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In the supplementary material we present derivations and proofs associated with the proposed technique that were omitted
from the main paper due to lack of space. Some additional notes and implementation details are also provided. We will be
referring to certain equations and figures in the main paper. Please note that the new equations and figures provided in the
supplementary material have numbers with the letter A as prefix to distinguish them from those in the main paper. We also
provide additional qualitative comparisons as a supplementary video on our project website.

A. Continuous Alpha Map Formulation

Here, we explain why in our method, the per-pixel segmentation labels must be continuous alpha-matte values α ∈ [0, 1]

rather than binary values {0, 1}. If α were binary, the flows Ti at nodes labeled background (αi = 0) would be under-
constrained, because the flow data term E iflo in Eq. (3) at such nodes would always be a constant λocc regardless of the values
of Ti. This would be problematic, because if true foreground nodes are incorrectly labeled background in early stages of
our inference process, it would be harder to recover their true flow labels in later iterations. To avoid this issue, we require
α to be a continuous value that is larger than a small positive value (0.1 in our implementation). By doing this we will
have meaningful flow labels Ti even at nodes labeled (incorrectly) background, because those flow labels still slightly affect
matching energies of E iflo.

B. Energy Approximation

Next, we present the derivations of our approximation energy described in Section 4.1.
We first derive the energy function E(f,Gk+1) in the form of Eq. (15). In order to simplify the energy formulation in

Eq. (8), we denote energies involved in each layer as

E llay(f,G) = Emrf(f |Ll) + E lreg(f |G) + E lgra(Vl) (A1)

and rewrite the energy function E(f,Gk+1) as the sum of layer energies

E(f,Gk+1) =
k+1∑
l=0

E llay(f,Gk+1) (A2)

=
k∑
l=0

E llay(f,Gk) + Ek+1
lay (f,Gk+1) (A3)

= E(f,Gk)︸ ︷︷ ︸
E(f |Gk)

+ Ek+1
lay (f,Gk+1)︸ ︷︷ ︸
Etop(f,Lk+1)

. (A4)

Assuming thatGk is known from the previous iteration, we denote E(f,Gk) as E(f |Gk), and Ek+1
lay (f,Gk+1) as Etop(f, Lk+1)



to obtain Eq. (15).

To approximate the above E(f,Gk+1), we create a temporary graph Ĝk+1 as an approximation of Gk+1, by duplicating
the top layer of Gk as L′k = (V ′k, E

′
k) ← (Vk, Ek). We further define a labeling f̂ on this temporary graph Ĝk+1. Since f

and f̂ are defined on the different graphs (Gk+1 and Ĝk+1) or different top layers (Vk+1 and V ′k), we cannot simply assume
f = f̂ . However, V ′k representing a superpixel segmentation is the finest form of any possible Vk+1 due to the tree structure
of G. Therefore, we can always define f̂ so that f and f̂ are equivalent f ≡ f̂ , i.e., the pixelwise labeling included by both f
and f̂ are identical.

Using f̂ and Ĝk+1, our approximation function Ê(f̂ |Ĝk+1) for E(f,Gk+1) in the form of Eq. (17) is obtained by substi-
tuting Gk+1 ← Ĝk+1 and f ← f̂ into E(f,Gk+1).

Ê(f̂ |Ĝk+1) = E(f̂ , Ĝk+1) (A5)

= E(f̂ , Gk)︸ ︷︷ ︸
E(f̂ |Gk)

+ Ek+1
lay (f̂ , Ĝk+1)︸ ︷︷ ︸

A(f̂)

. (A6)

Here, becauseGk+1 and Ĝk+1 share the same structure except for the top layers, the energies E(·|Gk) involved in the bottom
hierarchy Gk are equivalent between Eqs. (A4) and (A6). To discuss how A(f̂) approximates Ek+1

top (f, Lk+1), we write it as

A(f̂) = λflo

∑
i∈V ′

k

E iflo(f̂i) + λseg

∑
i∈V ′

k

E iseg(f̂i) +
∑

(s,t)∈E′
k

wst Estreg(f̂s, f̂t) +
∑

(p,c)∈Epc′
k+1

wpc Epcreg(fp, fc) + Ek+1
gra (f̂ |V ′k). (A7)

Here, the conversion for the three terms E iflo, E iseg and Epcreg is exact, i.e., those terms in Etop and corresponding terms inA yield
the same energies as long as f ≡ f̂ . Next, we explain why these three conversions are exact and why the conversion for the
two remaining terms are approximate.

