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Abstract

We explain more details of our work entitled Efficient

3D Room Shape Recovery from a Single Panorama in this

supplementary material for completeness.

1. Introduction

We provide details of several steps in our algorithm,

which are not the core parts and are omitted in the main pa-

per due to page limit. The following sections are organized

as follows.

1. In Section 2, details of the over-segmentation algo-

rithm mentioned in Section 2 of the main submission

are explained.

2. In Section 3, a more detailed derivation for the Equa-

tion 1 of the main submission is presented.

3. In Section 4, the algorithm of finding the largest deter-

minable subgraph, which is mentioned in Section 3.4

of the main submission, is provided.

4. In Section 5, the method of generating the parameter

space for selecting the cuboid of best fit is given.

2. Panorama Over-segmentation

The over-segmentation algorithm we use for panorama is

an extension of the algorithm for normal photographs pro-

posed in [2] with three modifications: 1) the adjacency re-

lationship between image pixels is extended; 2) the size of

each image pixel is redefined; 3) a post-process is applied

to remove thin superpixels. The algorithm can be described

as follows.

First, a graph G “ tV,Eu is constructed. V is the set

of the panorama pixels and E is the set of the adjacency

relations between the pixels. In addition to the traditional

8-neighborhood adjacency, as indicated by the black lines

in Fig. 1, the adjacency relations between the leftmost and
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Figure 1: Adjacency relations between panorama pixels. Circles

represent panorama pixels, the text in each circle gives its px, yq
position in image. Lines represent the adjacency relations between

the pixels. Black lines indicate the traditional 8-neighborhood re-

lations; red lines represent the new relations which are only con-

sidered for a panorama.

the rightmost pixels, between all pairs of the topmost pix-

els and between all pairs of the bottommost pixels are also

considered in E for a 360
˝ full view panorama. These new

relations are shown as the red lines in Fig. 1.

Different sizes are assigned to vertices (pixels) at dif-

ferent heights. These sizes are formulated as sizepvq “
sinp y

H
πq, where y is the y-coordinate of the pixel, H is the

height of the panorama. The equation is exactly the same

with that for pixel weight wppq which is used by Equation

6 and defined in Section 4 in the main submission. Each

edge e P E is assigned a weight wpeq; wpeq follows the

same definition proposed in [2]; it is measured by the color

difference of two pixels.



A graph-cut is applied on G according to Algorithm 1

to perform the segmentation. The routine is generally the

same with the algorithm proposed in [2].

Algorithm 1: Panorama over-segmentation

Input: Graph G “ pV,Eq, with n vertices and m

edges; a parameter k.

Output: A segmentation of V into components

S “ pC1, . . . , Crq.

1 po1, . . . , omq Ð sort E by non-decreasing edge

weight;

2 Start with a segmentation S0, where each vertex vi is

in its own component ;

3 τ Ð a map(dictionary) structure used to record the

merging threshold of each component;

4 for vi P V do

5 C0

i Ð the component of S0 containing vi;

6 τ rC0

i s Ð k{sizepviq;

7 for q Ð 1, . . . ,m do

8 Let vi and vj denote the vertices connected by the

q-th edge in the ordering, i.e., oq “ pvi, vjq;

9 C
q´1

i Ð the component of Sq´1 containing vi;

10 C
q´1

j Ð the component of Sq´1 containing vj ;

11 if

C
q´1

i ‰ C
q´1

j ^wpoqq ă mintτ rCq´1

i s, τ rCq´1

j su

then

12 Sq Ð Sq´1 by merging C
q´1

i and C
q´1

j ;

13 τ remains the same for the components in Sq

which are not modified ;

14 C
q
ij Ð the new component merged from C

q´1

i

and C
q´1

j ;

15 τ rCq
ijs Ð wpoqq ` k{

ř

vPCq

ij
sizepvq;

16 else

17 Sq Ð Sq´1;

18 S Ð Sm;

Finally, a post-processing step is appended to remove

thin regions. A size 2 dilation is applied on the boundary

mask of the current segmentation. Regions that are com-

pletely covered by the dilated boundaries are marked as re-

moved. Then, each pixel of the removed region is merged

into its nearest region that is not marked as removed.

