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Abstract

In this supplementary material, we provide the proofs to
Theorems 1 and 2 presented in the maintext. We also present
more clarifications on the parameter settings in our exper-
iment. Furthermore, we show more experimental results to
further substantiate the effectiveness of our method.

1. Proofs to Theorems 1 and 2
We first give the following Lemma [4].
Lemma 1. (von Neumann’s trace inequal-

ity) For any m × n matrices A and B, with
σ(A) = [σ1(A), σ2(A), ...σr(A)]T and σ(B) =
[σ1(B), σ2(B), ...σr(B)]T , where r = min(m,n),
being the singular values of A and B, Then

tr(ATB) ≤ σ(A)Tσ(B).

The equality is achieved when there exists unitarians U and
V that A = UΣAV

T and B = UΣBV
T are SVDs of A

and B, respectively.
Based on the result of Lemma 1, we can deduce the fol-

lowing theorem.
Theorem 1. ∀ A ∈ Rm×n, the following problem:

max
UTU
〈A,U〉, (1)

has the following closed-from solution Û = BCT , where
A = BDCT denotes the condensed SVD of A.

Proof. Without loss of generality, we assumem > r. For
any U ∈ Rm×n satisfying UTU = I , it is easy to see that
all of its singular values are 1. Thus, the condensed SVD of
U can be written as

U = B̂Ir×rĈ
T ,

where B ∈ Rm×r, C ∈ Rr×r and Ir×r ∈ Rr×r is the
unitary matrix. By von Neumann’s trace inequality, we can
∗Corresponding author.

easily deduce that 〈A,U〉 = trace(ATU) attains its upper
bound when B̂ = B and Ĉ = C. Then we can obtain
Û = BCT .

When m ≤ r we can obtain the result in the similar
way.�

Before proving Theorem 2, we first give two lemmas. It
should be mentioned that, Gong et al. [2] has proved similar
result as Lemma 2, but less rigorous.

Lemma 2. Let 0 < λ and 0 < ε < min
(√

λ, λy

)
, the

following problem:

min
x
f(x) = λ log (|x|+ ε) +

1

2
(x− y)2 (2)

has a local minimal

Dλ,ε(y) =

{
0 if c2 ≤ 0

sign(y)
(
c1+
√
c2

2

)
if c2 > 0

, (3)

where c1 = |y| − ε and c2 = (c1)
2 − 4(λ− ε|y|).

Proof. We first consider the situation that y ≥ 0. It is
easy to see that when x < 0, f(x) ≥ f(0).

When x ≥ 0, f(x) is differentiable, and by re-arranging
f ′(x) = 0 we can get:

λ
1

x+ ε
+ x− y = 0,

which is equivalent to

(x+ ε)f ′(x) = x2 + (ε− y)x+ λ− εy = 0. (4)

Thus we have:
1) if c2 < 0, (4) has no real solution, and it’s easy to see

that f ′(x) > 0, x ∈ (0,+∞). Since f(x) is a continuous
function, its global minimum is x = 0;

2) if c2 = 0, (4) has the solutions x = c1
2 , and it’s easy

to see that f ′(x) ≥ 0, x ∈ (0,+∞). Since f(x) is a contin-
uous function, its global minimum is x = 0;

3) if c2 > 0, (4) has two solutions, x1 =
c1−
√
c2

2 and

x2 =
c1+
√
c2

2 . Besides, since 0 < ε < min
(√

λ, λy

)
, we



can also obtain that:

c2 = (y − ε)2 − 4(λ− εy) > 0

y2 − 2εy + ε2 ≥ 4C − 4εy

(y + ε)2 > 4C

y − ε > 2
√
C − 2ε

c1 > 0.

(5)

Thus x2 > x1 > c1 > 0, and it’s then easy to obtain that
f ′(x) > 0 when 0 < x < x1 or x > x2 and f ′(x) < 0
when x1 < x < x2. Therefore, x = x2 is the only local
minimum of f(x) over (0,+∞).