Exact Conversion of Flow and Cosegmentation Data Terms

Exactness for the unary terms E iflo and E iseg in Eqs. (3) and (5) is shown in the same way. Notice that nodes in Vk+1 are
always obtained by merging nodes of V ′k , by following the rule of Eq. (19). Therefore, we can assume the domain Ωi of each
node i ∈ Vk+1 is the union of the domains of a connected component Ci of nodes in V ′k .

Ωi =
⋃
i′∈Ci

Ωi′ (A8)

Furthermore, from f ≡ f̂ it holds that fi = f̂i′ for i ∈ Vk+1 and i′ ∈ Ci. Using these properties, a unary term E i in Etop can
be exactly converted to the form in A as follows. (Changes from previous equations are colored by blue).∑

i∈Vk+1

E i(fi) =
∑

i∈Vk+1

∑
p∈Ωi

φp(fi) (A9)

=
∑

i∈Vk+1

∑
i′∈Ci

∑
p∈Ωi′

φp(fi) (A10)

=
∑

i∈Vk+1

∑
i′∈Ci

∑
p∈Ωi′

φp(f̂i′) (A11)

=
∑
i′∈V ′

k

∑
p∈Ωi′

φp(f̂i′) (A12)

=
∑
i∈V ′

k

E i(f̂i) (A13)



Exact Conversion of Multi-layer Regularization Term

We perform a similar derivation for the multi-layer regularization term Epcreg in Eq. (10). From Figures 3 (c) and (d), we
can see that each of the parent-child edges (p, c) ∈ Epc

k+1 in the top layer of Gk+1 has a corresponding edge (p′, c) ∈ Epc′

k+1

in Ĝk+1 that has the same child c. Furthermore, for each one of those edges, Tp(p) = Tp′(p) and αp = αp′ , since f ≡ f̂ .
Therefore, we can exactly convert Epcreg in Etop to the form in A as follows.∑

(p,c)∈Epc
k+1

wpc Epcreg(fp, fc) =
∑

(p,c)∈Epc
k+1

wpc

[
λpc1 min{αp, αc}ψpc(cc) + λpc2|αp − αc|

]
(A14)

=
∑

(p,c)∈Epc
k+1

|Ωc|
[
λpc1 min{αp, αc}min{‖Tp(cc)−Tc(cc)‖2, τpc}+ λpc2|αp − αc|

]
(A15)

=
∑

(p′,c)∈Epc′
k+1

|Ωc|
[
λpc1 min{αp′ , αc}min{‖Tp′(cc)−Tc(cc)‖2, τpc}+ λpc2|αp′ − αc|

]
(A16)

=
∑

(p,c)∈Epc′
k+1

wpc Epcreg(f̂p, f̂c) (A17)

Approximate Conversion of Spatial Regularization Term

For the spatial regularization term Estreg in Eq. (6), we split it into two parts.∑
(s,t)∈E′

k

wst Estreg(f̂s, f̂t) = λst1

∑
(s,t)∈E′

k

wst min{αs, αt}
∑

p∈Bst

ψst(p)/|Bst|+ λst2

∑
(s,t)∈E′

k

wst |αs − αt|. (A18)

Here, the first and second parts evaluate flow and segmentation smoothness, respectively. We can show exact conversion
for the segmentation smoothness part. To show this, we classify the edges of E′k in Ĝk+1 into two types: Type A) edges
(s′, t′) ∈ A across two different components s′ ∈ Cs and t′ ∈ Ct. Type B) edges (s′′, t′′) ∈ B within the same component
s′′, t′′ ∈ Ci. Notice that Estreg(fs, ft) = 0 for Type A edges, because fs = ft holds in the same component. We now derive
exact conversion for the segmentation smoothness part as follows.