In Fig. 2 we compare the results of the original algorithm

and those of the modified version by applying them to a

same indoor panorama. Note that a similiar method is also

utilized by [1] to over-segment a panorama, but it remains

unknown whether we share the same underlying algorithm

due to the lack of details.
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Figure 2: (a) The fist row shows the input panorama; the second

row shows the segmentation results obtained by directly applying

the original algorithm proposed in [2]; the third row shows the re-

sults of using the modified version proposed in our work. (b) and

(c) are the bottom and top perspective conversions of (a). The orig-

inal algorithm cannot reserve the coherence across image bound-

aries (take note of the boundary lines denoted by arrows shown

in the second rows of (b) and (c) as an example). This issue is

addressed by our modified algorithm, which can also generate su-

perpixels that are spatially more uniform than those generated by

the original algorithm.

3. More About Vertex Parameterization

The detailed derivation for Equation 1 of the main sub-

mission is provided here for clearness.

We set the origin of the coordinate system at the view-

point. Therefore the equation aix ` biy ` ciz “ 1 can

represent all the possible planes that do not pass through

the viewpoint, and can thus represent all the visible sur-

face planes of an indoor room. πi “ pai, bi, ciq
⊺ is

used to represent the coefficients of the (supporting) plane

aix` biy ` ciz “ 1 of vertex i, as also denoted in the main

submission.

(1) If dfi “ 1, ni is the unit normal vector of its plane πi,

then a scalar k that satisfies πi “ kni should exist. We de-

note di as the distance of the plane πi to the viewpoint (i.e.,

the origin p0, 0, 0q). Let q “ pqx, qy, qzq⊺ be the point on

plane πi nearest to the viewpoint. Then we have q “ dini ,

because the direction from p0, 0, 0q to q must be orthogonal

to the plane. We also have π
⊺

i q “ aiqx ` biqy ` ciqz “ 1

because q lies on the plane πi. Therefore, by substituting

πi and q in the equation π
⊺

i q “ 1, we obtain

pkniq
⊺pdiniq “ 1 ñ kdipn

⊺

i niq “ 1 ñ kdi “ 1.

We denote xi “ p1{diq and Pi “ rnis as proposed in Table

1 of the main submission. Equation 1 of the main submis-

sion can be derived as:

Pixi “
ni

di
“ kni “ πi.



(2) If dfi “ 2, ui “ puix, uiy, uizq⊺ is the unit direction

vector that the surface plane must be parallel with. Hence,

ui should satisfy π
⊺

i ui “ aiuix ` biuiy ` ciuiz “ 0 be-

cause ui is orthogonal to the normal of the plane. Then

ci “ ´uix

uiz
ai ´

uiy

uiz
bi. Denote xi “ pai, biq

⊺ and Pi “
»

–

1 0

0 1

´uix

uiz
´

uiy

uiz

fi

fl as proposed in Table 1 of the main sub-

mission. Then Equation 1 of the main submission can be

derived as:

Pixi “

»

–

1 0

0 1

´uix

uiz
´

uiy

uiz

fi

fl

„

ai
bi



“

»

–

ai
bi

´uix

uiz
ai ´

uiy

uiz
bi

fi

fl

“

»

–

ai
bi
ci

fi

fl “ πi.

The special case of uiz “ 0 can be addressed by swapping

the components to make sure a nonzero component of ui

is set as the denominator. In particular, assume uiy ‰ 0 is

the nonzero component, then denote xi “ pai, ciq
⊺ and let

Pi “

»

–

1 0

´uix

uiy
´uiz

uiy

0 1

fi

fl, and Equation 1 of the main sub-

mission can be derived in the same manner.

(3) If dfi “ 3, then xi “ pai, bi, ciq
⊺ “ πi and Pi “

I3ˆ3 according to Table 1 of the main submission. It is

straightforward that Pixi “ I3ˆ3πi “ πi.

4. Subgraph Determination

After constructing the constraint graph G, as described in

Section 3.4 of the main submission, expansions(searches)

are applied to retrieve a subgraph G˚ from G to avoid any

underdeterminacy within the system to solve.

