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Appendix I. Comparison

We show that our deep network structure for comput-

ing dense correspondences achieves state-of-the-art perfor-

mance on establishing correspondences between the intra-

and inter-subject pairs from the FAUST dataset [1]. For

each 3D scan in this dataset, we compute a per-vertex fea-

ture descriptor by first rendering depth maps from mul-

tiple viewpoints and averaging the per-pixel feature de-

scriptors. Correspondences are then established by near-

est neighbor search in the feature space. The accuracy of

this direct method is already significantly better than all ex-

isting global shape matching methods (that do not require

initial poses as input), and is comparable to the state-of-

the-art non-rigid registration method proposed by Chen et

al. [3], which uses the initial poses of the models to refine

correspondences. To make a fair comparison with Chen et

al. [3], we use an out-of-the-shelf non-rigid registration al-

gorithm [5] to refine our results. We initialize the regis-

tration algorithm with the correspondences established with

the nearest-neighbor search and refine their positions after

non-rigid alignment. Results obtained with and without this

refinement step are reported in Figure 1 and Table 1. It

is worth mentioning that per-vertex feature descriptors for

each scan are pre-computed. Thus for each pair of scans,

we can obtain dense correspondences in less than a sec-

ond. Though our method is designed for clothed human

subjects, our algorithm is far more efficient than all other

known methods which rely on local or global geometric

properties.
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(a) Cumulative error distribution, intra-subject
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(b) Cumulative error distribution, inter-subject
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(c) Average error for each intra-subject pair
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(d) Average error for each inter-subject pair

Figure 1: Evaluation on the FAUST dataset. CNN is the result obtained by performing nearest neighbor search on descriptors

produced by our network. CNN-S is the result after non-rigid registration. Data for algorithms other than ours are provided

by Chen et al. [3]. Left: Results for intra-subject pairs. Right: Results for inter-subject pairs. Top: Cumulative error

distribution for each method, in centimeters. Bottom: Average error for each pair, sorted within each method independently.



method AE (cm) worst AE 10cm-recall

CNN-S 2.00 9.98 0.975

CNN 5.65 18.67 0.918

CO[3] 4.49 10.96 0.907

RF[8] 13.60 83.90 0.658

BIM[4] 14.99 80.40 0.615

Möbius[6] 22.26 69.26 0.548

ENC[9] 23.60 51.32 0.385

C2FSym[12] 26.87 100.23 0.335

EM[11] 30.11 95.42 0.293

C2F[10] 23.63 73.89 0.334

GMDS[2] 28.94 91.84 0.300

SM[7] 28.81 68.42 0.326

(a) Accuracy on intra-subject pairs

method AE (cm) worst AE 10cm-recall

CNN-S 2.35 10.12 0.972

CNN 5.73 18.03 0.917

CO[3] 5.95 14.18 0.858

RF[8] 17.36 86.76 0.539

BIM[4] 30.58 70.02 0.300

Möbius[6] 26.92 79.43 0.435

ENC[9] 29.29 57.28 0.303

C2FSym[12] 25.89 96.46 0.359

EM[11] 31.25 90.74 0.235

C2F[10] 25.51 90.62 0.277

GMDS[2] 35.06 91.21 0.188

SM[7] 32.66 75.38 0.240

(b) Accuracy on inter-subject pairs

Table 1: Evaluation on the FAUST dataset. CNN is the result obtained by performing nearest neighbor search on descriptors

produced by our network. CNN-S is the result after non-rigid registration. Data for algorithms other than ours are provided

by Chen et al. [3]. Left: Results for intra-subject pairs. Right: Results for inter-subject pairs. For each method we report

the average error on all pairs (AE, in centimeters), the worst average error among all pairs (worst AE), and the fraction of

correspondences that are within 10 centimeters of the ground truth (10cm-recall).