∑
(s,t)∈Ek+1

wst |αs − αt| =
∑

(s,t)∈Ek+1

 ∑
(s′,t′)∈Ast

ws′t′

 |αs − αt| (A19)

=
∑

(s,t)∈Ek+1

∑
(s′,t′)∈Ast

ws′t′ |αs′ − αt′ | (A20)

=
∑

(s′,t′)∈A

ws′t′ |αs′ − αt′ | (A21)

=
∑

(s′,t′)∈A

ws′t′ |αs′ − αt′ |+
∑

(s′′,t′′)∈B

ws′′t′′ |αs′′ − αt′′ | (A22)

=
∑

(s,t)∈E′
k

wst |αs − αt| (A23)

Here, wst =
∑
ws′t′ in Eq. (A19) is from Eq. (14), but the definition of (s′, t′) can be equivalently replaced as Type A edges

(s′, t′) ∈ Ast where s′ ∈ Cs and t′ ∈ Ct. Equation (A20) is from f ≡ f̂ , where it holds that αi = α′i for i ∈ Vk+1 and
i′ ∈ Ci.

In contrast, the conversion of the flow smoothness part in Eq. (A18) is not always exact. However, the pixel locations p
where the flow difference penalties ψst(p) actually occur are the same in Etop and A. Furthermore, the total costs of the flow



smoothness part are equally bounded by
∑

(s,t)∈Ek+1
λst1wstτst in both Etop andA. Thus, Eq. (A18) is a good approximation

for the spatial regularization term.

Approximate Conversion of Graph Validity Term

To derive an approximation Ek+1
gra (f̂ |V ′k) for the graph validity term Ek+1

gra (Vk+1) in Eq. (11), we need to deal with two
issues. 1) We need to convert variables from the node structure Vk+1 in Etop to the labeling f̂ on V ′k inA. 2) The approximation
function must be pairwise submodular energies for allowing graph cut based optimization.

For the first issue, we apply the variable conversion of Eq. (19) and regard Vk+1 as a function Vk+1(f̂) that represents a
set of connected components Ci of nodes in V ′k assigned the same label. Thus, Ek+1

gra (Vk+1) is converted to a function of f̂ as
follows.

Ek+1
gra (Vk+1) = λnodβ

k+1|Vk+1| − λcol

∑
i∈Vk+1

∑
p∈Ωi

lnP (Ip|θi) (A24)

= λnodβ
k+1|Vk+1(f̂)| − λcol

∑
i∈Vk+1

∑
p∈Ωi

lnP (Ip|θCi) (A25)

= λnodβ
k+1|Vk+1(f̂)| − λcol

∑
i′∈V ′

k

∑
p∈Ωi′

lnP (Ip|θCi) (A26)

Here, |Vk+1(f̂)| is the count of the components defined by the labeling f̂ , and θCi is the color distribution within the region
of a component Ci that i′ ∈ V ′k belongs to. The fact that the computation of both |Vk+1(f̂)| and θCi involves regional
(higher-order) information of f̂ raises the second issue.

To deal with the second issue of higher-order terms, we relax the connectivity of |Vk+1(f̂)| and treat it as the count of
unique labels f̂i in i ∈ V ′k without considering their spatial connections.

|Vk+1(f̂)| '
∑

L∈{all labels}

δL(f̂), (A27)

where δL(f̂) = 1 if ∃i ∈ V ′k : f̂i = L; otherwise δL(f̂) = 0. In this manner, |Vk+1(f̂)| becomes label costs [2] of f̂ ,
and the formulation of Eq. (A26) is the same as that of multi-region segmentation of [2]. In their model fitting approach, the
label costs are optimized as pairwise submodular terms under alpha expansion moves with additional auxiliary variables. Our
optimization approach using local expansion moves allows the same strategy. Furthermore, the distribution θCi is treated as
a label θi given by f̂i, rather than a value computed from Ci. Thus, the likelihood terms in Eq. (A26) are approximated as
unary potentials as follows.