For y < 0, we can prove in a similar way. Therefore,
Theorem 1 holds.�

Lemma 3. Given Y ∈ Rm×n, m ≥ n, let Y =
Udiag(σ1, σ2, ..., σn)V T be the SVD of Y . Define di as i-th
singular value of X , the optimum to the following problem:

min
X∈Rm×n

g (d1, d2, ..., dn) +
1

2
‖X − Y ‖2F (6)

can be expressed as X̂ = Udiag(d̂1, d̂2, ..., d̂n)V T , where
(d̂1, d̂2, ..., d̂n) is the optimum to the following optimization
problem:

min
d1,d2,...,dn

n∑
i=1

(σi − di)2 + g(d1, d2, ..., dn)

s.t. d1 ≥ d2 ≥ .... ≥ dn ≥ 0.

(7)

Proof. For any X ∈ Rm×n, denote ŪDV̄ T as the SVD
of X , where D = diag(d1, d2, ..., dn) is the singular value
matrix, with d1 ≥ d2 ≥ .... ≥ dn ≥ 0. Based on the
property of Frobenius norm, we have

g (d1, d2, ...dn) +
1

2
‖X − Y ‖2F

=
1

2
‖Y ‖2F − Tr

(
Y TX

)
+

1

2
‖X‖2F + g (d1, d2, ...dn)

=− Tr
(
Y TX

)
+

1

2

n∑
i=1

(σ2
i + d2

i ) + g (d1, d2, ...dn) .

Therefore, (6) is equivalent to

min
Ū,D,V̄

−Tr
(
Y TX

)
+

1

2

n∑
i=1

(σ2
i + d2

i ) + g (d1, d2, ...dn)⇔

min
D

{
−max
Ū,V̄

Tr
(
Y TX

)
+
1

2

n∑
i=1

(σ2
i + d2

i )+g (d1, d2, ...dn)

}

Based on von Neumann’s trace inequality, we know that
Tr
(
Y TX

)
achieves its upper bound

∑n
i=1 (σidi) if Ū = U

and V̄ = V . Thus (6) is equivalent to

min
D

n∑
i=1

(σ2
i + 2σidi + d2i ) + g (d1, d2, ...dn)

⇔ min
d1,d2,...,dn

n∑
i=1

(σi − di)2 + g(d1, d2, ..., dn)

s.t. d1 ≥ d2 ≥ .... ≥ dn ≥ 0.

From the above derivation, we can see that the optimal
solution to (6) is

X̂ = Udiag(d̂1, d̂2, ..., d̂n)V T

where (d̂1, d̂2, ..., d̂n) is the solution to (7).
The proof is then completed. �
Based on the above two lemmas, we can now present the

following theorem.
Theorem 2. Given Y ∈ Rm×n, m ≥ n, let Y =

Udiag(σ1, σ2, ..., σn)V T be the SVD of Y . Let 0 < λ,

0 < ε < min
(√

λ, λσ1

)
, and define di as i-th singular

value of X . The solution of the following problem:

min
X∈Rm×n

λ

n∑
i=1

log(di + ε) +
1

2
‖X − Y ‖2F (8)

can then be expressed as X̂ = Udiag(d̂1, d̂2, ..., d̂n)V T ,
where d̂i = Dλ,ε(σi), i = 1, 2, ..., n.

Proof. According to Lemma 3, the optimum to (8)
can expressed as X̂ = Udiag(d̂1, d̂2, ..., d̂n)V T , where
(d̂1, d̂2, ..., d̂n) is the optimum to the following optimiza-
tion problem:

min
d1,d2,...,dn

n∑
i=1

{
(σi − di)2 + λ log(di + ε)

}
s.t. d1 ≥ d2 ≥ .... ≥ dn ≥ 0.