The expansion starts from a vertex with DOF=1, its

algorithm is presented in Algorithm 2. The subroutine

is-determinablepS, iq used in Algorithm 2 judges whether

the spatial configuration of vertex i can be determined given

the depths of all the connection points in S. Its formal defi-

nition is described as follows.

Let S be the set of the connection points whose depths

are all given, and let i be the vertex. If dfi “ 1, then

is-determinablepS, iq“p}S} ą 0q. If dfi “ 2, let ui be

the direction vector that the (supporting) plane of i must be

parallel with. Then, is-determinablepS, iq is true iff at least

two points P1, P2 exist in S and satisfy p
ÝÝÑ
OP1 ˆ

ÝÝÑ
OP2q M ui,

where O is the viewpoint and
ÝÝÝÝÝÑ
OPt1,2u are the view direc-

tions of the points Pt1,2u, and ˆ represents the cross prod-

uct. Finally, if dfi “ 3, then is-determinablepS, iq is true iff

at least three points Pt1,2,3u exist in S and are not visually

collinear, which means they should satisfy p
ÝÝÑ
OP1 ˆ

ÝÝÑ
OP2q ∦

p
ÝÝÑ
OP2 ˆ

ÝÝÑ
OP3q. In implementation, the conditions are all

checked according to a threshold.

Algorithm 2: Subgraph expansion from a root vertex

Input: Constraint graph G “ pV, Eq;

A root vertex r P V, dfr “ 1.

Output: Subgraph G˚ “ pV˚, E˚q without

underdeterminacy.

1 V˚ Ð H; U Ð tru;

2 S Ð an array of sets of connection points;

3 for i P V do Sris Ð H ;

4 repeat

5 T Ð H;

6 for i P U do

7 for c P related-constraintspiq do

8 j Ð the vertex of c other than i;

9 if j P V˚ _ j P U then continue;

10 else if c P Ecop then T Ð T Y tju ;

11 else if c P Econ then

12 Srjs Ð SrjsY connection points of c;

13 if is-deteminable(Srjs, j) then

14 T Ð T Y tju

15 V˚ Ð V˚ Y U ;

16 U Ð T ;

17 until U “ H;

18 E˚ Ð all the edges connecting vertices P V˚;

19 G˚ “ pV˚, E˚q;

The expansion is performed once for each vertex with

DOF=1 to retrieve multiple subgraphs. The subgraph with

the most vertices is selected as the final result. The size

of the resulted subgraph determines the coverage of recon-

struction, which is reported in Section 4 of the main sub-

mission.

5. Parameter Space for COBF Selection

The cuboid of best fit (COBF) is selected by enumerat-

ing cuboid parameters in a discretized parameter space of

vanishing direction aligned cuboids. The 3D position of an

axis-aligned cuboid can be parametrized by 6 parameters:

pxmin, ymin, zmin, xmax, ymax, zmaxq, which are the min-

imal and maximal coordinates of all 8 cuboid vertices on

the vanishing directions as shown in Fig. 3.

We build the discretized parameter space in two steps.

First, the corners of the cuboids are restricted to be

on integral grid points satisfying xmin, ymin, zmin P
t´1,´2, . . . ,´Nu and xmax, ymax, zmax P t1, 2, . . . , Nu
with N being a positive integer. Enumerating all combina-

tions of these six parameters generates N6 cuboids, some

of them are same up to scales. Therefore, each cuboid is

rescaled by normalizing the length of its diagonal; then any
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Figure 3: Parameters of an aligned cuboid.

two cuboids whose parameters satisfy }P 1

min ´ P 2

min} ă t

and }P 1

max ´ P 2

max} ă t are merged, where P
t1,2u
min “

px
t1,2u
min , y

t1,2u
min , z

t1,2u
min q and P

t1,2u
max “ px

t1,2u
max , y

t1,2u
max , z

t1,2u
max q

are the two corners of the {first, second} cuboid. 15, 559

cuboids are generated by setting N “ 5 and t “ 0.01.

Finally, all these cuboids are rotated to world coordinates

according to the vanishing directions of each scene.
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