−
∑
i′∈V ′

k

∑
p∈Ωi′

lnP (Ip|θCi) '
∑
i∈V ′

k

E igra(f̂i) (A28)

where E igra(f̂i) evaluates the given distribution label θi included in f̂i as

E igra(f̂i) = −
∑
p∈Ωi

lnP (Ip|θi). (A29)

Note that the energy conversion is unnecessary for the graph terms in E(f̂ |Gk), because those terms are constant with the
fixed Gk. Likewise, it is unnecessary in the whole process of the top-down labeling refinement phase.

Consequently, f̂ becomes the following labeling on Ĝk+1.

f̂i =

{
(Ti, αi,θi) if i ∈ V ′k
(Ti, αi) if i ∈ Vl (0 ≤ l ≤ k)

. (A30)



The distribution label θi of i ∈ V ′k is initialized as the color distribution of the region Ωi. Except for the cross-view proposer,
the proposal generation for distribution labels is essentially the same as that of other labels (T, α). The expansion and
perturbation proposers simply copy the current label θi of the target node i as a candidate. The average proposer generates
candidates as the weighted sum of two distributions wiθi + wjθj . The cross-view proposer generates a candidate as the
distribution within the region Ωi of the target node i.

C. Initiailzation of Color Models

Here, we explain the implementation details of the initialization of color models {θF ,θB} omitted in Section 5.3.

Geodesic Distance

We first compute a geodesic distance map for each of the input images. At every pixel p we compute the shortest geodesic
distance to any of the image boundary pixels q ∈ B:

D(p) = min
q∈B

d(p,q), (A31)

where d(p,q) is the geodesic distance between two pixels p and q define as

d(p,q) = min
s∈P

|s|−1∑
k=1

‖I(s(k + 1))− I(s(k))‖2. (A32)

Here, P is the set of all paths joining p and q. The approximate computation of D(p) is efficiently implemented using a
linear-order algorithm of [11].

We further normalize the value range of the geodesic distance map by

D̄(p) = e−D(p)2/γ . (A33)

The parameter γ is given as γ = ησ2 where σ = E[‖I(p)− I(q)‖2] is computed as the expectation over all spatial neighbors
(p,q), and η is set to 20 in our implementation. The values of 1− D̄(p) are visualized in the right part of Figure 4.

Seeds and Initial Mask Creation for GrabCut

Secondly, we compute seeds and initial masks of foreground and background as input to GrabCut [8]. The seeds of fore-
ground and background regions give constant unary likelihoods. The initial masks are used to initialize the color distributions
used in GrabCut. We compute these regions using the ratio values and the geodesic distance as follows.

As explained in Section 5.3, we have three ratio values {r1, r2, r3} at each pixel computed from the three levels of the
image pyramid. For each level, we normalize the ratio values to be in the range of [0, 1] using the minimum and maximum
ratio values. After the layerwise normalization, we integrate the three ratio values to obtain a single value as r = r1r2r3 +

(1− r1)r2r3 + r1(1− r2)r3 + r1r2(1− r3). We then create the foreground / background seeds and foreground / background
masks as regions where r < 0.05, r > 0.95, r < 0.70 and r > 0.85, respectively. The regions of foreground seed and mask
are further reduced if the geodesic distance is D̄(p) > 0.5.

In our implementation, the color likelihood terms of GrabCut are implemented by 643 bins of RGB color histograms
with a weight coefficient of 1. The pixels in the foreground/background seeds are assigned a constant likelihood value of
10. Using the geodesic distance in Eq. (A33), we also add background likelihood values of 10D̄(p). For efficiency, we use
the superpixel nodes of V1 during this step and reuse them again in our main algorithm. Finally, we obtain estimated color
models {θF ,θB} of an image after a few iterations of GrabCut. We perform this computation for each of the two images.