(9)

We first consider the following unconstrained problem:

min
d1,d2,...,dn

n∑
i=1

{
(σi − di)2 + λ log(di + ε)

}
. (10)

According to Lemma 2, a local optimum to (10) is d̄i =
Dλ,ε(σi), and it’s easy to see that d̄1 ≥ d̄2 ≥ .... ≥ d̄n ≥ 0

holds. d̂i = d̄i, i = 1, 2, ..., n then corresponds to a local
optimum to (9).

The proof is completed. �

2. Parameter setting details
In our experiments we set β = cv−1, and in this section,

we will provide clarifications on this parameter setting strat-
egy. Let’s first consider the following matrix-based proxi-
mal problem:

X̂ = arg min
X∈Rm×n

1

β
log (|di|+ ε) +

1

2
‖X − Y ‖2F , (11)



where di is the i-th singular value of X . Based Theorem
2, we can define X̂ = UD̂V T as the SVD of X̂ , and Y =
UΣV T as the SVD of Y , where D̂ = diag(d̂1, d̂2, ..., d̂n)
and Σ = diag(σ1, σ2, ..., σn). Approximately let ε = 0,
and then we have

〈X̂, Y − X̂〉
=Tr(X̂T (Y − X̂))

=Tr

((
UD̂V T

)T
U
(

Σ− D̂
)
V T
)

=

r∑
i=1

d̂i(σi − d̂i)

=

r∑
i=1

(
σi +

√
σ2 − 4β−1

2

)(
σi −

√
σ2 − 4β−1

2

)

=

r∑
i=1

σ2
i − (σ2

i − 4β−1)

4

=rβ−1.

Thus, we can obtain

β =
r

〈X̂, Y − X̂〉
. (12)

Since 〈X̂, Y − X̂〉 is with the same order of magnitude as

E(X̂)E(Y − X̂) = E(Y )E(Y − X̂) ≈ E(Y )E(Y −X),

where X define the groundtruth, and E(Y −X) is with the
same order of magnitude as v =

√
E ((Y −X)2), then we

have
β ≈ ĉ r

mnE(Y )
v−1. (13)

This derivation can be easily generalized to tensor case in a
similar fashion, and thus we can use β = cv−1 to set β.

3. More demonstrations on HSI denoising
In this section, we will depict more MSI denoising ef-

fects of the competing methods to further demonstrate the
superiority of the proposed method.

3.1. More simulated MSI denoising results

In this section, we present more simulated MSI denois-
ing results on Columbia Datasets. Table 1 lists the aver-
age performance over different scenes with several noise
settings of all methods. From these quantitative compari-
son, the advantage of the proposed method can be evident-
ly observed. Among almost all noise settings, our method
can significantly outperform other competing methods with
respective to all evaluation measures, e.g., the PSNR ob-
tained by our method are more than 1.5 larger and ERGAS
is around 10 smaller than the second best methods.

To further depict the denoising performance of our
method, we show in Fig. 1-3 two bands in several MSIs that
centered at 400nm (the darker one) and 700nm (the brighter
one), respectively. From the figure, it is easy to observe that
the proposed method evidently performs better than other
competing ones, both in the recovery of finer-grained tex-
tures and coarser-grained structures. Especially, when the
band energy is low, most competing methods begin to fail,
while our method still performs consistently well in such
harder cases.

3.2. More real MSI denoising demonstration

The natural scene data set: We have used a natural
scene data set [1]1 with some MSIs from real-world scenes
in our real data experiment. This dataset comprises 15
rural scenes (containing rocks, trees, leaves, grass, earth,
etc.) and 15 urban scenes (containing walls, roofs, win-
dows, plants, indoor, etc.). All of them are illuminated by
the direct sunlight between mid-morning to mid-afternoon.
As the images are taken from a fairly far distance and the
energy is spread over all bands, these MSIs contain de-
gree of Gaussian noises and amounts of sharp noises. For
such noise, in our experiments, we first apply a variance-
stabilizing (VST) [3] to the noised MSI, and then perform
all competing methods, and finally apply an inverse VST to
the denoised data to obtain the final reconstruction.

