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Abstract

This supplementary material provides additional illustrations, visualizations and experiments. We start by showing the

color coding and label mapping used for the semantic and instance label results in the paper. Then we provide more details

about the 3D fold/curb detection and parameter settings that are used in the paper. Next, we provide additional quantitative

and qualitative semi-dense inference results for both semantic and instance segmentation. Finally, we show the ability of our

method to annotate 3D point clouds with semantic and instance labels which is a byproduct of our approach.

1. Color Coding

We first illustrate the color coding which we have used for Fig. 1 and Fig. 5 in the main paper in Fig. 1.
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(a) Color Coding of Semantic Labels.
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(b) Color Coding of Instance Labels.

Figure 1: Color Coding. Illustration of color coding used for Fig. 1 and Fig. 5 in the main paper.

1



Next, we show the mapping between the semantic and instance labels, the class frequency (computed as the percentage

of pixels in the ground truth) and the label definitions of some classes in Table 1. As explained in the main paper, we map

similar classes into a single one for semantic evaluation such that each category is represented well. However, note that our

method can handle also rare classes which appear less frequently throughout the dataset. Thus for our instance evaluation we

evaluate slightly more fine grained and only ignore classes which appear very rarely.

Semantic Labels Instance Labels Frequency (%) Definition

Road Road 11.55

Sidewalk Sidewalk 6.91

Driveway Driveway 1.29

Terrain Terrain 1.40 Grass, Soil, Stone

Building Building, Garage 29.04

Vegetation Vegetation 25.03

Car Car, Truck 9.61

Trailer Trailer 0.49

Caravan Caravan 0.49

Box Box 0.27 Box, Trashbin, Vendingmachine

Wall Wall 3.63

Fence Fence 1.81

Gate Gate 0.44

Sky Sky 7.80

Motorcycle, Bicycle, Pedestrian,

Rider, BigPole, SmallPole,

Undefined Undefined 0.26 TrafficLight, TrafficSign, Lamp

Table 1: Mapping between Instance Labels and Semantic Labels. Frequencies are specified in percentage of pixels.

2. 3D Fold/Curb Detection

We detect folds and curbs in the 3D point cloud for disambiguating the semantic class at object boundaries. We first

extract all relevant object class boundaries by thresholding the gradient over semantic classes in the annotated 3D point cloud

(i.e., we sweep a 3D gradient operator over the semantic 3D point cloud). For each boundary point, we fit two perpendicular

3D planes and extract their intersection in terms of a 3D fold (see Fig. 2a, right). The sole exception are boundaries between

road and sidewalk for which we detect the bottom part (of the curb) by training an SVM on shape context features [1] (see

Fig. 2a, left). Due to the small elevation of the curb and the noise in the 3D data we found this to perform better than 3D

plane fitting in terms of separating the objects in 3D.

As the fold detections are noisy, we model the true fold location as a random variable and penalize the deviation of the

estimate f from the detection f∗ while encouraging continuity/smoothness. We associate a random variable fi ∈ F with each

3D fold or curb i ∈ F which specifies the location and orientation of the fold segment in 3D. We discretize the set of possible

fold segments for each detection by sampling from a local neighborhood around the parameters of the detection, i.e., we have

F = {1, . . . , F}, where F is the number of discrete sample points. Each sample is associated with the corresponding fold

segment parameters. We formulate a CRF model for optimizing the placement of fold/curb segments with an energy function

which encourages smoothness of adjacent segments in 2D:

E(f) =
∑

i∈F

ϕF
i (fi) +

∑

i,j∈F

ψ
F,F
ij (fi, fj) (1)

3D Fold/Curb Unary Potentials: The unary potential for the 3D fold segments and curbs is specified by a quadratic loss on

the deviation of the estimated fold fi from its 3D detection f∗i :

ϕF
i (fi) = wF

∑

c∈C

‖κi(fi, c)− κi(f
∗
i , c)‖

2

2
(2)
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Figure 2: Illustration of the fold/curb detection in our Model. (a) Geometric structures such as folds and curbs are detected

in the 3D point cloud by fitting planes and training a classifier based on shape context. (b) We model the uncertainty in the

folds by introducing an auxiliary random variable fi with each of them and connect adjacent folds to encourage smoothness.