D. Submodularity

As discussed in [10, 9] the submodularity condition of local expansion move energies in Eq. (20) is the same as that of
conventional alpha expansion moves [1]. To prove that our energy is submodular under expansion moves, we need to show
that our pairwise regularization terms Espreg and Epcreg in Eqs. (6) and (10) are submodular. To simplify discussions, we rewrite
these terms as a pairwise function, as follows.

φ(x,y) = min{x, y}ψ(x,y) + λ|x− y|. (A34)

Here, λ ≥ 0 is a scalar weight, a bold x denotes a label vector of (T, α) while a non-bold x denotes its scalar alpha label
α ∈ [0, 1]. The two terms Espreg and Epcreg can be expressed in this form by properly defining ψ(x,y). Using this notation we
prove the following two lemmas.

Lemma 1 If ψ(, ) satisfies the following three conditions for any x,y, z

0 ≤ ψ(x,y) ≤ τ, (A35)

ψ(x,x) = 0, (A36)

ψ(x,y) + ψ(z, z) ≤ ψ(x, z) + ψ(z,y), (A37)

and if
τ ≤ 2λ, (A38)

then φ(x,y) is submodular under expansion moves, i.e., it satisfies the following submodularity condition of expansion
moves [1, 6]:

φ(x,y) + φ(z, z) ≤ φ(x, z) + φ(z,y). (A39)

Proof.
Notice that φ(z, z) = 0. Using this and assuming x ≥ y without loss of generality, Eq. (A39) can be expressed as

min{x, z}ψ(x, z) + λ|x− z|+ min{z, y}ψ(z,y) + λ|z − y| − yψ(x,y)− λ(x− y) ≥ 0. (A40)

The proof for the above inequity is divided into the following three cases depending on z.

Case 1 where x ≥ y ≥ z ≥ 0. We show in this case that

Eq. (A40, left) = zψ(x, z) + λ(x− z) + zψ(z,y) + λ(y − z)− yψ(x,y)− λ(x− y) (A41)

= z
[
ψ(x, z) + ψ(z,y)

]
− yψ(x,y) + 2λ(y − z) (A42)

≥ zψ(x,y)− yψ(x,y) + 2λ(y − z) (A43)

= (y − z)
[
2λ− ψ(x,y)

]
(A44)

≥ (y − z)
[
2λ− τ

]
(A45)

≥ 0. (A46)



Case 2 where x ≥ z ≥ y ≥ 0. Similarly, we show that

Eq. (A40, left) = zψ(x, z) + λ(x− z) + yψ(z,y) + λ(z − y)− yψ(x,y)− λ(x− y) (A47)

= zψ(x, z) + yψ(z,y)− yψ(x,y) (A48)

≥ y
[
ψ(x, z) + ψ(z,y)− ψ(x,y)

]
(A49)

≥ 0. (A50)

Case 3 where z ≥ x ≥ y ≥ 0. Finally, we show that

Eq. (A40, left) = xψ(x, z) + λ(z − x) + yψ(z,y) + λ(z − y)− yψ(x,y)− λ(x− y) (A51)

= xψ(x, z) + yψ(z,y)− yψ(x,y) + 2λ(z − x) (A52)

≥ y
[
ψ(x, z) + ψ(z,y)− ψ(x,y)

]
+ 2λ(z − x) (A53)

≥ 0. (A54)

Lemma 2 If ψ(x,y) is given by a form of the truncated Euclidean distance as

ψ(x,y) = min{‖x− y‖2, τ}, (A55)

then ψ(x,y) satisfies the aforementioned three conditions of Eqs. (A35) – (A37).

Proof.
The first and second conditions are obvious. We can also show the third condition as follows.