The experimental results show that our method can con-
sistently ameliorate the image quality contained in these M-
SIs. For easy observation we illustrates an example image
located at a band of a rural MSI in Fig. 4. It can be easily
observed that the image restored by our method properly re-
moves the noise while finely preserves the structure under-
lying the MSI, while the results obtained by most of other
competing methods either contain evident blurry or remain
more unexpected sharp noises.
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Table 1. Average performance of 9 competing methods with respect to 4 PQIs. For both settings, the results are obtained by averaging
through the 32 scenes and the varied parameters.

v Method PSNR SSIM FSIM ERGAS

0.10

Nosiy image 20.00±0.00 0.14±0.06 0.65±0.10 575.76±164.34
BwK-SVD 30.24±1.23 0.60±0.04 0.89±0.03 173.91±39.36
BwBM3D 37.21±2.82 0.92±0.03 0.95±0.01 79.13±23.97
3DK-SVD 32.66±1.30 0.76±0.02 0.93±0.02 134.14±26.41

LRTA 36.93±2.83 0.89±0.05 0.95±0.01 82.23±26.50
PARAFAC 33.53±3.96 0.84±0.10 0.92±0.04 126.07±62.80
ANLM3D 36.86±2.87 0.93±0.04 0.96±0.01 85.23±21.36

TDL 39.47±2.35 0.95±0.02 0.97±0.01 60.41±14.48
BM4D 39.76±2.23 0.94±0.02 0.97±0.01 58.51±14.80
ITSReg 41.24± 2.58 0.95± 0.04 0.98± 0.01 50.59± 30.16

0.15

Nosiy image 16.48±0.00 0.07±0.04 0.53±0.11 863.64±246.49
BwK-SVD 28.65±1.33 0.52±0.05 0.84±0.03 208.74±46.49
BwBM3D 34.97±2.74 0.88±0.05 0.93±0.01 101.92±29.81
3DK-SVD 31.04±1.59 0.71±0.03 0.91±0.02 160.81±30.60

LRTA 34.88±2.78 0.85±0.07 0.93±0.02 103.93±32.98
PARAFAC 32.80±3.54 0.80±0.09 0.91±0.04 135.47±61.75
ANLM3D 35.11±2.85 0.90±0.05 0.95±0.02 103.26±25.97

TDL 37.05±2.15 0.91±0.02 0.95±0.02 79.58±18.97
BM4D 37.45±2.13 0.90±0.03 0.95±0.01 76.41±16.58
ITSReg 39.33± 2.48 0.94± 0.04 0.97± 0.01 62.35± 17.30

0.20

Nosiy image 13.98±0.00 0.05±0.03 0.45±0.12 1151.56±328.82
BwK-SVD 27.52±1.35 0.45±0.06 0.80±0.03 237.65±53.13
BwBM3D 33.71±2.88 0.86±0.06 0.92±0.02 118.32±36.64
3DK-SVD 29.97±1.76 0.68±0.04 0.89±0.02 181.08±34.53

LRTA 33.43±2.78 0.82±0.08 0.92±0.02 122.75±38.36
PARAFAC 31.34±2.80 0.73±0.07 0.89±0.03 157.44±59.16
ANLM3D 33.84±2.75 0.87±0.05 0.93±0.02 118.68±29.64

TDL 35.35±1.99 0.87±0.03 0.93±0.02 96.76±23.55
BM4D 35.80±2.05 0.86±0.03 0.94±0.01 92.43±19.74
ITSReg 37.70± 2.42 0.91± 0.05 0.96± 0.01 75.13± 20.70