Here, C ⊂ [0, 1] is a finite set of 1D control points along the fold segment and κi(fi, c) returns the corresponding 3D point.

The potential is illustrated in Fig. 2b (top).

3D Fold/Curb Pairwise Potentials: For smoothing the boundaries, we introduce a pairwise term which encourages conti-

nuity between neighboring fold segments and curbs

ψ
F,F
ij (fi, fj) =

{

φ
F,F
ij (fi, fj) if (i, j) ∈ NF

0, otherwise
(3)

where smoothness of neighboring folds is defined via

φ
F,F
ij (fi, fj) = w

F,F
1

(

1−
|πi(fi)

T · πj(fj)|

‖πi(fi)T ‖2 ‖πj(fj)‖2

)

+w
F,F
2

dist (π(κi(fi, 1)),πj(fj))

+w
F,F
2

dist (π(κj(fj , 0)),πi(fi))

and NF denotes the set of neighboring folds in 3D, i.e., folds for which the endpoint of one fold segment is within a

small distance from the startpoint of the next segment. The 3D point κ(·, ·) is defined as above, π(·) projects a point or

fold segment from 3D to 2D, and dist(·, ·) denotes the shortest distance of a 2D point to a 2D fold segment. We use scaled

normals to represent fold segments πi(fi) in 2D (i.e., πi(fi)
Tp = 1 for all pixels p ∈ R

2 on the 2D fold). This potential is

illustrated in Fig. 2b (bottom).

Inference: Eq. 1 corresponds to a non-loopy pairwise CRF as folds are connected in chains, e.g., along the sidewalk-road

boundary. We obtain a global minimizer of the corresponding Gibbs energy via belief propagation. The parameters of the

model have been set empirically to yield smooth results.

3. Parameter Estimation

The log-linear weights in our model are trained end-to-end as described in the main paper. The number of these parameters

is too large to specify all of them here, but we will provide our code and the trained models on acceptance of this paper. In

contrast to the log-linear weights, the kernel width parameters are more difficult to learn using empirical risk minimization.

Thus, we obtain these parameters by coordinate descent on the validation set. In particular, we obtained θ
P,P
1

= 3, θ
P,P
2

=

43, θ
P,P
3

= 9, θ
L,L
1

= 0.05 and θ
L,L
2

= 1.0 which we fixed throughout all our experiments. Overall we found that our model

is not very sensitive to the exact setting of these parameters.



4. Additional Semi-Dense Inference Results

In this section, we show additional quantitative semi-dense inference results. In particular, we show the average Jaccard

Index and the average accuracy for semantic segmentation as well as instance segmentation when estimating only a fraction

of the pixels, elected according to the label uncertainty/entropy at each pixel as described in the main paper. We also include

the results for the “Fully Conn. CRF” label transfer baseline, for which we estimate uncertainty the same way as for our

methods. For all other baselines, uncertainty estimates are not directly accessible.
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(a) Jaccard Index (Semantic)
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(b) Accuracy (Semantic)
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(c) Jaccard Index (Instance)
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(d) Accuracy (Instance)

Figure 3: Performance wrt. Estimated Pixels. This figure shows the average Jaccard Index (a, c) and the average accuracy

(b, d) for semantic segmentation (top, including the “Fully Conn. CRF” baseline) and instance segmentation (bottom) when

estimating only a fraction of the pixels which is selected according to the uncertainty/entropy in our predictions.