ψ(x,y) + ψ(z, z) = ψ(x,y) (A56)

= min{‖x− y‖2, τ} (A57)

= min{‖(x− z)− (y − z)‖2, τ} (A58)

≤ min{‖x− z‖2 + ‖y − z‖2, τ} (A59)

≤ min{‖x− z‖2, τ}+ min{‖y − z‖2, τ} (A60)

= ψ(x, z) + ψ(z,y) (A61)

The above two lemmas directly derive the submodularity for the parent-children term Epcreg using substitutions λ = λpc2

and τ = λpc1τpc. By slightly modifying Eq. (A55) for the spatial term Estreg, it can also be shown to be submodular where
λ = λst2 and τ = λst1τst.

E. Tuning Hyper Parameters

We explain our strategy of tuning parameters. Since the graph term is independent of the labeling, we start with a simple
energy function consisting of only the graph term. We set λcol = 1 and tune λnod so that |V1| ' 2|V2| in the obtained graph.
We then use the single layer model and tune parameters of the flow (λflo, τD) and segmentation (λseg) data terms and spatial
smoothness term (λst1, λst2, τst). While checking segmentation quality, we tune λseg at around λcol and λst2 at around 50 (the
default setting in GrabCut [8]). The remaining flow-related parameters are tuned by checking flow quality. We finally use the
hierarchical model and tune the parameters (λpc1, λpc2, τpc) of the multi-layer regularization.



Table A1. Benchmark results (without flipped images). FAcc is flow
accuracy rate for an error threshold of 5 pixels in a normalized scale.
SAcc is segmentation accuracy by intersection-over-union ratios. SAcc
scores (?) of optic flow mothods are computed by post-processing using
left right consistency check.

Optic flow / FG3DCar JODS PASCAL
cosegment. Methods FAcc SAcc FAcc SAcc FAcc SAcc

Ours 0.837 0.756 0.665 0.521 0.754 0.659
Our single layer ([10]) 0.734 0.757 0.525 0.515 0.649 0.626
SIFT Flow [7] 0.640 (0.420) 0.582 (0.257) 0.695 (0.468)
DSP [5] 0.492 (0.285) 0.517 (0.227) 0.590 (0.364)
DFF [12] 0.498 (0.328) 0.330 (0.213) 0.333 (0.251)

Faktor and Irani [3] – 0.688 – 0.549 – 0.486
Joulin et al. [4] – 0.461 – 0.332 – 0.411
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Figure A5. Average flow accuracies evaluated by endpoint er-
rors with varying thresholds (without flipped images). Ours
always shows best scores. Similarly to Figure 5, our method
shows always best scores.

F. Dataset

In this section, we show more examples and report some statistics of our dataset. Our dataset comprises of 400 image
pairs divided into three groups – FG3DCar contains 195 image pairs of vehicles. JODS contains 81 image pairs of airplanes,
horses, and cars. PASCAL contains 124 image pairs of bicycles, motorbikes, buses, cars, trains. The charts in Figure A1
show the number of image pairs in each subcategory of JODS and PASCAL. Figures A2–A4 show examples of image pairs
from FG3DCar, JODS and PASCAL, respectively. Notice that JODS and PASCAL contain some horizontally flipped image
pairs, i.e., one image requires a mirror reflection prior to alignment. The numbers of such flipped image pairs included in
each group are follows. FG3DCar: 2 pairs (1 %). JODS: 9 pairs (11 %). PASCAL: 48 pairs (39 %).

G. Benchmark Scores without Flipped Images

As mentioned in the previous section, our dataset contains flipped image pairs. Since our method and others do not
explicitly handle such image pairs, they fail to find correspondence for them. Therefore, we also evaluate accuracy scores
similar to Table 1 and Figure 5 but excluding flipped image pairs from the evaluation. We show the average scores for the
three groups in Table A1, and the plots of average flow accuracies with varying thresholds in Figure A5. We observe similar
trends between scores with and without flipped image pairs.
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