0.25

Nosiy image 12.04±0.00 0.03±0.02 0.39±0.12 1439.39±410.92
BwK-SVD 26.62±1.32 0.40±0.06 0.77±0.04 263.79±59.54
BwBM3D 32.54±2.79 0.83±0.06 0.90±0.02 134.85±39.85
3DK-SVD 29.22±1.91 0.65±0.04 0.88±0.02 196.95±38.38

LRTA 32.29±2.76 0.79±0.09 0.90±0.02 139.87±43.47
PARAFAC 30.16±2.33 0.66±0.06 0.87±0.03 179.15±59.78
ANLM3D 32.82±2.61 0.83±0.05 0.91±0.02 132.50±32.25

TDL 33.93±1.79 0.83±0.04 0.91±0.03 113.74±27.35
BM4D 34.49±1.97 0.83±0.04 0.92±0.02 107.35±22.65
ITSReg 36.26± 2.32 0.89± 0.06 0.95± 0.02 88.36± 23.95

0.30

Nosiy image 10.46±0.00 0.02±0.02 0.35±0.11 1727.34±493.14
BwK-SVD 25.84±1.25 0.36±0.06 0.73±0.04 288.82±65.91
BwBM3D 31.56±2.71 0.81±0.06 0.89±0.03 150.33±42.33
3DK-SVD 28.67±2.04 0.62±0.04 0.86±0.02 209.91±42.66

LRTA 31.39±2.74 0.76±0.10 0.89±0.03 155.14±48.02
PARAFAC 28.93±1.95 0.58±0.06 0.85±0.03 205.17±62.13
ANLM3D 31.97±2.48 0.79±0.05 0.90±0.02 145.40±34.65

TDL 32.74±1.61 0.78±0.05 0.89±0.03 130.58±32.20
BM4D 33.41±1.91 0.79±0.05 0.90±0.02 121.33±25.29
ITSReg 34.39± 1.87 0.83± 0.08 0.93± 0.02 110.31± 30.38



(b)  Noisy image (a) Clean  image

(g) PARARAFAC (h) ANLM3D (i) TDL

(d) BwBM3D

(j) BM4D

 (c) BwK-SVD (e) 3DK-SVD (f) LRTA

(k) ITSReg

Figure 1. (a) The image at two bands (400nm and 700nm) of real and fake apples ms; (b) The noisy images corrupted by Gaussian noise
with variance v = 0.2, (c)-(k) The restored image obtained by the 9 utilized MSI denoising methods. Two demarcated areas in each image
are amplified at a 4 times larger scale and the same degree of contrast for easy observation of details.

(b)  Noisy image (a) Clean  image

(g) PARARAFAC (h) ANLM3D (i) TDL

(d) BwBM3D

(j) BM4D

 (c) BwK-SVD (e) 3DK-SVD (f) LRTA

(k) ITSReg

Figure 2. (a) The image at two bands (400nm and 700nm) of oil painting ms; (b) The noisy images corrupted by Gaussian noise with
variance v = 0.2, (c)-(k) The restored image obtained by the 9 utilized MSI denoising methods.



(b)  Noisy image (a) Clean  image

(g) PARARAFAC (h) ANLM3D (i) TDL

(d) BwBM3D

(j) BM4D

 (c) BwK-SVD (e) 3DK-SVD (f) LRTA

(k) ITSReg

Figure 3. (a) The image at two bands (400nm and 700nm) of Egyptian statue ms; (b) The noisy images corrupted by Gaussian noise with
variance v = 0.2, (c)-(k) The restored image obtained by the 9 utilized MSI denoising methods.

(a) Original image (c) BwBM3D (b) BwK-SVD (d) 3DK-SVD (e) LRTA

(f) PARARAFAC (g) ANLM3D (h) TDL (i) BM4D (j) ITSReg

Figure 4. (a) The image located at the 6th band in scene 3 of the natural scene data set; (b)-(j) The restored image obtained by the 9 utilized
MSI denoising methods. The demarcated areas in each image are amplified at a 2.5 times larger scale for easy observation of details.


