncated SVD on a $n \times n$ matrix, which takes $O\left(n^{2} \kappa\right)$ time; while the truncated SVD in existing proximal gradient based methods takes $O\left(n^{2} r\right)$. In contrast, for the LRR solver in [30], the time complexity per iteration is $O\left(n m r_{D}+n r_{D}^{2}+r_{D}^{3}\right)$, where r_{D} denotes the rank of \mathbf{D}. Moreover, for the LRR solver in [29], the time complexity per iteration is $O\left(n^{2} r_{Z}\right)$, where r_{Z} denotes the rank of Z in that iteration.

For RPCA, suppose the data \mathbf{X} is of size $m \times n$. Since \mathbf{X} is not sparse, the cmplexity of RPCA is $O(m n r)$ in general. However, unlike existing methods, the truncated SVDs in the proposed method are warm-started. As a result, the constant term in $O(m n r)$ is much reduced.