Method Road Park Sdwlk Terr Bldg Vegt Car Trler Carvn Gate Wall Fence Box Sky JI Acc

LA+3D 94.5 74.7 83.5 73.4 80.7 84.5 86.3 90.8 90.9 66.3 74.7 75.6 63.1 81.9 83.5 91.0

LA+PW+CO 92.8 70.3 79.8 73.9 64.9 84.6 82.2 90.7 87.1 51.7 67.8 66.6 24.7 88.0 78.4 87.4

LA+PW+CO+3D 94.6 78.4 84.2 78.4 86.3 87.6 90.8 93.0 93.3 70.9 77.6 79.4 68.6 91.1 87.5 93.3

+ 3D PW 95.1 80.6 85.3 79.3 86.4 87.9 91.5 93.0 93.6 73.6 78.1 79.0 70.4 90.7 87.9 93.5

Full Model 95.7 80.6 86.9 79.2 86.4 87.9 91.5 93.1 93.6 73.6 78.5 79.1 70.5 90.7 88.1 93.6

Full Model (90%) 97.4 88.9 90.8 88.2 92.1 92.7 95.8 94.7 97.6 80.0 85.9 87.3 76.1 92.7 92.8 96.2

Full Model (80%) 98.6 92.4 93.3 91.9 94.0 94.6 97.2 95.5 98.5 83.0 89.4 91.3 79.1 93.9 94.7 97.3

Full Model (70%) 99.0 94.1 94.3 93.6 94.7 95.7 97.7 96.0 99.0 84.3 90.9 93.0 80.9 94.9 95.7 97.8

Table 2: Ablation Study on Instance Segmentation Task including the semi-dense instance inference results (bottom).



5. Semantic Segmentation

We also compare our method with two state-of-the-art semantic segmentation approaches which require a moderate num-

ber of annotated data: The fully connected CRF by Krähenbühl et al. [4] as well as the robust high order potentials (i.e., ALE

library) by Kohli, Ladicky et al. [3]. In addition, we compare the Jaccard index of the particular ”Car” category with [2],

which automatically performs car labeling given weak supervisory signals similar to us. We perform 2-fold cross validation

on 100 densely labeled images. The results are shown in Table 3. From the results, our approach lowers errors consistently

across almost all categories. Thus, we expect our annotations to be useful also for training models of larger capacity.

Method Road Park Sdwlk Terr Bldg Vegt Car Trler Carvn Gate Wall Fence Box Sky JI Acc

Fully Conn. CRF [4] 82.9 18.3 52.7 0.9 77.6 75.2 69.8 0.3 1.6 1.5 20.7 19.2 0.6 75.0 68.6 81.1

ALE [3] 89.9 31.5 66.2 5.5 82.4 79.9 76.0 6.1 12.4 6.4 33.9 44.3 2.4 83.1 75.5 85.4

Beat Mturkers [2] - - - - - - 82.9 - - - - - - - - -

Our Model 95.4 80.1 87.1 80.0 90.6 87.0 91.2 91.3 93.9 72.6 78.4 78.6 69.4 90.8 89.0 94.1

Table 3: Semantic Segmentation. This table shows the Jaccard Index (JI) with respect to each class, the average Jaccard

Index (Avg. JI) and the average accuracy (Avg. Acc) of our method and two state-of-the-art semantic segmentation methods.



6. Additional Qualitative Inference Results

6.1. Semi­Dense Semantic Inference Results

In this section, we show several semantic inference results qualitatively for different estimation densities.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 4: Qualitative Semi-Dense Semantic Results. Each subfigure shows from top-to-bottom: the input image with in-

ferred semantic segmentation and the errors with respect to 2D ground truth annotation where colors indicate the groundtruth

label. The second, third and fourth row of subfigures show the results at 90%, 80% and 70% density, respectively. The last

row shows the corresponding semantic 3D point cloud.



(a) Scene 4 (b) Scene 5 (c) Scene 6

Figure 5: Qualitative Semi-Dense Semantic Results. Each subfigure shows from top-to-bottom: the input image with in-

ferred semantic segmentation and the errors with respect to 2D ground truth annotation where colors indicate the groundtruth

label. The second, third and fourth row of subfigures show the results at 90%, 80% and 70% density, respectively. The last

row shows the corresponding semantic 3D point cloud.



(a) Scene 7 (b) Scene 8 (c) Scene 9

Figure 6: Qualitative Semi-Dense Semantic Results. Each subfigure shows from top-to-bottom: the input image with in-

ferred semantic segmentation and the errors with respect to 2D ground truth annotation where colors indicate the groundtruth

label. The second, third and fourth row of subfigures show the results at 90%, 80% and 70% density, respectively. The last

row shows the corresponding semantic 3D point cloud.



6.2. Semi­Dense Instance Inference Results

In this section, we show several instance inference results qualitatively for different estimation densities.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 7: Qualitative Semi-Dense Instance Results. Each subfigure shows from top-to-bottom: the input image with

inferred instance segmentation and the errors with respect to 2D ground truth annotation where colors indicate the groundtruth

semantic label. The second, third and fourth row of subfigures show the results at 90%, 80% and 70% density, respectively.

The last row shows the corresponding instance 3D point cloud (random colors).



(a) Scene 4 (b) Scene 5 (c) Scene 6

Figure 8: Qualitative Semi-Dense Instance Results. Each subfigure shows from top-to-bottom: the input image with

inferred instance segmentation and the errors with respect to 2D ground truth annotation where colors indicate the groundtruth

semantic label. The second, third and fourth row of subfigures show the results at 90%, 80% and 70% density, respectively.

The last row shows the corresponding instance 3D point cloud (random colors).



7. Semantic and Instance Results in 3D

In this section, we show accumulated semantic and instance point clouds which are inferred as a byproduct by our model.

Figure 9: Inferred 3D Point Clouds. Left: Semantic results. Right: Instance results (random colors).



8. Qualitative Comparison with Baselines

Here, we compare our method qualitatively to several 2D-to-2D and 3D-to-2D label transfer baselines. Note how the 2D-to-

2D label transfer baselines fail in the presence of strong occlusions and large displacements.

(a) Label Prop. [6] (b) Sparse Track. + GC [5]

(c) 3D Prop. + GC (d) Fully Conn. CRF [4]

(e) 3D Primitives + GC (f) 3D Mesh + GC

(g) 3D Points + GC (h) Proposed Method

Figure 10: Comparison to Baselines. Each subfigure shows from top-to-bottom: the input image with inferred semantic

segmentation and the errors with respect to 2D ground truth annotation where colors indicate ground truth labels.



(a) Label Prop. [6] (b) Sparse Track. + GC [5]

(c) 3D Prop. + GC (d) Fully Conn. CRF [4]

(e) 3D Primitives + GC (f) 3D Mesh + GC

(g) 3D Points + GC (h) Proposed Method

Figure 11: Comparison to Baselines. Each subfigure shows from top-to-bottom: the input image with inferred semantic

segmentation and the errors with respect to 2D ground truth annotation where colors indicate ground truth labels.



9. Qualitative Comparison of Ablation Study

(a) LA (b) LA + 3D

(c) LA + PW (d) LA + PW + CO

(e) LA + PW + CO + 3D (f) LA + PW + CO + 3D + 3D PW

(g) Full Model (h) Projected 3D points (top) and Line segments (bottom)

Figure 12: Qualitative Results for Ablation Study. Each subfigure (except the last one) shows from top-to-bottom: the

input image with inferred semantic segmentation, and the errors with respect to 2D ground truth annotation where colors

indicate ground truth labels. The last subfigure shows the projected 3D points (top) and detected line segments in green

(bottom). Abbreviations are defined the same as in the paper.



(a) LA (b) LA + 3D

(c) LA + PW (d) LA + PW + CO

(e) LA + PW + CO + 3D (f) LA + PW + CO + 3D + 3D PW

(g) Full Model (h) Projected 3D points (top) and Line segments (bottom)

Figure 13: Qualitative Results for Ablation Study. Each subfigure (except the last one) shows from top-to-bottom: the

input image with inferred semantic segmentation, and the errors with respect to 2D ground truth annotation where colors

indicate ground truth labels. The last subfigure shows the projected 3D points (top) and detected line segments in green

(bottom). Abbreviations are defined the same as in the paper.
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